
MODELLING AND ANALYSIS OF WHEEL REPLACEMENT
AND RESTORATION

The problem was presented to the Study Group by Mr Bill Thomas of
Queensland Railways.

Queensland Railways have 88 suburban electric trains, hereafter called EMU s,
which each consist of three cars permanently coupled together. Each car has four
wheelsets, in two bogie pairs, a wheelset being an axle and two wheels. Two of
the cars have motored wheclsets, the other has unmotored, or trailer, wheelsets;
the two types are not interchangeable.

During running of the EMUs, the wheels gradually wear. The aspect of wear
of particular interest is thinning of the wheel flange. A thin flange is more liable
to crack or to cause a derailment, particularly when travelling over points. So
once the flange wear reaches a critical level the wheel must be returned to its
correct flange profile. This can occur in one of two ways:

Reprofiling involves a loss of metal from the whole wheel rim, so after its
return to the correct profile it has a smaller diameter. Thus it is possible to have
different sizes (i.e. diameters) of wheels on an EMU simultaneously. Because
of wheel slippage however, there are limitations on the wheel sizes which can
coexist on an EMU - if the size differences are too great the resultant differences
in rotational speeds are interpreted by the automatic controller as slippage, and
it makes incorrect adjustmen ts to wheel speeds, resulting in loss of traction and
excessive wear. A further consequence of differing sizes is that smaller wheels
wear faster than big ones.

Note that both wheels on an axle are always dealt with similarly as regards
profile assessment and restoration, so that wheelsets are the basic units in this
problem.

Flange wear is monitored during the routine three-weekly inspection of an
EMU. Once it has reached a critical level (currently defined as 5mm of wear at
a fixed distance from the flange top) the wheel profile must be restored, and the
EMU is 'flagged' for attention. The restoration process consists of bringing the
EMU into the workshop, dropping the worn wheelsets off and replacing them



with wheelsets of sizes compatible with those left on the EMU. The replace-
ments come (if available) from a stock of correctly profiled wheelsets. The worn
wheelsets are then either reprofiled or they have new wheels pressed onto the
axle; once corrected they are returned to stock.

There is another level of flange wear that is also relevant, namely 7mm.
Beyond this level the wheelset is considered unserviceable, and the EMU must
be dealt with immediately or it can no longer run. There are other occasional
emergencies, such as cracking or skids, that also render a wheelset unserviceable.

Given this system with its inherent constraints, what is the relation-
ship between the stock of spare wheelsets on hand and the probability
of not having a wheelset of the correct size on hand to effect a wheel
change '?

This eventuality is one to be avoided if at all possible, since it means an EMU will
be forced out of service for a period. There are several variants and corollaries
of this question, which are also of interest, some of which will be mentioned in
this report.

Queensland Railways provided a considerable amount of quantitative infor-
mation about various aspects of the system. This included data on such matters
as:

Not all of it will be reported here, but some items are relevant for later
discussion.

Reprofiling: This reduces wheel radius by 12.5mm on average, with a standard
deviation of 1.58mm. This appears to be independent of the original size of the
wheel.

TVheel sizes: For operational convenience, wheel sizes are categorised into 7 size
classes each of 10mm diameter range. Size 1 corresponds to a diameter between



830mm and 840mm etc. Clearly the smallest tolerable diameter is 770mm. New
wheels are very near to 840mm.

Note that some size classes will be rather uncommon. For instance, one
reprofiling gives a mean diameter of 815mm for the new wheel, right in the
middle of size class 3, so classes 2 and 4 will be relatively unpopulated. This
is unfortunate, as class 4 wheels are in a sense 'universal'; they are compatible
with any other class (see below).

Compatibility constraint: The size classes of wheelsets on the same EMU must
not differ by more than three sizes classes i.e. a difference of at most 40mm.

