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STORE CAPACITY OPTIMISATION

In this report we address the problem that was posed to the MISG
by Australian Paper. The problem is one of increasing the efficiency
of distributing paper rolls from the manufacturing plants to the cus-
tomers. A related problem is one of utilising the available capacity
at the customer stores in an effective manner.

During the MISG, several approaches to the above problems were
proposed. In this report we describe the problem and several meth-
ods for solving it. Preliminary results are provided for some of these.

1. Introduction

Australian Paper (AP) is the paper making subsidiary of AMCOR, the Aus-
tralian owned multi-national paper fpackaging company. One of the most sig-
nificant activities of AP is to provide liner board and corrugating paper for
the production of corrugated boxes by AMCOR Fibre Packaging (AFP), a 'sis-
ter' subsidiary. The magnitude of this activity can be judged by the fact that
AFP sells approximately $500 million worth of boxes to the Australian market.
Worldwide, AMCOR has corrugated box sales of 2 billion dollars.

Representatives of AP's central logistics department approached the MISG
with the request to investigate a major decision making problem which they
face in managing their inventory of these packaging papers. The problem arises
because particular paper grades and sizes are made on a monthly or six-weekly
cycle and the management of stock in between makings is particularly difficult
as customer requirements are extremely variable. On the surface, the problem
appeared to be relatively well defined, although complicated and challenging, due
to the multi-product, multi-plant and multi-warehouse nature of the problem.

In several lead-up meetings between the eo-moderators and company rep-
resentatives the view was formed that a simpler sub-problem, covering only a
part of the complete system, should be presented and tackled initially. This
view of the problem, like many other initial assumptions, was to be sorely tested
throughout the week.

1.1 Problem description

The paper mills of AP produce a range of packaging paper to different speci-
fications and, because of high set-up costs, work most efficiently in a cycle where
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each product type is made every two to six weeks. On the other hand, mill
customers, predominantly AFP, are forced to switch between papers of different
specifications at very short intervals, due to a rapidly changing market.

Each customer can hold a limited amount of a range of products (defined
as paper of a specific type and size) at a warehouse on their own site. This
immediate storage is inadequate, however, to guarantee that there is no stock-
out. So further stock is held in intermediate warehouses which are directly under
AP's control. Obviously the use of these intermediate stores increases holding
and handling costs and also increases the risk of damage to paper reels.

In.essence AP asked the MISG to devise a methodological allocation tool for
deciding, on a daily basis, which reels should be shifted from mill to customer,
mill to intermediate warehouse and intermediate warehouse to customer so that
the expected cost of supplying the customer is minimised. They also asked
whether the current warehouse layout, of a herringbone type, could be changed
to provide better utilisation of the warehouse floor space.

For the packaging paper of concern, AP operates three major mills in Mel-
bourne, Gippsland and Sydney which produce reels in about 20 different widths
at four different weights. Customers are based primarily in Sydney, Melbourne
and Brisbane. A schema of the logistics system is given in Figure 1.

Mills Intermediate Customers

Figure 1: Schema of the logistics system.

To simplify the problem, the company representatives proposed that the
model be limited to supplying the needs of one customer. Further they proposed
a set of objectives which they felt would accurately measure the success of the
project. These included goals such as: reels should be handled at most twice;
reels should be used within six months of manufacture; distribution costs should
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be minimised; and customer warehouse occupancy should be maximised (as this
would reduce the risk ofrunning out of stock).

The layout of the warehouses is currently of a herringbone style (as shown
in Figure 6). It was noted that various constraints on fork-lift truck movements
would provide serious limitations on re-arranging the lay-out. However the most
urgent question according to the company was whether the current fixed al-
location of bays to products should and could be replaced by a more flexible
arrangement with bays being dynamically allocated.

Finally company representatives were at pains to point out that at the mo-
ment they had little or no control over customers or production staff. Solutions
involving joint decisions being made with the customer or with the production
staff was unlikely to be readily acceptable.

2. Mathematical formulation

2.1 Definitions

In this section we describe a mathematical formulation of the problem as set
out in the introduction. In order to do this we make some simplifying assump-
tions. We also need to define sets, variables and parameters.

