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DROPLET FORMATION INSIDE A VENTURI LIQUID MIXER

S.L. Carnie! and M.R. Davidson?

The formation of a coarse photographic emulsion by entraining a
hot oil phase into a cooler aqueous phase by a Venturi device is
considered. The main focus is on understanding the mechanism and
site of droplet formation in the device, as well as the time-scale of
heat flow, to see if it is feasible to feed this emulsion directly to a
homogenizer in a continuous process.

1. Introduction

During the manufacture of colour photographic paper, the paper surface is
overlaid with expensive dye-forming chemicals. These chemicals are dissolved in
oil and are applied to the paper surface as an emulsion of small droplets in an
aqueous phase. Previous MISG projects posed by Kodak have considered two
stages of this process — the dissolution of the dyes in the oil phase (1995) and
the homogenisation of the emulsion in an orifice disperser (1996).

In the first process, the oil must be heated to dissolve the dyes and currently
these are mixed in a tank and stirred. The project goal was to determine the
effectiveness of heating of a slurry passing through a microwave cavity. This
proved quite challenging, mainly due to the large changes in slurry viscosity as
the dye particles dissolved. The second project had to consider several mecha-
nisms leading to the formation of very fine droplets, such as cavitation, shear
and turbulent boundary layers.

This project concerns the intermediate process: the oil phase formed by the
process studied in 1995 is combined with an aqueous phase in a Venturi device
to form a coarse emulsion (the “pre-mix”) before being stored in a tank and
then pumped to the homogeniser studied in 1996.

Together these three projects constitute an effort to understand the whole
mechanical process used to form photographic dispersions. The hope is that
increased understanding will lead to improved outcomes such as smaller droplet
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size (mainly determined by the homogeniser step) or re-organizing the three
steps as one continuous process, instead of the current series of batch processes.

Because the process involves droplet formation, there are some connections
to the 1996 project but there are several differences.

1. The two phases start at different temperatures (the oil phase has to be
heated to 140°C in order to dissolve the dyes; the aqueous phase is at
80°C).

2. The geometry is quite different since there is no orifice that the mixture is
forced through.

3. The Venturi device involves much lower pressures so some of the extreme
conditions present in the homogeniser are not encountered here.

A schematic diagram of the device is shown in Figure 1. The aqueous phase
acts as the motive fluid in a pump and entrains the oil which sits in a small tank
feeding into the mixing chamber. The rate of entry of the oil is controlled by a
valve and is set to achieve the desired volume ratio required by the formulation.
The mixture exits the Venturi device into a pipe which leads to a holding tank.
Some final mixing by stirring is done in the tank but the focus of this project is
on the Venturi device.

Oil phase
(ma,T2)

) .
pre-mix
Water phase
—  —
mn T G
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Figure 1: Schematic of a Venturi liquid mixer (not to scale). The two fluids
enter the device with mass fluxes m;, my at temperatures T3y, T5.

The device currently works satisfactorily and produces a distribution of drop
sizes, ranging from 1-10 pgm. Since it is only a pre-mix for another stage of the
process, the exact distribution is perhaps not vital. Ideally, we would like to be
able to predict a drop size distribution for the mixture leaving the device.
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2. Material properties

Since the material produced in this process forms the input to the ho-
mogeniser, we have taken the same set of standard values for viscosity etc. as
used in 1996. Note that these all are taken at 80°C. The temperature depen-
dence of the oil viscosity and interfacial tension was not available so the team
had to neglect such effects. One might expect the oil viscosity to be substan-
tially lower at 140°C. Although the mixture is known to be only slightly shear
thinning, it was not known directly whether each phase was Newtonian so this
was assumed. It would be desirable for more information of this type to be
determined if the problem is to be studied further.

thermal diffusivity (aqueous) 2 x 1072 cm?s~ 1T
thermal diffusivity (oil) 3 x 107 cm?s~!
specific heat (aqueous) 3.95x 103 J kg7t K!
specific heat (oil) 1.95 x 103 J kg=! K1
viscosity (aqueous) 15 cP
viscosity (oil) 50 cP
viscosity (bulk) 40 cP
specific gravity (aqueous) 1.0
specific gravity (oil) 1.0
interfacial tension 10 dyne/cm

Table 1: Typical values used by the MISG of physical properties at 80°C.

