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COOLING OF JARRED CHEESE SPREADS

An overall heat balance and a model for the cooling of an individual
jar are derived for glass jars of cheese spread on Kraft’s production
line. Good agreement is found between the model predictions and
temperature data collected by Kraft. A possible cause of boiling in
the cheese is proposed and steps for its prevention are suggested.

1. Introduction

Kraft produce large amounts of cheese spread both for the domestic market
and for export. The cheese is marketed in various glass jar sizes ranging from
150 g to 680 g. A vital part of the production is the cooling of the spread after
the jars are filled with cheese at about 80-85°C. These jars are placed on a belt
and pass through a cooler taking about one hour to pass right through.
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Figure 1: The Kraft 11-zone jar cooler.

The cooler consists of 11 zones as shown in Figure 1. The jars first experience
a relatively warm water zone, a tempering zone, in order to prevent cracking of
the glass which cannot withstand the temperature jump of more than about
42°C across its width. The next seven zones act as a heat exchanger with the
jars moving in one direction and refrigerated water flowing in the other, with
sprays facilitating the cooling of the jars. The final three zones are slightly
warmer and are designed to bring the exterior temperature of the glass to above
the dew point to prevent any surface condensation.



80 Kraft Foods

The aim of the cooling process is to bring the temperature of the cheese as
rapidly as possible to 25°C. When this does not occur, the cheese may spoil and
have to be recalled. Kraft wanted the Study Group to produce a cooling model
and to look at optimising the process.

2. Overall heat balance in the cooler

The cheese, glass and belt go into the cooler and in the cooling process heat
is exchanged with refrigerated water. We obtain the overall heat balance

quewATy = (gecc + ggcq) AT,

where ¢, ¢ and g, are the mass flow rates of water, cheese and glass, respec-
tively, ¢y, cc and ¢4 are the respective specific heats of water, cheese and glass,
and AT, and AT, are the temperature changes in the water and “product”
(cheese and glass). Estimates of the cooling required for the belt showed that it
was negligible. We use data appropriate to the cooling of 500 g jars. The flow
rate of refrigerated water into the cooler is about 18 m3/h which is 18000 kg/h
with cheese mass flow rate of 6000 kg/h and a glass mass flow rate of 3000 kg/h.
With ¢, = 4.2 kJ /kg.K, c. = 3.19 kJ /kg.K and ¢, = 0.75 kJ /kg.K, then

AT, ~ 0.28AT,.

Since we want to cool the cheese to 25°C and the initial cheese temperature is
81°C, say, then AT, = 81 —-25°C and AT, ~ 15°C. The inlet water temperature
of 2°C from the refrigeration system gives a predicted final water temperature
of 2 + 15 = 17°C, which is in good agreement with the data from Kraft. The
rate at which heat must be removed from the cooler is g,c, AT, /3600 ~ 315
kW. The limit on refrigeration is currently 300 kW.

3. Temperature distribution in a single jar

In the first instance, we consider heat transfer for a single jar of cheese spread.
We ignore effects due to the packing together of jars in the cooling unit, so that
the temperature distribution in the circular cylindrical jar is axisymmetric. In
addition, we neglect any cooling from the top or bottom of the jar. The bottom
of the jar is sheltered from the water sprays, and the top of the jar is insulated
by the air trapped below the lid, so this should be a good approximation. Then,
the temperature, 7', of the jar and contents can be written

T =T(r,t)
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where 7 is the radial coordinate and ¢ is time. The problem is then of one-
dimensional heat conduction through the spread and the glass jar, with forced
convection of heat by the water sprays surrounding the jar. The heat conduction
problem can be written as follows.

In the spread,

7T a8 (ra_T) (1)
ot  ror\ or)’

where a; is the thermal diffusivity of the cheese. Similarly, in the glass,
BT Qo 6 6T
= 2T = 2
ot r Or (r 6r> ’ (2)

where a; is the thermal diffusivity of the jar. Initially, assume that the cheese
and jar are at a uniform temperature,

T(r,0) = T.. (3)
At the centreline (r = 0),
or
R 4
5, =0 (4)
and at the spread/glass interface (r = R;), assuming perfect thermal contact,
oT oT
By —| =ky — 5
! or RT 2 ar R1+ ( )

where k; and ko are the thermal conductivity of the cheese and the jar, respec-
tively. At the outside edge of the jar (r = R:), a heat flux balance gives

kO = (T - T, (1), (6)

where h is the heat transfer coefficient.

