32 Bz (A)

Fluid transport equation in porous media
(Fluid compressibility)

Conservation law of mass:
B+ (p7) =0
¢ — Poracity(constant,0 < ¢ < 1)
Darcy’s law:
7=-%Vp (2D flow)
= ¢+ V(~kpvp) =0
State equation(fluid):
c-dp= %‘3 (c-modulus of elasticity)
= c¢% — V(EVD) —ck[VpP =0 (e« 1)
=> o2 - V(Evp) =0
Initial condition:
ple=o =po  (po is constant)
Boundary condition :on [y (well)
Plr, =pw  (py is constant unknown)
fr‘ viids = L (iis outer normal L is volume of product)
h o ~E(-Z)rds)=Q (his thickness)

(r3B)r, = ;2
radius r,, < 1
. 3,
iy 50ire = s
Problem

Find p(r,t) s.t.
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)
lim (22)) = 24
Ple=o = po
rescale
% =15k () (>0
lim (r2) = Q —
Pli=o = po \
Solution .

P(rit)=po— 2 3

4kt

Permeability k:
k=1 2=|Vp>yu
k=0 2Z2=|Vp<yu

r

(1 >0)
k=H(E -p)
%=1 0HE -0
rli_r)% (rg’;-) =@ (%)
Pli=o0 = po
In Song Fuquan’s paper
permeability s
k=(1- o)t =(1-4)* ;\!
Now we consider another appoxuna,tmn for equatlor{( )
There is a boundary layer near T : { =u} )
gﬁl Dop+iN\ 1839y ob wol

ki 1 N\0 o s
k= k(%)= ' ,
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k
J\
; - Z(VP)
p p+
k
F 3
|
|
|
|
|
|
! .o
[ pté
2 >ptd

How to get an approximate solution?

-
P(r,t) = po — %f;:z_' e-dh (k<)
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9 8

a0 2

3, s

5&:“, g'e 4!:/1
2

_ _ .0

t= l“r‘rg,r (r= 7f(t))

8 1849
% =ro(rgE)  0<r<oo
p|t=0 =Po

lim (r%2) = @

P|r=rf;(t) =D

(written by Jiang Lishang)
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Flows in a Low Permeable and
Compressible Medium

Huaxiong Huang
Department of Mathematics & Statistics, York
University

Toronto, Canada M3J 1P3
Email: hhuang@yorku.ca

1 Introduction

Two problems on flows in low permeability reservoirs were posed to
the 27¢ Shanghai Study Group with Industry, held at Fudan Univer-
sity, November 5-8, 2001. One of the problems is on radial axisym-
metric flows with a threshold pressure gradient and the other is on
radial flows in a compressible medium. The main objective of the

exercise is to obtain exact or approximate solutions.

In the following, we summarize the discussion on one of the two
problems, flows in a slightly compressible medium. The sub-group is
consisted of A. Fitt, Y. He, H. Huang, L. Jiang, C. Please, F. Song,
X. Ye and J. Yue.
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2 Radial Flows in a Compressible Medium

Consider the radial axisymmetric flow in a compressible porous medium

in a domain r > 1 described by the following initial-boundary value

problem:
J J
5% = ;57: (rg—g), t>0, r>1 (1)
du 1du
a = Pty el @
—g—: = 0, r—oo (3)
u = 1, t=0 (4)

where u = exp(—0p) and p is the pressure. The permeability of
the medium is assumed to be a function of p in the form of K =
Ko exp(—pp) with 8 being a (positive) parameter. The initial-boundary
value problem (1)-(4) can be derived from the conservation of mass
and the Darcy’s law and the details can be found in [5]. Here we
consider slightly compressible media where 8 is small. We note that
u—1as f—0.