3. Flow characteristics

The flow is determined by the geometry of the device, the imposed mass
flow rates and the material properties listed above. The aqueous phase exits the
nozzle of diameter 5 mm at a rate of 38 kg/min. The mass flow rate of the oil
is adjusted to be 12 kg/min, to produce a mixture with volume ratio of roughly
3:1. The Venturi consists of a contraction section 16.5 mm long, a throat of
diameter 10 mm and length 22.5 mm and a diffuser section of length 30 mm,
leading to a pipe of diameter 25 mm.

Using these values we find a nozzle velocity of 32 ms™! with a Reynolds
number (based on the diameter) of 10*. Using the combined mass flow rate, we
get a velocity in the throat of 10 ms™! with a Reynolds number of 2500 in the
throat and about 1000 in the exit pipe.

From these considerations, we clearly have a turbulent jet emerging from the
nozzle, turbulent flow in the throat and possibly transition back to laminar flow
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in the pipe. We can also estimate residence times for the droplets: about 2 ms
in the throat and about 4 ms in the diffuser section of the Venturi device, giving
a total residence time of at least 6 ms.

4. The temperature issue

The simplest issue to deal with is that involving the equilibration of temper-
ature between the two liquids. In particular, has the temperature equilibrated
by the time the mixture leaves the Venturi device or is the pipe flow required
for equilbration?

Using the specific heats and densities from Table 1 and a mass ratio of 3:1,
a simple heat balance gives a temperature for the mixture (taking the heat
capacity for the mixture to be the weighted average of the components) of 88°C
compared to the observed final temperature in the holding tank of 83°C. So
the temperature assuming instant mixing is not far from the final temperature
because the heat capacity of the oil is fairly low.

So the main issue is: do the drops have enough time to lose heat to the fluid
while in the Venturi? We must consider both convective and conductive heat
transfer from the drop to the fluid.

Convective heat transfer is a consequence of relative velocity differences be-
tween the drop and the surrounding fluid that can sweep heat away from the
drop surface. Since the drops are small, they will closely follow the velocity of
the fluid, and the particle Reynolds number based on relative velocity and drop
diameter will be small. In that case, the equation of motion of a spherical drop
involving only the dominant drag force is

pD47l'R3 dUD

3 pral —6mncR(Up — Uc) (1)

where the right hand side of equation (1) is the Stokes drag on a drop with
velocity Up in a fluid of velocity Uc. The general equation of motion containing
extra terms due to added mass and the Basset history term can be found in Clift
et al. (1978). Equation (1) can be rewritten as

dUp =_UD—UC (2)
dt t

where 1, = 2%52 is known as the particle relaxation time. When ¢, is very
small compared with a time scale of the flow (L/U) then Up = Uc. This ratio
of time scales is called the Stokes number, St. For a drop of diameter 1 micron
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and using the residence time as the characteristic time, we find

_ 2R%p/¢ _ . s

St = W_ ~ 10 (3)
so that the drop is essentially carried at the local velocity very soon after forma-
tion. This suggests that convective heat transfer is not an important mechanism.
According to Clift et al. (1978), the retention of the extra terms omitted in equa-
tion (1) can increase the time required for the particle to match the fluid velocity
substantially. For example, to reach 90% of Uc can take times of roughly 100 ¢,
— still not enough to change the conclusion reached here.

Using the thermal diffusivities in Table 1 and a radius of 1 um, one gets a

diffusive timescale given by
R2
tagr = — (4)

to be around 0.01 ms. In light of the residence times of around 5 ms, there
appears to be ample time for the drops to equilibrate with the aqueous phase.
Even drops of 10 um have (just) enough time to equilibrate. We conclude that
temperature equilibration is not a relevant issue in a redesign of the process.

5. Droplet formation by the mean flow

As mentioned above, the flow from the nozzle is best described as a turbulent
jet. Strictly speaking, we have a confined jet because the throat of the Venturi
device is so close to the nozzle. For an exact treatment such flows must be studied
numerically so we shall be forced to treat the jet as free (unconfined) for the
purposes of analytic investigations. For this case there are self-similar solutions
for the laminar jet, which when rescaled with an eddy viscosity (Schlichting,
1968; Rajaratnam, 1976), give reasonable agreement with experiment for the
mean velocity profile of a free axisymmetric jet (Townsend, 1976). For nice
pictures of free axisymmetric jets at Reynolds numbers similar to those here,
see Yule (1978) and Dahm and Dimotakis (1987). Thanks to the capabilities of
the Fastflo package (Luo et al., 1996), we are able to supplement estimates from
a free jet model with numerical simulations of the confined jet using a simple
turbulence model.