I = {i: i = 1,2, ,1} the set of mills (sources).

J = {j:j = 1,2, ,]} the set of intermediate stores.

K = {k : k = 1,2, , k} the set of customers.

T = {t : t = 1,2, , t} the set of time periods.

p = {p: p = 1,2, ,p} the set of products.

We are given the following problem data:

Sitp The supply at paper mill i of product p at time t.

Dktp The demand at customer k for product p at time t.

Gij The transport cost per reel from source i to store i.
G?i: The transport cost per reel from source i to customer k,
GJk The transport cost per reel from store j to customer k,

Qj The capacity at the intermediate store j.

Q~ The capacity at the customer k.
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12p The initial inventory of product p at customer k.

IJp The initial inventory of product p at intermediate store i.

Finally, the following decision variables will be used in the model:

X,1tp Number of reels of product p transported from source i to customer k
during period t.

Xijtp Number of reels of product p transported from source i to store j during
period t.

XJktp Number of reels of product p transported from store j to customer k
during period t.

Yj~p The inventory level of product p at time t in intermediate store i-
Yk~p The inventory level of product p at time t at customer k.

2.2 Mathematical programming formulation

Using the above decision variables we can now write down a linear program-
ming formulation for the problem of deciding the optimal distribution strategy,
given the production schedule and assuming we have full knowledge of the an-
ticipated future derand.

Min L L L L C0X0tp + L L C,1X,1tp + L L CJkXJktP) (1)
tET pEP iEI jEJ iEi kEK jEJ kEK

S. t. Lxt.; + L »s;
jEJ kEK

Yj~p+ L X0tp - L XJktp
iEI kEK

Ijp + L X01p - L XJklp
iEI kEK

Yk~p+ L X,1tp + L XJktp - Dktp
iEI jEJ

12p+ L X,11p + L XJklp - Dklp
iEI jEJ

LYj~p
pEP

LYk~p
pEP

X,Y

Sitp ViE I, t E T, pEP, (2)

y'"j,t+l,p

V j E J, t f= f ET, pEP,
Yj~p V j E J, pEP,

(3)
(4)

y;Xk,t+l,p

V k E K, t f= t E T, pEP, (5)

Yk;p V k E K, pEP, (6)

< Qj V j E J, t E T, (7)

< Q~ V k E K, t E T, (8)

> O. (9)
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Note that in this model, we simply specify a total capacity for each interme-
diate and customer store. Under the current system however, bays in the stores
are assigned to different products in a fixed manner. Hence there are capacity
restrictions on individual products. To model this system we simply replace
constraints (7) and (8) by the constraints (10) and (11)

Yj~p < Qjp V j E J, pEP, t E T, (10)
Yk~p < Q~p V k E K, pEP, t E T. (11)

If this is done the model decouples by products (Le. we can solve a separate
problem for each product).

We have assumed that demands are known exactly (which is clearly not true
in practice), or can at least be forecast with reasonable accuracy (see Section 3
on forecasting). We also assume that the production cycle (and hence supply)
is fixed for the entire planning horizon over which decisions are made using
the above model. This is not unreasonable since the store managers have little
influence on production planning. Moreover, it is our understanding that the
production of paper is unlikely to vary from targets set at the beginning of the
planning cycle.

The model as presented above may not always produce a feasible solution.
This is because we assume mass conservation constraints apply. In other words
we assume that all of the supply will be either consumed or stored somewhere
(subject to capacity restrictions). Furthermore we stipulate that all of the de-
mand has to be met from the initial stock plus production during the period. It
may not be possible to satisfy both of these requirements. For this reason we
introduce a dummy source and dummy sink. These are fictional nodes from and
to which an arbitrary amount of any product can be received or sent respec-
tively. To ensure that these are only used as a measure of last resort, the costs
for using them are made very large. We define

»i, The amount of product p that customer k gets from the dummy source
during time period t.

XJ,p The amount of product p that mill i puts into the dummy sink at time t.

C8 A large penalty cost for using the dummy source or sink.