Because of the non-linear nature of the equation, the exact solu-
tion may not exist for this problem. So the rest of the discussion is on
approximate solutions. In particular, we focus on the following ques-
tions: Can we obtain a practically useful approximate solution and
how does the approximate solution compare to numerical solutions?
It is worth pointing out that the the boundary condition (2) and the
initial condition (4) are incompatible at r = 1 and ¢ = 0, which is
likely to cause the deterioration of accuracy in the numerical solu-
tion for small time ¢. It was also noted that the original boundary

condition {2) at the well » = 1 may be replaced by the following
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condition

Ju

-{,)—r:ﬂ, r=1 (5)

assuming that the medium inside the well is incompressible.

In order to simplify the computation, we will first study two
model problems in Cartesian coordinates where straightforward com-
parison can be made between numerical and approximate (asymp-
totic) solutions. Discussion on the radial flows will be given after-

wards.

2.1 A model problem in Cartesian coordinates

We consider the following problem in Cartesian coordinates

du &*u

—a}- = Uﬁ, t> 0, r > 0 (6)

du

5; - ﬂ’ =0 (7)

Ou

(—9—1; = 0, z—oo (8)
u = 1, t=0 (9

2.1.1 Regular perturbation

We look for approximate solution via regular perturbation method,

by expanding the solution into an asymptotic series of 3

u = 1+ﬂu(1) +ﬂ2u(2) I
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At the first order, we have

u)) 9?ul))
% T T 120 =0 (10)
1)
631: = 1, z=90 (11)
(1) .
agx = 0, zo00 (12)
Vo= 0, t=o0. (13)

The solution of this problem can be obtained using Laplace transform

t 2
u( = _2\/;exp (—%) + zerfc (5%) .

Obviously the solution is smooth for ¢ > 0. However, the derivative
8*u)) /82? blows up as 1//7 on the boundary z = 0 as ¢ — 0.

The overall solution up to the first order of 3 is

2
u=14+4 ,:—2\/};‘exp (—%) + zerfc (2—37>

2.1.2 Numerical method

as

+ 0(B%).

We apply a standard finite volume method to our model problem.

The semi-discrete equations can be written as

du; 2u; (Ui+1 — Ui Ui — Ui
dt =z — i

), t>0  (14)

Tit1 — & &~ Ti-1
fori=1,.,N-lonagrid0=zo<2; << &y_; <IN = Too
where the infinity domain is truncated by replacing co with z.,. The
equations for i = 0 and i = N can be derived using fictitious points
z_1 and zy4; and a discrete form of the boundary conditions 7
and (8).
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(X1
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Figure 1: Solutions at t = 0.1 in Cartesian coordinates using using
boundary condition Juf/dz = 8 at = 0. Solid line is for asymptotic
solution and symbols are for the numerical solution on a uniform grid
grid with éz = 1.

It was shown in [3] for similar problems that the accuracy of
the semi-discretization is determined by the grid size dz as well as
the second derivative d%u/822, which in our case is dominated by
B0?uV) /§z? when B is small. In order to isolate the error due to
spatial discretization, we use ode45, a Matlab [7] code which uses
the Runge-Kutta method of order 4 to solve the system of ordinary
differential equations (14).

2.1.3 Comparison of asymptotic and numerical solutions

In Figure 1, solution u and its derivative u, are plotted for ¢ = 0.1.
(For the rest of the discussion, we choose 8 = 0.1.) It can be seen
that the numerical solution, obtained on a uniform grid with =z = 0.1,
is in good agreement with the asymptotic solution. However, for a

smaller time ¢ = 0.001, there exists visible difference between the
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Figure 2: Solutions at t = 0.001 in Cartesian coordinates using using
boundary condition du/dz = B at x = 0. Solid line is for asymptotic
solution and symbols are for the numerical solution on a uniform grid
grid with §x = 1.

Figure 3: Solutions at t = 0.001 in Cartesian coordinates using using
boundary condition du/dz = B8 at x = 0. Solid line is for asymptotic
solution and symbols are for the numerical solution on g non-uniform
grid z; = (i/N)2.
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two solutions near ¢ = 0 on the same grid, as shown in Figure 2.
This is likely due to the lack of resolution near z = 0. To increase
the resolution, one can refine the grid globally by using more grid
points, or locally by using a non-uniform grid without increasing the
number of grid points. It can be seen in Figure 3 that the numerical
solution, obtained on a non-uniform graded mesh, agrees well with
the asymptotic solution. In conclusion, the approximate solution
obtained by regular perturbation is quite accurate even with only
one correction. The numerical solution becomes less reliable for small

time and grid refinement is necessary to maintain accuracy.