5.1 The mean flow

The self-similar solutions for the velocity field of an axisymmetric free jet
assuming the existence of an eddy viscosity take the form (Schlichting, 1968;
Rajaratnam, 1976)
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is the scaled similarity variable,
K =2r / rUdr 8)

is the kinematic momentum flux and
v = 0.0161VK (9)

is an empirically determined relation for the eddy viscosity v;. Here U, V are
the velocity components in the x (downstream) and r (transverse) directions. A
sketch of the streamlines is given in Figure 2.

In light of equation (9), the useful parameter I" defined above has the value
15.17. For the conditions described in Section 3, we have the constants

K = 201x10"2 m%2 (10)
vy = 2.268x 1073 m%7! (11)

Note that the eddy viscosity is two orders of magnitude larger than the
molecular viscosity in this flow.

From this solution, we first determine the position of maximum shear on
each streamline. Under the conditions used to derive the similarity solution, the
shear is dominated by ‘%U. By using the equation for the Stokes streamfunction

2

Y=wner e

(12)

we can eliminate z in favor of ¥ and £ in the expression for %%. Hence we find
the maximum shear along each streamline. This occurs at { = 2 which gives
V = 0 i.e. where the streamline turns from entrainment to entering the jet. This
represents a cone of maximum shear.

The value of the maximum shear rate along each streamline is given by
(Try)?

g2
The value of ¥ varies from lower values near the axis (corresponding to large
shear rates) to large values away from the axis.

Gmaz B8 2 (13)
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Figure 2: Streamlines of the axisymmetric jet.

5.2 The breakup criterion

Assuming that the droplets are being formed in the shear layer at the edge
of the jet, we then see that as the oil phase is entrained it is subject to a range
of shear rates depending on how close to the nozzle the blobs of oil approach as
they enter the main stream. For each shear rate Gp,q; We associate a drop size
according to the criterion used in the 1996 report.

A drop of radius R will break when the capillary number

_ GncR
Y

Ca

(14)

exceeds a critical value Cacri;. The capillary number represents the ratio of
viscous stresses (ncG) to the Laplace pressure difference (y/R) which resists
drop deformation.



Droplet formation inside a Venturi liquid mixer 115

The critical capillary number depends on the flow type (e.g. simple shear
versus elongational flow) and on the viscosity ratio 7p/nc of the dispersed (oil)
to continuous (aqueous) phase. The flow at the edge of the jet is close to simple
shear and, typically, np/nc ~ 3. In that case, Cacrit ~ 0.1-0.2 (Stone, 1994).
Thus we expect that the rate of strain G must satisfy

G > Gerit ~ 10° 571 (15)

for drops larger than 1 pm to break. As in 1996, we are forced to apply a
criterion derived from the steady shear regimes studied in Stone (1994) to an
unsteady turbulent flow. In slight defense of this, pictures of the jet in Yule
(1978) show the first nozzle diameter downstream to be much more steady than
the fully-developed turbulence further downstream.

Using a critical capillary number of 0.1 and using equation (13) in equa-
tion (14), we get (for the conditions considered here)

R = 802¥° (16)
where both R and ¥ are in SI units.

To proceed we must consider the details of the geometry. It is usual (Schlicht-
ing, 1968) to place the origin of the streamfunction behind the start of the noz-
zle at some virtual origin. Hinze suggested this be located at a position 1.2 rg
(i.e. 3 mm) behind the opening of the nozzle, in order to better fit his data at
large distances downstream (z/ry > 10). We will follow this suggestion for the
moment although it must be recognized that this is a rather dubious procedure
in order to make what is really a far-field solution physical in the near-field (with
no virtual origin we run the risk of infinite shear rates and drops of zero size).

We have used such a coordinate system in Figure 3 with the downstream
coordinate (scaled by rg) starting at the virtual origin and reaching 1.2 at the
opening. The vertical coordinate gives r (scaled by r9) with values of 1 at the
inside corner of the nozzle. In these coordinates the outside corner of the nozzle
is at (1.2,2), the start of the contraction section of the Venturi is at (3.6, 3) and
the start of the throat is at (7.8, 2).