X'Y and X7r are added to the left hand sides of the constraints (5) and (2)
respectively and included in the objective function with the coefficient C8•

2.3 Numerical results

We provide some preliminary results for the above model obtained using
the GAMS modelling language (see Brooke et al., 1988) with the OSL MILP
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solver. We consider a simplified subproblem involving two customers (E & F),
two products each in three sizes (hence we consider 6 different commodities), one
intermediate store and two sources. The two sources are derived from despatch
data from mill X to customers E and F. The model is run over a planning horizon
of 120 days using historical data starting from January 20, 1995.

We compared the effects of using joined versus separate capacity constraints.
In other words, we ran the model using either constraints (7) and (8), or (10) and
(11). The models were each solved in approximately 137 seconds of CPU time on
a SUN SparcStation IPX. For the test problem, the difference in objective value
between the two models was $2.09, approximately 0.004%. This indicates that,
at least in this simplified scenario, using fixed bay capacites for each product
and size at the customer store does not have a significant effect on the operating
costs.

Figures 2 to 4 present more detailed information about the problem for prod-
uct A size 6. In Figure 2 the supply and demand data are plotted. Figure 3
shows the inventory and bay capacities at the two customer stores when sepa-
rate capacity constraints are applied. The optimal inventory levels with joined
capacities are shown in Figure 4.
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Figure 3: Inventories with separate bay capacities.
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Figure 4: Inventories with total capacities only.

Since we have full knowledge of future demand, the MILP model copes well
with the fluctuations by managing inventories. An inherent disadvantage of
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using a linear model for this type of application is that it will always fill one
of the customer stores in preference to another rather than spreading the stock
evenly. Another disadvantage is that the MILP model only solves optimally for
the current planning horizon with no consideration given to the future. One
way to overcome this difficulty is to specify appropriate ending conditions (e.g.
cyclical constraints).

Despite its weaknesses, this approach provides a useful basis for further work.
At the very least it gives a useful lower bound on how well we could do if we had
perfect information. In situations where perfect information is available, the LP
model could provide a good decision support tool to inventory managers.

3. Data modelling and forecasting

In this section daily usage data for products at a single customer are anal-
ysed. For this customer, no product exhibited seasonal demand and the mean
level for most products did not appear to change markedly over 1995.

3.1 Forecast of daily demand

The demand for a high usage product (Product A supplied by Mill X) was
tracked using exponential smoothing (as described in Section 3.3, omitting the
seasonal term) using the first 180 working days as an initialisation period. The
forecast of the next day's demand is 8.8 reels. An approximate 80% confidence
interval for the demand on the next working day is (4, 14) reels. One might then
argue that the predicted demand for the next planning period of, say, 10 days
would be 10 X 8.8 = 88 reels. However a more accurate forecast can be made.

3.2 Forecast of demand for the planning cycle

If our objective is to forecast the total demand in a planning period, then
it is not appropriate to add the individual daily forecasts because actual de-
mands within the period are correlated with each other. The total demand
for the same product (Product A from Mill X) was forecast using exponential
smoothing (ignoring seasonal variation) applied to the total demand on groups
of 10 consecutive working days (approximating fortnights), using the first 18
fortnights as an initialisation period. The predicted demand for the next plan-
ning period is 92 reels with an 80% confidence interval of (73,111) reels (a much
smaller variation than would have been estimated from adding the forecasts for
10 successive days).

For a low usage product (for example Product M from Mill Z) we could
develop a decision rule based on the relative costs involved, such as: deliver
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sufficient reels from each production cycle to make up the total number in store
to 8 reels (since demand never exceeded 8 reels) or only supply from the central
store (as this will occur relatively rarely).

3.3 Holt-Winters' method

This method for tracking past usage and forecasting future values is based on
classical decomposition (the observations are assumed to be the sum of a trend,
possible long term cyclic variation, seasonal variation and a disturbance term).
For more details of this method refer to Chat field (1978). It uses exponential
smoothing as follows:

MODEL:

where D, is the observed value for period t,
Il is the mean value at the start of the series (t = 0),
Tt is the change in trend at time period t,
Ut is the additive seasonal factor for period t,
et is an error term.