2.2 Model problem 2 in Cartesian coordinates

We now come back to the original boundary condition, but still in

Cartesian coordinates and consider the following problem

Ou 8%u
—5{ = U'a?, t> 0, z>0 (15)
Ju 10u
3—11 = pg+ W TE z=0 (16)
du

u = 1, t=0 (18)

We look for the approximate solution via regular perturbation

method in a similar way

u=1+ gut +0(5?%
SHANGHAI STUDY GROUP WITH INDUSTRY -2001.11-




£E2— (B) 43

where

oulV 8%V

= i i 19
5 52 >0, 2>0 (19)
dult) dult)

= 1 = 20
Oz + ot ’ ’ (20)

(1)

du = 0, z—oo00 (21)
dz
«M = 0, t=0. (22)

Using Laplace transform we obtain

t 1z
(1) — _/ t—-7 f t — f (__.__)d
u = € €ric T} eric 7.
0 (Vt-7) 271

The overall solution up to the first order of 8 is

u=1-4 [/Ot e~ Terfe (VI— 1) erfc (%-%) dT] +0(B?).

In Figure 4, we plotted the asymptotic and numerical solutions at
t = 0.1. The computation was done on a uniform grid with dz = 0.1.
It can be seen that the biggest error of u, now occurs at z = 0.
This can be seen more clearly from Figure 5 where u,(0,1) is plotted
against t. It can be observed that the error increases as ¢ decrease on
a given grid. To improve accuracy, finer grid is needed near z = 0 as ¢
becomes smaller. It is worth noting that even though the asymptotic
solution is obtained for this case, it involves integrations which must
be evaluated numerically. In this study, we have used Maple [6], a
symbolic mathematical package and it takes a much longer time to
find the asymptotic solution for a given ¢ and ¢, compared to solving
the equation numerically. Thus, its usefulness may be limited from
practical point of view.
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o
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oot
n L . " L L e

Figure 4: Solutions at t = 0.1 in Cartesian coordinates using
Ou/dz = B+ u~rdu/dt at * = 0. Solid line is for asymptotic so-
lution and symbols are for the numerical solution on a uniform grid
de =1.

Figure 5: Solutions at t = 0.001 in Cartesian coordinates using
Oufdz = B+ u~10u/dt at ¢ = 0. Solid line is for asymptotic so-
lution and symbols are for the numerical solutions. Cross’s are for
numerical solution on a uniform grid. Non-uniform graded mesh
z; = (i/N)* is used for other computation: squares for kK = 1.5;
diamonds for k = 2 and circles for k = 2.5.
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Figure 6: Solutions for radial flows at t = 1: solid line is for asymp-
totic solution; symbols are for the numerical solution on a uniform
grid with §z = 0.1.

Y
9 N » » a

Figure 7: Solutions for radial flows at t = 0.01: solid line is for
asymptlotic solution; symbols are for the numerical solution on a non-
uniform grid r; = a + (i/N)*®(b — a).
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Figure 8: Solutions for radial flows at t = 0.001: solid line is for
asymptotic solution; symbols are for the numerical solution on a non-
uniform grid r; = a + (i/N)3(b ~ a).