The oil must pass along the streamlines between that which grazes the out-
side corner of the nozzle and that which grazes the entry of the Venturi (not
the throat). In this picture the smallest drops are produced by the streamlines
passing closest to the nozzle and feeling the largest shear. The largest drops are
those whose streamlines just enter the Venturi opening. Using these points to
determine the values of the streamfunction, we find the smallest value of ¥ to
be 2.5 x 10~ SI units, leading to a drop size of 0.58 um and the largest value of
U to be 8 x 107 SI units, leading to a drop size of 5.1 um. Of course, given the
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Figure 3: Streamlines in the region from the nozzle to the start of the throat of

the Venturi . Coordinates refer to a virtual origin a distance 1.2 ry inside the
nozzle and are scaled by r9. The dashed lines show the cone of maximum shear.
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many assumptions made in this analysis these numbers must be taken as rather
approximate. For example, one could use for the upper cutoff the streamline
that intersects the cone of maximum shear and the plane of the throat entrance
— this gives a maximum drop size of 6.3 pm.

5.3 A droplet size distribution

Knowing the drop size produced along each streamline, we now calculate the
volume flux of oil phase in each streamtube to produce a population distribution
of drops, either in terms of the number of drops of each size or the volume fraction
at each size.
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From the properties of the Stokes streamfunction, the flux in the streamtube
bounded by ¥ and ¥ + dV is just 27d¥. Given a fixed volume fraction A of oil,
the flux of oil is 2Awd¥. Since each value of ¥ corresponds in our treatment to
a dropsize R, we get the volume distribution of drops

dv
Py (R)dR = 2rA—=dR (17)

and the number distribution of drops
Pn(R) = Py(R)/(47R°[3). (18)
Using equation (16), we find
Py(R) < R™7/2. (19)

The disc centrifuge particle sizer used by Kodak appears to measure the
number distribution so in principle this is a testable prediction of the model.
The experimental curves show a distribution of roughly lognormal shape with
a sharp leading edge at small drop sizes and a gentle tail at larger drop sizes.
Our rather rough model gives a monotonically decreasing distribution cutoff at
small drop sizes due to the nozzle and at large sizes due to the Venturi with a
somewhat faster decay than the measured distribution.

6. Droplet formation by turbulent fluctuations

The other chief mechanisms cited for droplet breakup in turbulent flow (Wal-
stra, 1983) invoke concepts from the theory of isotropic turbulence due to Kol-
mogorov. Since all relations in this area have unknown constant factors, we shall
be content with order of magnitude estimates.

In this picture, we have two mechanisms depending on the size of the drop
compared to the so-called Kolmogorov length scale [x. This length scale is
determined from the kinematic viscosity of the fluid v and the mean turbulent
energy dissipation € by

3/4

g =344, (20)

6.1 Inertial forces

For drops larger than this scale, inertial forces are the dominant mechanism
for drop breakup with the turbulent pressure fluctuations competing with the
Laplace pressure in the drop. In this picture, breakup occurs if

2y
Ap=pU ~ — (21)
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where %U 2 is the mean kinetic energy associated with velocity fluctuations in
one direction. This is related to the overall turbulent kinetic energy k by

1] — — — -
k= (U2 +VZ+W7) = %U'Q (22)

o

assuming isotropic turbulence. As discussed in Yule (1978) and Simpson (1975),
this is unlikely to be valid both close to the nozzle where coherent structures
are clearly evident and in the throat, where wall effects would be expected to
disturb isotropy. However, the simplifying assumption of isotropy is frequently
made in the absence of more precise knowledge.

Calculations were done with a renormalization group k£ — ¢ model of tur-
bulence (Yakhot and Orszag, 1986) using the package Fastflo on the geometry
shown in Figure 1 and a nozzle velocity of 30 ms™!. An output of this model is
the turbulent kinetic energy k as a scalar field. In the shear layer near the jet
entry, values of 63 m2s~2 were found. Substitution into equation 22 gives a drop
size of about 0.5 pm.

In order to find the Kolmogorov scale, we used the numerical calculation
with Fastflo to find a value for e. It is largest in the shear layer at the edge of
the jet and to a noticeable extent near the wall in the throat region. The largest
value was 5 x 10° m?s2, which can be compared with a value of 10°> m?s~3 given
by Walstra (1983) for an Ultra Turrax mixer. Such a value gives a Kolmogorov
scale equal to 9 pm. This means that the inertial mechanism is a consistent and
plausible mechanism for droplet breakup for sizes greater than about 10 pm.

Monocolour contour plots of k and € from the numerical computation are not
as illuminating as the colour contour plots shown at the final day of the MISG
workshop and so they are not given here.