Equations (1-6) can be solved in various ways, but it is instructive to first
consider the timescales of heat transfer associated with each medium. In the
spread, the thermal timescale is given by

R
=

T1

and in the glass, the thermal timescale is

(B2 - Rl)z_

Qs

To =
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Typical properties for cheese spread give a; ~ 1.3 X 10~7 m?/s, for glass give
az ~ 1.9 x 107® m?/s and for a 310 g jar, R, = 34.35 mm and (R — R;) = 2.5
mm. This gives

71 ~ 9000 s and T~ 3s

which indicates that the temperature in the glass equilibrates much more quickly
than that in the spread. Therefore, we use a quasi-steady approximation in the
glass, effectively reducing equation (2) to

7 (5) =0 g

T = Aln(r/Ry) + B.

which has the general solution

Substituting this into the boundary condition (6) and using (5) we eliminate the
coefficients 4 and B to give a modified boundary condition at R; for the heat
conduction in the jar of

T
""1'.' + /‘T = l‘Tw (8)

where

Thus we have eliminated the need to solve in both the spread and the jar
simultaneously, by incorporating the glass solution in the boundary condition
(8). Equation (1), with boundary conditions (4) and (8) and initial condition
(3) has an exact solution of the form (see, for example, Hill and DeWynne
(1987))

T(r,t) = u(r,t) + v(r,t) (9)

where -
u(r,t) = z ane_al’\itJo(/\,,r) (10)

n=1

satisfies the initial condition and zero boundary condition at R, and

a1 A2 Jo(Anr
2 e Z AZ +/‘ (JO(A) Rl)F (t) (11)

satisfies a zero initial condition and the full condition (8). In equations (10) and
(11), A, are the positive roots of

AnJ(,)(/\ﬂRl) + pJo(AﬂRl) =0, (12)
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the coefficients a, in equation (10) are given by

T Jo €Jo(An€)dE
B+ )2 (n)
2AnJ(,)(AﬂR1)Tc
TRy (AZ + )2 (AnRn)
2uT,
Ri(AZ + p#?)Jo(AnR:)

using equation (12) to obtain the last, and simplest form, and

an

t
Falt) = /0 e h(=N)T,, (1)dr.

If we assume that T,(t), is piecewise constant, representing a different con-
stant water temperature in each of the 11 zones, then

e~ ™ 1\?.!

ay A?,

m-—1
F,,(t) = I:Tw'meau\?.t _ Tw,l _ Z (Tw,l+1 _ Tw,l)eal'\at‘
=1

where a jar is located in zone m after time t and T, is the cooling water
temperature in zone [.

Combining all of the above parts of the solution gives the following form

Jo(/\,.r)e“’l’\ﬁ‘

2p AZt
T(r,t) = —- T. + Ty me™ ™ —
st ng()\}’,-i-ﬁ)Jo(A,,Rl) it w

m-—1 5
=Y (Twg+1 — Twg)e™ |, (13)
=1

The exact solution is valuable because it points out the linear dependence of
the spread temperature on the water temperatures T, ; in the zones, and because
the solution is easy to evaluate, provided the A, can be evaluated. In fact, it
is necessary to solve equation (12) numerically for the ),, but experience has
shown that only a few terms (say 10) of the infinite series are required to obtain
an accurate solution.

In order to calculate the total heat transfer out of a jar, which is needed for
the zonal heat balance described in Section 4, we need to know T(R2,t), which
can be shown to be
kiRyp

hR,

and T(R;,t) can be evaluated from equation (13).

T(Rs,t)— Ty =

(T(Rs,t) - Tw) (14)
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In principle, we now have a solution to the problem of heat conduction in a
single isolated jar. In fact, jars are packed together as they move through the
cooler, so the assumption of axisymmetry may not be appropriate. In the worst
case, the cylindrical jars will be hexagonally close packed, so that a single jar is in
contact with its neighbours at 6 points equally spaced around its circumference.
At each of those points, there will be no heat transfer out of the jar, whilst in
between these points heat transfer will be high due to the water sprays. We can
simulate the effect of the packing on heat transfer by making the heat transfer
coefficient h dependent on the azimuthal coordinate 6 in the jar. As an example,

we used
h = hosin®36

and solved the resulting two-dimensional transient heat conduction problem for
T(r,0,t) numerically, using the computer package Fastflo. Figure 2 shows com-
puted isotherms in the jar, which indicate that the azimuthal variation of h
causes only small changes in the solution near the contact points, and that the
bulk temperature is not much affected by the contact, since the isotherms rapidly
become circular away from the outer edge of the cheese. Therefore, we are jus-
tified in neglecting the effect of contact with other jars on the heat transfer for
a single jar.