SMOOTHING OF DATA, D,

Mean: mt = a(Dt-ut-s)+(l-a)(mt-1 +Tt-I) where Ut-s is the seasonal factor
for period t and there are s seasons in a year,

Trend: Tt = b(mt - mt-I) + (1 - b)Tt-h

Seasonal factor: Ut = c(Dt - mt) + (1 - c)Ut-s,

where the starting values of T, m and S and the smoothing parameters a, band
c are estimated from an initial period of data (commonly by using the criterion
of minimising the mean square of the one step ahead forecast errors).

Forecasts h steps ahead at any time t are given by

For the non-seasonal case, c and the seasonal factors Ut are omitted and/or if
the trend is not changing over time, b and the trend rate Tt may be omitted.

4. Deciding on safety stock levels using dynamic programming

4.1 A restricted subproblem

In this section we will model a restricted subproblem of the complete inven-
tory problem. This model will provide answers on what stock levels should be
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maintained at the customers, and when (and how much) stock should be trans-
ferred from the intermediate store to the customer. In particular, this approach
is designed to deal with the uncertainty in demand. We will make the following
assumptions /restrictions:

1. The bay capacities are fixed so that the problem decomposes by prod-
uct/size combinations. (Some comments on how to deal with variable bay
capacities will be made at the end of the section).

2. We restrict ourselves to a single source, intermediate store and customer.
Hence no trade off will be made between different customers and stores.

3. Production is according to a fixed schedule. That is we assume that we
know precisely when and how much of a given product / size is produced.

4. Demand (usage) is uncertain but a probability distribution p(d) is known
which gives the probability of using d rolls on any given day. This assumes
that usage on any given day is independent of what happens on other
days. As indicated in the previous section, this is not true. However for
the purposes of this model this is not an unreasonable assumption.

It is obvious from the above assumptions that the optimal dispatch policy is to
always put as much into the customer's store as possible, with the remainder
being placed into the intermediate store. The only question is when and how
much should be transferred from the intermediate store to the customer. The
aim of this section is to develop lookup tables based on the known production
schedule and the demand probabilities which will tell a person managing the
inventory how much to transfer each day from intermediate stores, given the
inventory at the beginning of the day. The results of this model could also be
used in the model described in Section 2.

4.2 Parameters and data

To decide on transfers we require several pieces of information. Below we
list all of the inputs for our algorithm.

CT Delivery cost per reel from the intermediate store to the customer. It in-
cludes the cost of double handling the reel. This was set at $15.

CfT Delivery cost per reel from the source to either the customer or the interme-
diate store. Since both of these destinations are in the same city, the cost
is the same. Also all reels have to be moved immediately from the source.
Hence the actual value does not affect the optimal solution.
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C7r Penalty cost of supplying a reel if it is not available in the customer's store
on the day that it is needed. The magnitude of this cost is crucial in
determining the level of safety stock. We set this cost at $45.

CO An overstock penalty per reel that has to be shipped to the intermediate
store rather than to the customer due to excess inventory at the customer
store. We made this cost equal the intermediate store delivery cost.

C'1 Holding cost per night per reel for inventory at the customer store. This
was set at zero as there seems to be no quantifiable cost associated with
holding stock.

p( d) The probability of a demand of d reels occuring on any given day. As a
first approximation we used the frequency distribution obtained from the
usage data of 1995 to approximate p(d).

s(t) The supply at the last time period in our planning horizon (i.e. t), which is
the number of reels arriving from the source at the city containing the
intermediate store and customer on day f. This has been taken from
historical data for 1995.

Q The number of reels of the product that could be stored at the customer.
Obtained from the data supplied to us of current bay capacities.

1° Initial inventory. No real data was available so we have 'guessed' some rea-
sonable values to use as a starting point.