6.2 Viscous forces

This leaves another mechanism to consider: the shear due to velocity fluctu-
ation contained in eddies at the Kolmogorov scale. These eddies are responsible
for most of the energy dissipation in the flow. When we equate this dissipation
with dissipation by turbulent shear

e~ vcG? (23)

we get turbulent shear rates of 2 x 10° s~! which by our critical capillary number
criterion can produce drops of radius 0.5-1 ym (depending on Carit), yet again!
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6.3 Timescales

Finally, we have to consider whether the turbulent eddies last long enough
to break the droplets. The deformation time

tag = 128 (24)
Y

is about 5 us for a 1 pm drop. This should be compared with typical residence

times given in Section 3 for the case of breakage by the mean flow and with eddy

lifetimes for the case discussed here. With residence times in the entry section

of order ms, there is enough time to break drops up to 100 pgm in size before the

throat — any larger drops that survive must get broken in the throat.

The lifetime of an eddy of the size of the Kolmogorov scale is given by
tk ~ Vé'/2€—1/2 ~ 6 us (25)

so the smallest turbulent eddies do have (just) enough time to break drops of
1 pm size.

7. Some extensions

We mention two possible ways to extend the treatment given above, espe-
cially the methods of Section 5.

7.1 The annular shear layer

One objection to the use of the equations for the self-similar jet is that such
self-similar structure only sets in after about 10 diameters downstream, which
in our case is well past the throat. To get a feel for the near-field flow, one can
look at more empirical expressions describing the flow closer to the nozzle.

According to Rajaratnam (1976), the mean axial flow near the nozzle can
be described roughly as following. Inside a region r < 7;, (the potential core),
the axial velocity U is equal to the nozzle velocity Uy. Outside a region 7 > 7y,
the velocity is zero (or the outer stream velocity in the case of a compound jet).
In between we have an annular shear layer described by

v 1
U = 5(1 — cosm() (26)
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where ( is a scaled transverse coordinate

Czr""‘——r_ (27)

Tout — Tin
From this it is easy to find the cone of maximum shear at { = %

Empirically, the boundaries of the shear layer are found to be given by

fin — 0.95-0.007Z (28)
ro o
Tout  — 1.07+0.158> (29)
To To

i.e. the boundaries both have virtual origins behind the actual nozzle. Using
these expressions and computing the maximum shear as before, we find a shear
rate that can break a drop of radius 0.4 pym, which is comfortingly close to our
previous estimates.

7.2 Swirling jets

Finally, we mention the possibility of studying jets with swirl. The addition
of swirl (azimuthal velocity) to a jet makes it spread faster and enhances mixing
(Simpson, 1975). We would not want the jet to spread so fast that it doesn’t enter
the throat so there is a limit to the amount of swirl that is beneficial. Equations
for a swirling jet are available (Rajaratnam, 1976) for such an investigation, if
desired.

8. Conclusions

We have considered the mechanisms of droplet formation in a Venturi liquid
mixer. We conclude that temperature equilibration is not a significant factor
in any redesign of the current process. The overall picture that emerges is that
the oil phase is entrained by a circular jet, droplets are formed both by shear
in the mean flow and by turbulent fluctuations. The smallest drops are formed
closest to the nozzle and the largest ones near the throat entry. The predicted
dropsize distribution is qualitatively similar to the measured one. Any large
drops entering the throat are broken by shear near the wall of the throat. Further
study on the effect of swirl is warranted.

We close with a quote from Simpson (1975): “Irying to understand drop or
bubble transport processes can be a frustrating experience”.
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9. Notation

Capillary number

shear rate

turbulent kinetic energy

kinematic momentum flux of jet
Kolmogorov length scale

nozzle radius

number distribution of drops

volume distribution of drops

transverse coordinate

nozzle radius

boundary of potential core

boundary of outer region of annular shear layer
droplet radius

Stokes number

deformation time of droplet

diffusion time for heat

lifetime of eddy at Kolmogorov scale
particle relaxation time

axial velocity

velocity fluctuation

velocity of continuous (aqueous) phase
velocity of droplet phase

velocity of jet at nozzle

transverse velocity

axial coordinate

thermal diffusivity

interfacial tension

parameter appearing in £

turbulent energy dissipation

volume fraction of oil in emulsion
kinematic viscosity of continuous (aqueous) phase
kinematic viscosity of droplet phase
turbulent eddy viscosity

density of droplet phase

viscosity of continuous {aqueous) phase
viscosity of droplet phase

similarity variable

Stokes streamfunction

scaled tranverse coordinate in annular shear layer
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