Service and repair times:

• Removal and replacement of wheelset

• Reprofiling a worn wheel
• Repressing new wheels onto an axle

1 day
0.5 day
1 day
2.5 days

(motored)
(trailer)

The system described in the previous section is a rather complex one. The
group's initial task, then, was to set up a detailed flow chart. This is necessary
for several reasons:

• To establish the critical points in the system, where congestion or unavail-
ability of stock may occur

The chart is given as Figure 1. It includes the important components of the
problem, the points at which congestion (queues) can occur (Ql - Q4) and at
which decisions must be made (Dl - D7). Further details of the queues and
decisions are given below.
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There is, of course, more detail which could be given for several areas in
the system, and which might be necessary if that area is to be studied more
closely. One example is the detailed operation of the workshop when wheelsets
are removed, replaced and reprofiled; specific time-scheduling of the connecting
parts of the operation is especially important. However it would burden this
report unnecessarily to include all such aspects.

Q1. The queue of El\fUs with worn wheelsets. If the wheelset cannot be replaced
immediately (as is usually the case), because the workshop is not free or because
no compatible wheelset is currently in stock, the EMU is returned to service with
a nominal 'flag' to show it needs attention. Because of the 7mm unserviceability



level referred to in Section 1 there is likely to be a form of priority in this queue;
see D3.

Q2, Q3. The queues of worn wheelsets awaiting appropriate correction. There
may be priorities here if imminent need for a particular size of wheelset is fore-
seen.

Q4. The stock of spare wheels; it is perhaps more accurately described as an
inventory. Demands on the inventory come from replacement of worn wheelsets.
Because of the size compatibility constraint, it is the types of wheelset and not
just the total number that is important.

Dl. Does a wheelset need replacing at the regular inspection? The criterion for
this has already been discussed.

D2. Should the workshop drop table be used for wheelset replacement, or should
the equipment and personnel be otherwise employed? This will depend on the
queue length and priorities in Ql and the stock in Q4, among other things.

D3. If a wheclset is to b~ replaced, which EMU will be serviced? This will
depend on the number of wheelsets to be replaced on an EMU, how close its
wheelsets are to unserviceability and the stock at Q4.

D5. Can the worn wheelset be reprofiled, or must the wheels be replaced? In
practice, this means deciding whether a twice-reprofiled wheelset will still be
suitable after a third reprofiling. There may also be some priorities in which
wheelset is next corrected - see Q2,Q3.

D6. If more than one compatible wheelset is available, which one should be used?
This will depend on stock levels (for instance, size 4 wheelsets are valuable as
they are always compatible), and the states of Ql - Q3.

D7. Should new wheels for pressing onto axles be ordered? This will depend on
existing stock levels and on prediction of future demand.

D8. Can the operating constraints on the system be changed? This is not a
tactical decision related to the immediate operation of the system. It includes
such matters as a revised size classification for wheelsets (Section 4)' the critical
levels of flange and diameter wear, the compatibility condition, and so on. These
are strategic questions with which the mathematical analyses or simulation study
described in this report can help.



\Vhile it is possible to model and analyse subsystems of the whole system in
some detail, the only practical method for exploring the whole system seems to
be simulation. Such an approach has the usual pros and cons, some of which are
listed below.

• A variety of objectives can be studied without major changes to the process
of analysis

• The task of setting up, validating and debugging a complex simulation
model can be very lengthy

• If changes to input data or system operations are proposed, the whole
simulation must usually be rerun

Examples of objectives, other than the one originally proposed, which could
be investigated, are:

• Maximise the probability of being able to immediately service an unser-
viceable wheelset

The flow chart of Figure 1 is the basis of any simulation model. We need a
system state description, and a time period over which it will be augmented.

The elements of the state vector may vary depending on the objective, but
should include the following information:

• The current diameters of the 8 motor and 4 trailer wheelsets on each of
the 88 EMUs

• The levels of flange wear on each wheelset, or some other information to
determine when a wheelset will become critical and unserviceable



• Whether the EMU is currently flagged

• Size details of any wheelset awaiting correction (Q2,Q3)

The time period will be the smallest unit over which any changes in the
state vector can occur. This appears to be ~ a shift, for removal of a worn
trailer wheelset.