4.3 The dynamic program

Dynamic programming is an effective method for solving optimisation prob-
lems, and is described in detail in Sniedovich (1992). The state of the system is
defined by the current inventory level y, as well as the day t (which determines
the number of days (f - t) until the next shipment of size s(t) arrives from the
source). We want to minimise the expected cost f(y, t) of deliveries, stock outs
and so on, by transferring z(y, t) reels from the intermediate store to the cus-
tomer. For any 0 ~ y ~ Q and 0 ~ t ~ T, the cost is defined recursively as
follows:

f(y, t) = min {(C'1 + CT
) ~ + LP(d)f(y + ~- d, t + I)} . (12)

o~e~Q-y d

This recursive relationship defines the minimum expected cost at time t for
inventory level y, assuming that we know the value of f(y', t+1) for any inventory
level y' in the next time period t + 1. Hence, in order to calculate the value of
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I(y, t) for all y and t we just need to know the value of 1 at time t and for y < 0
(since y + € - d may be less than zero). These boundary conditions are given by:

I( [\ - { 0 if y + s(t) ~ Q
y,") - C" * (y + s(t) - Q) otherwise

I(y + € - d, t + 1) = C1I" * (f(O, t + 1) + Iy + € - dl) if y + € - d < o.
We define :z:(y, t) as the value of € in (12) at which the minimum is attained.
We can now solve the problem using the above recursion equation by calculating
1(0, t), 1(1, t), ... , I( Q, t) for t = t - 1, then for t = t - 2 and so on.

4.4 Results

We apply the method described in this section to customer E, product B,
size 1 over the period January 20 to March 31 in 1995 (70 days). To assess the
performance of this method we simulate its operation using the historical usage
data. That is, after calculating the optimal :z:(y, t) we start with inventory 1°.
Then on each day t of the period considered we look at the inventory y and
transfer :z:(y, t) reels from the intermediate store. Then the supply and demand
given in the historical data are added and subtracted respectively to give a new
inventory. The cost is incremented by the appropriate delivery costs. IT the new
inventory is negative, it is reset to zero and the stock-out penalty is added to
the cost. While there are some obvious problems with this approach (such as
the fact that the usage may not reflect actual demand at times when stock outs
occurred), it provides at least some measure of the effectiveness of the algorithm
described in this section.

The probability mass function for the demand (based on the data from the
remaining days in 1995) is given by:

Number of reels d o 1 2 3 4 5 6
probability p( d) 0.28 0.34 0.23 0.08 0.04 0.015 0.015

The total cost for this example is $1380. The inventory is shown as a continuous
line in Figure 5. This shows that there is only one day on which the algorithm
gets caught out - right at the end of the time interval considered, when it
allows the inventory to run too low in expectation of the next delivery. Figure 5
also shows the transfers from the intermediate store that were made to achieve
the inventory level and the safety stock levels, which are given by :z:(0, t) or
equivalently, by min{y : :z:(y, t) = O}for each t.

4.5 Conclusions

The method described in this section appears to work well on all the examples
tested. The dynamic programming approach has several advantages: it is simple
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Figure 5: Inventory, transfers and safety stock levels for product B size 1 at
customer E.

to implement, and takes the demand uncertainty into account. While it does
not allow a tradeoff between different customers or products to be made, the
most significant result of the optimization, namely the safety stock levels, can
easily be incorporated into other models, such as that in Section 2, that consider
a bigger picture.

5, A rule based approach to inventory management

This approach attempts to ensure that stocks of paper are available at cus-
tomer stores in time to meet their production needs. Also it aims to minimise
handling and the use of intermediate stores. We use a 'rule of thumb' approach
to solve the problem. Stocks at the customer store can be divided into two
categories: feed-stock required for next r days of production, and inactive-stock
needed some time in the future. A (prioritised) preliminary specification of the
rules for allocating production is as follows.

1. Ensure that feed-stocks are at their r day target level.

2. Fill all available customer space (except space for feed-stocks) with cus-
tomer orders.
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3. If there is not enough space in the customer store for the entire order then
send the residual to the closest intermediate store with available space.

It is anticipated that these rules will have to be modified and expanded. One
possibility is to have safety stock in the customers' stores to accommodate unan-
ticipated changes of plan.