Figure 2: Temperature distributions predicted by a two-dimensional model of
the heat conduction.
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4. Zonal heat balance

Typically, water sprayed on jars passing through a given zone, call it zone
m, comes from the tray beneath a neighbouring zone, call it zone m + 1. The
water then gains heat from the jars upon which it is sprayed, and collects in a
tray below zone m, ready for delivery to another zone, or to a heat exchanger.
Thus, if we assume that the water temperature in each zone is a constant, Ty, m,
then a heat balance in our typical zone m gives

quw,m+lcw + H, — QwTw,mcw =0 (15)

where H,, is the total amount of heat taken out of the jars by the water per unit
time. It is straightforward to see that

tm
H,, = —J2xR,Hh (Tw,m — T(R2,7))dT

tm—1

tm
= —J21er1R1[l/ (Tw,m - T(RlaT))dT
tm—l

= J27er1R1[,t

2p 1 2
tm_ m— wom - 55 TN9739 O\ An tm—tm— Twm
(( o)l n; a0z + ) | A i,

m-—1
+ (Tw,l - Tc + z (Tw,1+l - w,l)eall\g‘tl)(e_all\ﬁt"‘ - e—alAg'tm_l )])
=1
where, as in Section 3, we have neglected top and bottom heat transfer, and
we have used equations (13) and (14) to obtain the final expression for H,,.
In summary, we can substitute this expression into equation (15) to obtain an
equation that is linear in the T,’s for the zones. In fact, a similar equation
may be written for each zone, although there may be some variation due to the
plumbing arrangement of each zone. Thus we can generate a set of simultaneous
linear equations that can be solved for the water temperatures in each zone.
These temperatures can then be re-substituted into the analytical solution for
the spread temperature, in order to determine the variation in temperature
throughout the cooling unit.

This is a significant and very useful result, because it allows the prediction
of the temperature variation throughout the cooling unit, and it can be used
to analyse the current cooler configuration. In can also be used to investigate
modifications to the configuration, in order to determine whether improvements
to the cooling capacity are possible. Finally, it would allow investigation of the
ability of the cooling unit to handle different product design, such as larger jars
or a filling that has different thermal properties. It would be relatively straight-
forward to implement this formulation in software as a tool for understanding
the cooling unit.
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4.1 Comparison with experiment

Although we have justified the assumptions that led to the development of
a one-dimensional model for heat transfer in the jars, and the subsequent linear
dependence of the spread temperature upon the water temperature, the accuracy
of the solution can only be determined by comparison with experiment.
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Figure 3: The predicted core temperature of the cheese spread in the jar as it
moves through the cooler using the water cooler zone temperatures supplied by

Kraft. The circles are the experimentally determined temperatures found by
Kraft.

Figure 3 shows the result of evaluation of the spread temperature analytical
solution for given water temperatures in each zone. These water temperatures
were measured by Kraft, and Kraft also measured the temperature at the centre
of jars as they reached the end of each zone. The measured centre temperatures
are also recorded on the figure, and the agreement between measurement and
theory is remarkably good. This gives us confidence that the one-dimensional
model is a very good approximation. Figure 4 shows the calculated radial vari-
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ation of temperature in a jar at the end of each zone. It shows that there is an
initial steep gradient near the outside of the jar, and only a small change in the
centre temperature for the first two zones. This is important to the formation
of bubbles, as described in Section 5. The overall temperature drops, and the
warming zones at the end tend to even out the variation throughout the jar.
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Figure 4: Temperature distribution in the cheese as a function of radius in the
11 cooler zones. The spray temperatures are taken from experiments by Kraft.

5. Bubble formation and boiling

It seemed from the video shown by the Kraft representatives that the bubbles
observed in the sample jars do not originate from boiling of the cheese. It appears
that bubbles formed during the filling process are transported to the outside of
the jar by convective motion resulting from the cheese boiling in the centre.