Some discussion of the second item in the state vector list is needed. We
must be able to decide when an EMU has at least one critical wheelset at its
routine inspection. This could be done by including the level of flange wear and
augmenting it according to an appropriate hazard function (since it is a random
quantity). However, this requires a random experiment for each wheelset or an
EMU at each time period, which does not appeal! An alternative is to generate a
lifetime, from an appropriate distribution, for each wheelset when it is first fitted
to the EMU, and decrement this; this requires only one random experiment for
each lifetime. \Ve shall still need to monitor flange wear once it exceeds criticality
(5mm), to track its approach to unserviceability. Since we do not have data on
this aspect, we cannot decide yet the best way to incorporate it in the state
vector.

As mentioned above, we believe that simulation is the only fully satisfactory
approach in general. However, we emphasize that detailed studies of subsystems
would also be of great practical value. The purpose of such studies is to develop
an appreciation of subsystem behaviour and hence to provide guidance on the
critical factors affecting them. This is valuable information for any simulation
study, since it will highlight the operating rules and regimes it is particularly
important to include. A specific instance is the need for relevant decision strate-
gies at D3 and D6 when questions of priority in the order of servicing EMUs
arise; such a problem is distinctly nonstandard.

It is possible to use the techniques of operations research, especially queueing
theory, to undertake such studies. Some of these are reported in Sections 4 - 7.

The group considered the possibility of simplifying the rating scale for wheel-
sizes, with consequent simplifications of the information needing to be kept on
a wheelset and the rules for compatibility of wheelsets.

Data provided suggested that the red uction in diameter caused by reprofiling
is normally distributed with a mean of 25mm, standard deviation of 3.16 (i.e.



variance of 10). Assume that successive reprofilings are statistically independent.
Then, for n = 0, ... ,3 :

From (1) the successive means after reprofiling are 815, 790, 765. So a scale
more closely aligned to those numbers has appeal, bearing in mind also the
compatibility requirement. The following scale is proposed, based on a 12.5mm
class interval.

I 827.5 - 840
II 815 - 827.5
III 802.5 - 815
IV 790 - 802.5
V 777.5 - 790

We further propose that wheels at most two size classes apart are regarded
as compatible (I - III, etc.)

• All new wheels are in class I (all == 840). The first reprofiling will distribute
wheels equally in classes II and III, the second equally in classes IV and
V. In fact, (1) shows that

Prob { 1st reprofiling is in II or III } = 2{1 - <I>( 827k815)} = .99997 }
Prob { 2nd reprofiling is in IV or V } = 2{1 - <I>(80qg90)} = .995

(2)

• The maximum tolerable diameter difference here is 37.5mm per EMU.
This is close to the 40111mcurrently used and is in line with Queensland
Railways' desire to red lice this tolerance.

• A possible drawback of this scale is that is assigns wheels with diameter
between 770 and 777.5 for replacement. Such wheels would virtually all
come from a third reprofiling (only about 1% of third reprofilings will have
diameter above 777.5), so this scale really discards the possibility of such a



procedure. What do we lose? The chance of a third reprofiling producing
an acceptable wheel is 1 - q,( 77~65) = .18 . It may be that discarding
the possibility of a third reprofiling for about 1/6 of all wheelsets, in the
long run, will be unacceptably costly.

Any attempt to overcome this difficulty by introducing a class VI leads to
the dilemma of either having the class narrower than all others, or lowering the
minimum diameter to 765mm. Both seem unappealing.

As noted above, the first two reprofilings are very reliably identified with
particular sets of size classes (cf equation(2)). This suggests a further simplifi-
cation of the scale, to classes RO, Rl, R2, where:

The proposed tolerance standard for wheelsets on the same EMU is now adjacent
size classes .

• What is the chance of this standard producing an incompatibility on an
EMU? The potential problem is a mix of Rl and R2 wheelsets. But the
chance of such an incompatibility is

where Xi (i = 1,2) is a typical diameter after i reprofilings. From (1),

40 - 25
P = 1 - q,( v'3O ) = .003

30

So this standard is very unlikely to lead to incompatibility, even though
actual wheel diameters are not being recorded .

• The drawback mentioned above for the five-class scheme applies to this
scale also. It is a balance between the greatly increased simplicity of this
scale and the loss of third reprofiling possibility, and perhaps also the small
risk (3 in 1000) of incompatibility between Rl and R2 wheelsets.