The above could be implemented as a computer program. As inputs it
requires the customer's store capacity, current inventory level at the customer
store and production level for each product. The outputs would describe location
and quantity of deliveries of each product from the source.

6. A stochastic network flow approach

This approach is prompted by the success of the stochastic network ap-
proaches used successfully by Powell (1987) for solving vehicle despatch prob-
lems. In these problems the decision problem is to allocate certain vehicles
to trips originating in particular locations and to position idle trucks so that
they are in the 'best' position given the expectations for likely tasks originating
sometime in the future.

The reel management problem faced by Australian Paper has certain el-
ements in common: paper reels must be moved from the mills, either to an
intermediate warehouse or to a customer; reels from intermediate stores can be
moved to one of the customers, or they can be held for a further time period. The
dominant stochastic nature of the problem is that if a reel is sent to a customer
(never to be repositioned) it will take up a store position until it is used, at a
time not known precisely. On the other hand if it is retained at an intermediate
store it remains available for more than one customer (in emergencies) but it is
not immediately available to anyone (customer). A secondary but important
stochastic element is introduced if one considers that the production schedule is
also subject to uncertainty. Hence in reality both the usage and the supply are
subject to stochastic fluctuations. In this situation the intermediate stores act
as buffers, whose optimal levels (if they exist at all) need to be calculated.

It may be appropriate to determine, over a long time frame, the expected
value of additional reels being sent to the customer store. Hence if the level of
product p at customer k is Yktp and the expected time before the next making
of this type of reel is (T - t) days, and if the expected demand is Dktp then an
expected value function for the n'th reel being sent to the k'th customer is:
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Note that the expectation obeys recursive relationships such as

Ek(l, Yktp, T - t, Dktp) = Ek(l, Yktp -1, T - t, Dktp) +Ek(2, Yktp -1, T - t, Dktp).

It is proposed to build up these expected values in a way not too dissimilar to
that explained in Section 4.

If we take the expected values over the complete time horizon, say a month
or six weeks, then we can formulate the decision problem as a simple network
problem. This allows us to have a specified storage for each item, in which case
there are separate problems to solve for each reel type. Alternatively, we could,
through the use of dummy nodes for each reel type, allow for the case of totally
flexible store arrangements.

It should be stated that this simple network model can also be modelled
with the LP approach, provided the expected value function is monotonically
decreasing. By looking at the problem with this approach, it is possible to
consider its recourse nature: if we make a decision ~t at time t, new information
at time t + 1 will enable us to remedy any difficulties as a result of ~t. Thus if
the expected value functions are taken only over a single time period, we could
treat the problem as a space-time stochastic network.

It was not possible to carry out an extensive analysis of the above model
within the time constraints of the MISG. However, this approach is worth further
consideration should a full scale decision tool be developed.

7. Bay capacity modelling

In the storage area at each customer, bays are assigned to a particular prod-
uct. Bays come in several different sizes. In this section we determine how much
capacity should be assigned to each product. The objective is to minimise the
total amount of paper which has to be delivered to an intermediate store due
to an inappropriate use of storage space at the customer. The problem can be
solved independently for each customer.

For a given customer we require Dtp and Stp, the demand and supply of
product p at time t. Note that Stp is different to X.1tp used in Section 2. Stp
represents the total supply of product p at time t destined for customer k (either
directly or via the intermediate store). Also if B is the set of all possible bay
capacities, we need Nb and Bi; the number and size of bays of type b E B. The
bay capacity may be planned to fit historical data, but may also use forecast
data.

Analogous to Section 2 we define X~, Xfr, and XTr>to represent the various
possible transfers. Similarly~; and ~~ represent the inventory at the customer



Store capacity optimisation 45

and intermediate store. In this section, the subscripts i, j and k have been
dropped from the earlier definitions for the sake of clarity. This is because we
are dealing with only one mill, one intermediate store and one customer. In
addition we define Zbp to be the number of bays of type b E B to be allocated
to product p.