The boiling of the cheese appears to result from a reduction in the pressure
in the gap between the cheese and the lid. This reduced pressure is such that the
cheese at the centre of the jar, which is still nearly at the initial temperature,
can boil.
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Another effect of this pressure drop is conjectured to be the enlargement of
the pre-existing entrained air bubbles to a more noticeable size. The pressure
reduction in the gap results from three sources:

e increase in the gap volume as the cheese cools and contracts (especially at

the edges)
¢ the steam in the gap condenses on cooling

e the air in the gap cools and contracts.

5.1 Increase in gap volume

The contraction of the cheese is approximated by

where T} is the initial temperature of the cheese which occupies a volume Cj,
C and T(r,t) are the volume of the cheese and the radial temperature profile
in the cheese, respectively and c. is the coefficient of thermal expansion of the
cheese.

A temperature profile T'(r, t) has been determined by the methods outlined
in Section 3. However, for simplicity, we assume a parabolic temperature profile.
In order to consider the worst case we assume the temperature of the cheese at
the centre to be T, and the boundaries to be at the temperature of the water
spray T,,. Thus we take a temperature profile given by

2
r
T(T) = To - (Tg - Tw)?
1

The volume integral above then becomes

Ty - To) " c. dV
-/»/-/cheese( o W)R_%ce

(TO - Tw)

=~ CO 2 Ce

C:Co[l—@—izji)]ce.

That is, the gap volume is increased by

Co*——(TO ; Tw) Ce.
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5.2 Cooling of the air in the gap

Assuming that the gas in the gap obeys the Perfect Gas Law, the pressure
in the gap will be given by
P T,/To
Py, G/Go’
Here we are assuming that the air in the gap quickly comes to the temperature
of the cooling water bathing the lid, Gy and G are the gap volumes initially and
after contraction respectively, and Py and P are the pressures before and after
contraction. We can then estimate the change in pressure in the gap as follows:

P _ TuGo (16)
Py T G
T, l-a
= = g (17)
To [1 —a(l - @_zl”il ce)]

where o is the proportion of the jar volume initially filled. Rearranging this
expression gives

1-a(l- L)

?P%E(l —a)+ Se. )

w:

Cheese (water) boils at about 83°C when the pressure is about 0.53 atm (Perry,
1984), so we want to keep the water temperature above the estimate given by
the formula above for a given value of the jar-fill proportion, a. It is unclear
what proportion of the gap is initially filled with steam. It also needs further
investigation to determine how the steam/water behaves under the changing
temperature and pressure conditions in the gap. We have taken Py = 0.74 atm
to be the air pressure in the gap before further cooling takes place. The core
axial temperature has been shown, both by experimental evidence and numerical
simulation, to remain at or very near to the initial value, Tj, for some time —
approximately 15-20 minutes. Thus the water temperature estimated for the
prevention of cheese boiling remains relevant throughout at least the first two,
and possibly the first three, zones.

To keep the centre of the cheese from boiling, we need to keep the spray
temperature of the first three zones sufficiently high. Figure 5 shows that this is
highly dependent upon the level to which the jar is filled. For the 500 g jar, the
fill proportion lies between 0.92 and 0.966 (for clearly there is a problem with
the size of the gap in this case). Figure 5 shows that for a = 0.966 (worst case
scenario for the 500 g jar) the critical value of T,, is around 50°C. We recommend
therefore that the first few zones are sprayed with water at a temperature around
50°C, before cold water is introduced.
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Figure 5: Estimated water temperature at which boiling will occur as a function
of the proportion of the jar filled.

6. Discussion

The work at the MISG resulted in several new ideas about different aspects
of the cooling of jarred cheese. An argument based on overall heat balance gives
a way of estimating the size of the refrigeration unit required for a given number
of jars of cheese per hour, water flow rate, etc.

An analysis of the cooling of a single jar is useful in a number of ways. It
shows, for example, that a 1-D model of the heat conduction is sufficient to
describe the cooling process. This 1-D model gives predictions for the core tem-
perature of the cheese which are in very good agreement with the temperatures
measured by Kraft as the jar travels through the cooler. This model also provides
the basis for a zonal heat balance model that can be used for the development
of new coolers.

The boiling of cheese which sometimes occurs is almost certainly the result of
the lowering of the pressure in the jar associated with the cooling and shrinking
of the cheese. A strategy to prevent boiling is to ensure that the cooling process
begins slowly and that the jars are not filled too much.
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