The final possible change considered was to take off more metal at each repro-
filing. The natural choice is to aim for a mean reduction of 30mm in diameter,
since for larger reductions a significant proportion of second reprofilings will be
below 770mm diameter.



Assume that the variance of each red uction is still 10 (this is almost certainly
a lower bound). The diameter distribution after n reprofilings is

On the original rating scale, some 99.9% of first reprofilings now occur in classes
3 and 4. However it seems more desirable to again use the RO, R1, R2 scale,
with the same tolerance standard as before. For this scale:

• From (3), the chance of incompatibility between RO and R1 is 1- ep( Jfo) =
.001 and between R1 and R2 is 1 - ep(J!o) = .035

• The chance of an R2 wheel being less than 770mm in diameter is ep( 77?:1!o80) =
.013

If either of the figures .035 or .013 is unacceptably large, a compromise choice
of a red uction between 25mm and 30mm is easily assessed by the same method.

A critical queue in the system is Q1, the flagged EMUs waiting for a wheelset
change. It is unsatisfactory if this queue becomes too large. The group consid-
ered an approximate analysis of the average length of the queue.

The Khintchine-Pollaczek formula for mean queue size just after a departure
from the queue is (Cox & Smith, 1961),

p2
E(Q) = p + ( ){I + var(S)j E(S)2}

21-p

Here, A is the arrival rate of customers i.e. the rate of flagging EMUs
S denotes a typical service time, mean E( S), variance var( S)
p = AE( S) is the traffic intensity

For (4) to make sense we must have p < 1; that is, customers are served on
average faster than they arrive. Strictly, (4) requires a Poisson process of arrivals.
Since the arrival process is the sum of the arrival processes for each EMU, the
classical limit theorem for such sums (Khintchine, 1960, Ch 5) suggests that
the Poisson assumption should be approximately true. In any case, (4) offers
valuable insight into the queue's behaviour.



We calculate the parameters in (4) using a shift as the basic time unit. An
EMU needs a new wheelset 1.61 times/year, so the total rate for all 88 EMU's
per 3 week inspection cycle is

If x shifts are worked in 3 weeks, the arrival rate A = 8.17/ x per shift. The total
time to change the worn wheelsets on an EMU is 2.2 shifts, on average, so

Clearly the system is unstable if x ~ 18. For larger x we get, from (4) and (5),

18
E(Q) ~ x(x _ 18) {x - 19+ 1.86 var(S)}

No variances were available, but the range of values of S is 0.25 - 5 shifts,
so a value for var( S) in the range 1-3 is plausible. If in fact S is uniform on
(0,5), var(S) ~ 2.

x p E(Q)
var(S) = 1 var(S) = 2 var(S) = 3

19 0.95 11.2 13 14.8
20 0.9 5.8 6.6 7.5
21 0.86 4 4.5 5

The values x = 20 and 8 flagged EMUs are fairly typical, so (4) - (6) do
appear to be relevant. The results can therefore be used with some confidence
to assess the quantitative effects of any changes.

The group considered a simplified mod "1of Q4 by relating it to the so-called
repairman model (Morse, 1958, Ch 11). In this model, K machines are served
by M repairman (I( 2: AI). When a machine fails it is serviced immediately if
a repairman is available; otherwise it waits in a nominal queue until the repair-
man is free. Identifying machines with wheelsets on EMUs and repairmen with
wheelsets in stock, the formal analogy is clear.



We want the probability that an EMU cannot have its requirements met
from current stock. This is the probability of at least M + 1 failed machines.
Note that this has the usual alternative interpretation as a long-run proportion
of time, which is perhaps more meaningful in the EMU context. There is a for-
mula for this probability, under the typical queuing assumptions of exponentially
distributed times between breakdowns and service times. It is (Morse, 1958, eq
11.12)

00L uK-ne-u/{(I( - n)! QK,M(U)}
n=M+l

where Q K,M is a rather complicated function involving cumulative Poisson prob-
abilities. Here,

mean time between failures
u= mean service time

"service time" being the time it takes a worn wheelset removed from an EMU
to be repaired and replaced in stock.