For each pEP and each t E T we have the inventory balance equations

~~+ X;;' - X~
~~+ X~ + X~ - Dtp

~+l,p V t E T
~~l,P V t E T,

(13)
(14)

where Yo;, and Yo~ are the initial inventories. The total amount of product p
leaving the source at time t is Stp. Hence

(15)

In addition to the inventory balance constraints, we must also ensure that the
capacity used by a product at the customer does not exceed the capacity that
has been assigned to that product:

~~::;I: BbZbp, '<It E T, pEP.
bEB

Furthermore, the number of bays of a given type assigned to products cannot
exceed the existing number of bays of that type:

(16)

I: Zbp ::; Nb v i E B.
pEP

(17)

Clearly we also require that all variables be non-negative, and that Zbp must be
integral for all products p and bay types b.

The objective is to minimise the amount of product that is transferred via
the intermediate store. The complete mixed integer linear program is:

minI: I: X;;'
pEPtET

Subject to (13) - (17)
x=, XU, XT, yx, yu 2': 0,

Z non-negative integer.

We do not constrain the reel transfer or inventory variables to be integer. These
will be integer if the Z variables as well as the parameters are all integers.

In the discussion above, we do not consider the fact that bays have a pre-
assignment, and may not easily be re-assigned. This could be addressed by
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simply changing the current state to that determined by the optimization as
quickly as possible. Alternatively, if we decide that some bays may not have their
pro-assignments changed, we can infer positive lower bounds on Zbp. A third
alternative is to allow the optimisation process to choose different capacities for
each product in each time period, provided that it is possible in practice to
implement the changes. Since the last alternative represents a radical departure
from current practice, we do not consider it here.

This model was not tested with data supplied by Australian Paper due to
the lack of time at the MISG. Further investigations would be necessary to test
the effectiveness of this approach.

8. Efficient physical layout of the customer store

8.1 Description

Another aspect of the overall problem is the question of whether or not the
physical layout of the customer store is efficient. Apart from increasing the total
storage capacity, it is desirable to be able to have a more flexible set of bay sizes.

The major constraint on the layout of the customer store is the turning circle
required by the forklift in the course of loading and unloading storage bays. The
present store layout has the floor divided into storage blocks with each block
divided into bays or corridors in a herringbone fashion at an angle () = 48°
to the horizontal. Each storage block is necessarily divided down its length in
a fixed position where opposing corridors meet. Under this design the forklift
requires a turning circle of 3.0 m. IT () = 0 (that is, if the corridors are set
horizontally), the turning circle required by the forklift is 4.5 m.

8.2 Implementation

One approach taken to the customer store design problem was to set ()= 0,
require the space between storage blocks to be increased to 4.5 m, and calculate
the capacity of the store under such a construction. There are obviously many
ways of setting the floor design under these conditions, and there is nothing to
suggest that the result is the optimal store layout. However, it was found that
under one such design theoretical storage capacity of the store increased by 15%.
It is not surprising that, even though more space is required between storage
blocks with () = 0, the total capacity increases, since under the herringbone
design so much space is lost at the ends of storage blocks.

This design has the advantage that since there are no opposing corridors the
division down the length of a storage block is entirely arbitrary and may vary in
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corridors within a given storage block. Hence, storage capacities for individual
stock items are variable. Moreover, the total number of storage bays in the store
increases, giving greater access to the items stored. The major disadvantage of
this approach is that it does not guarantee the optimal store layout.

Figure 6 shows the current herringbone layout and the proposed new layout.
Other layouts are possible. Extensive simulations will be required to ensure
optimality of the chosen design.

3.0rn 3.0m

r-- ~
I

I
4.5m

I 4.5 m

I ..
I

I
f-- I '----

Proposed New Floor PlanCurrent Floor Plan

Figure 6: Two layout options.

9. Conclusions

In this report we consider several approaches to solving different problems
faced by Australian Paper in the inventory and logistics operations associated
with their business of paper manufacture and distribution. We have attempted
to outline these approaches as well as some of their strengths and weaknesses.
We presented preliminary analyses for a few of these approaches. We conclude
that efficiency gains in various aspects of Australian Paper's operations may be
obtained through a detailed study based on the above approaches.
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