2.3 Radial flows

We now briefly discuss our original problem (1)-(4). Using regular
perturbation, we have u = 1+ Bu® 4 0(B?) where u(!) is the solution
of the following problem

dult) 18 ( oul®

ot = ;51: (’l‘—a—r—) , t> 07 r>1 (23)

dulV SulV

. - e T (24)
(1)

6;_ = 0, r—oo (25)
w = 0, t=0. (26)

The solution of this problem may be obtained using Laplace trans-
form in an integral form, as in the case of the Cartesian coordinates
discussed earlier. However, since it is computationally expensive to

compute these integrals and our numerical solution is obtained on a
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finite domain, we will restrict our domain to an anulus: 1 = a <r<b
The solution v for the unsteady heat equation on an anulus a <

r < b with the following boundary conditions

v dv

AIE-FLQE;'-{-A;;U = kg r=a,
v dv

gy +hg t ke = K, r=s,

is given by Jaeger [4], which was reproduced in [2] as

_ aky[k) — by log(r/b)] — bki[ks — akslog(r/a)]
- akskh — bkakly — abksks log(a/b)

-7 Z e‘“itF(an)Uo(r, an ){k4[A] Jo(be,) — kha, J1(bay,)]
n=1

—k,’;[AnJo(aan) — kyop Jy(aay,)]},
where

2k,

2!
Ay = ks —kial, Al =kl — ko2, B=kt ==, B'=k+ 1

30
Flan) = {4 Jo(ban) - KyanTi(ba)} /
{14} Jo(barn) — Kpan 1 (bern)|2(A2 + ky Ba?)
—[AnJo(aan) — ksandi(aa,) (A2 + kyB'a?)},
Uo = Jo(ran)[AnYo(aa,) — ke, Yy (acn)]
~Yo(ran)[AnJo(aay) — kyandi(aay)],
Jo, J1, Yp and Y; are the Bessel functions of the first and second

kinds, respectively and the eigenvalues a;, are the positive roots of

[(ks — k1a?)Jo(ac) — kyad; (aa)][(k} — k1a®)Yy(ae) — khaY;(aa)]
—[(k5 = kla®)Jo(ba) — kyady (ba)][(ks — k1a2) Yy (ba) — kaorY) (bar))

=0
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On boundary r = b, we will use u}) = 0 as the boundary condition
since du()/@r = 0 is incompatible with the condition dult) Jor =
1+ duY) /0r on r = a. (Alternatively, we can use AV jor = ki #0.)
Therefore, we have ky = —1, ko = kg = ky =1, ks = k3 = o, =k =

0. And the first ten positive eigenvalues computed using Maple are
o, = 1.0274, 3.4231, 6.4302, 9.5236, 12.6407,
15.7675, 18.8992, 22.0337, 25.1700, 28.3075

fora=1and b=2.

In Figures 6-8, we have plotted the asymptotic solution and the
numerical solution at ¢ = 1, 0.01 and 0.001. The numerical solution
(symbol) is obtained using a finite volume discretization in r. The
time integration is again done using the Matlab code ode45. The
uniform grid is used for t = 1 but a graded mesh r; = 1 + (i/N)3
is used for =0.01 and 0.001. It is clear from the figures that the
asymptotic solution agrees with the numerical solution well for ¢t =1
and 0.01, with the infinite series is truncated at n = 10. At ¢ =
0.001, the asymptotic solution becomes oscillatory, which indicates
that more eigenvalues need to be included in the expansion. In fact,
it will be more efficient to seek an expansion of the solution valid
for t < 1. However, we will not discuss the issue any further in this

report.

3 Conclusion

In this report we have investigated radial flows in a low permeable
and slightly compressible medium. Regular perturbation method is
used to obtain approximate solution when the compressibility param-
eter /4 is small. It is shown that in general the asymptotic solution
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with only one correction term agrees well with the numerical solution.
However, approximate solution obtained here becomes less accurate
or more expansive to compute for small time. Thus, it may be desir-
able to expand solution into a form suitable for ¢t < 1 since it will be
computationally more efficient. Such solutions have been obtained
for the heat equations and some of them can be found in [1, 2).
When ¢ — 0, numerical solution also becomes less accurate on a
fixed grid due to the incompatibility between the boundary and initial
conditions at + = 0. A non-uniform graded mesh produces more
accurate solutions but we have not conducted a systematic study on

the effect of a mesh refinement strategy.
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