The formula (7) could be used to explore the effect on this critical unavailabil-
ity probability of changing M (the size of the wheelset stock) or the mean time
between failures (i.e. changing the criterion for critical flange wear), among
other factors. However, (7) does assume only one wheelset arrives at a time,
which is not true, so it would be desirable to generalize (7) to the case of batch
arrivals. The relevant equations can be written down in principle but there does
not seem to be an explicit solution. The formula also ignores the two types of
wheelsets and the size constraints. The latter will be important, and could be
incorporated in some fashion.

To gain some insight into the behaviour of the system, the group considered
several very simple stochastic models. One is described in this section.

Suppose there are only two wheel sizes, and any EMU must have all its wheels
of the same size (imagine a massive reprofiling that trimmed 50mm of diameter).
So there are really two types of EMU, 1 and 2, say; an EMU retains its type for
all time. The correction process causes a wheelset to alternate between types 1
and 2. The two types of wheelsets wear at different rates, so need replacement
at different frequencies.

Let Nw be the number of wheelsets in stock. If Ni( t) (i = 1,2) is the number
of type i wheelsets in stock at time t ~ 0, then



Assume an EMU only has one wheelset replaced at a time. When a type 1 EMU
arrives for wheelset replacement, it takes a type 1 wheelset from stock and its
worn type 1 wheelset is converted (instantaneously!) to a type 2. So a type 1
arrival at t means that N2(t) --+ N2(t) + 1. A typical path of N2(t), for instance,
is shown in Figure 2.

If we assume that times between wheelset replacements are all exponentially
distributed, N2(t) is a continuous time random walk with absorbing barriers at
o and Nw; these correspond to having only one type of wheelset in stock.

A sensible operating strategy is to keep the process away from the barriers
for as long as possible, i.e. to maxi mise some function of the time to absorption.
This requires:

Requirement (1) means that, if Ai (i = 1,2) is the mean rate of replacement for
type i wheelsets, and Vi (i = 1,2) is their number, we should choose the Vi such



Vl>'l = V2>'2

This ensures the overall arrival rates for the two wheelset types are equal. Re-
quirement (2) means that N2(0) = ~Nw.

If these conditions are imposed, the process has steps which are ±1 with
probability ~ and which occur at the points of a Poisson process of rate (>'lVl +
>'2V2)' If NT is the total number of wheelsets on trains, then VI + V2 = NT, so the
rate becomes 2>'1>'2NW /(>'1 + >'2) here. To get the mean time until absorption
we can use Wald's identity (Cox and Miller, 1965, p244); we find that

. . >'1+ >'2Nfir
mean tune to absorptIOn = >. >. N

812 T

So the mean duration of the process until the first time when one wheelset type
is out of stock can be controlled by choice of Nw.

Example: If the type 1 wheels are size class 1, type 2 are size class 4 the empirical
formula for lifetime gives XlI = 70 , >'21 = 57 and NT = 88 X 12 = 1056. Then
(>'1 + >'2)/8>'1>'2 ~ 16, so with a stock of 36 wheels the mean time before an
out-of-stock is about 19 weeks.

The conclusions generalize to more than two types of EMU. Other general-
isations, such as noninstantaneous repair and multiple wheel changes, can also
be incorporated, although the answers are unlikely to be as transparent.

Several other subsystems were considered by group members during one
week. A brief description follows.

Wheelsets on EMUs. The state of the wheelsets on an EMU can be modelled
as a s'emi-Markov process. This can give information about when an EMU is
likely to require attention. It may also give important results about a long-
run distribution of wheelset sizes on the EMU fleet. Such a conclusion could
have important consequences for long-term optimization and for assessing the
consequences of modifications in operations. One obvious benefit is to provide
a basis for D7.

Costs of different policies. If the transition process for wheelsets is Markovian
(i.e. exponential lifetimes ), it may be possible to set up a Markov programming
model to examine possible courses of action and their related costs, and perhaps
to optimise costs. However, the assumption of exponential lifetimes does not
appear to be even approximately true here.
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