
Calibration of Remote Sensing Measurements
from Surface Observations

Abstract
This paper presents a range of modellingtechniquesthat may be used to tackle the

problemofcalibratingremotesensingmeasurementsfromsurfaceobservations.The problem
was presented by the Hong Kong Observatoryat the 1st Hong Kong Study Group with
Industry at the City Universityof HongKongin July 2002.

Remote sensing instruments such as radar and satellite are used to measure the distribution of
weather elements in space. Typically, satellite data takes the form of measured 2-dimensional
distributions of quantities such as surface temperature, cloud top temperature or air humidity.
On the other hand, radar can produce detailed precipitation information for large areas from
a single location in real time. Here, the data constitutes measurements of the reflectivity of
transmitted electromagnetic waves, measured in units termed dBZ.

Roughly speaking, high values of radar reflectance imply heavy rainfall. However, areal
and point estimates are often in error by a factor of two or more. Error sources are many
and varied, and include the actual measurement of radar reflectivity factor, evaporation and
advection of precipitation before reaching the ground, variations in the drop size distribution,
and vertical and horizontal air motions. The main focus of this report is calibration (that is, rain
gauge adjustment) of radar measurements in order to predict rainfall intensity. Nevertheless,
we believe that similar modelling techniques apply to other types of remote measurements.

It is usual to estimate rainfall through a rain gauge network on the surface. Unfortunately,
radar data and rain gauge data have very different characteristics, and the precise relationship
between them is unclear. The information available via radar is a 3-dimensional near-continuous
(that is, on a fine spatial grid of pixels) field of measured reflectance values, with updates avail-
able roughly every 6 minutes. In contrast, rain gauge networks provide irregularly distributed
discrete measurements on the ground that are updated every 1 to 5 minutes.

Surface measurements are known to givea better estimate of intensity, but the validity of the
measurement over a large area is uncertain, particularly in convective rainfall situations. Large
networks of rain gauges are sometimes employed to obtain improved estimates, but the design
of such networks is a complex issue. A considerable number of rain gauges would be required to
obtain a representation of the rainfall field structure, and this would involve prohibitively large
expense.

Radar provides measurement over a much wider area and gives a higher resolution represen-
tation of the rainfall field structure. However,the quantitative measurements are less accurate
than those obtained from rain gauges. It is therefore very natural to try to combine the more
qualitative representation of the rainfall field distribution provided by radar with the more
quantitative point rainfall measurements made by rain gauges.
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Unfortunately, there are various difficulties in analysing the dependence between the two
types of data and the actual rainfall. The nature of this dependence is affected in complex ways
by the topography of the region, changing winds, and numerous other factors. The raindrop size
distribution is rarely known and varies in time and space. A raindrop falling from the sky could
experience disturbances, and its size and direction could be altered before it reaches the surface.
This is particularly likely to happen during thunderstorms, when vertical and horizontal air
motions are of the same magnitude as raindrop velocity. On the other hand, in light rain, when
raindrops are very small, many of them could simply fail to hit the ground before they vaporise.

Previous studies have found that, in general, techniques that combine sparse rain gauge
records with radar produce smaller measurement errors than either system alone can provide.
Thus radar certainly has potential for improving forecasts of severe storms and flash flooding.
However, when high accuracy measurements are needed, the usefulness of radar is diminished, as
the number of rain gauges required for calibration may itself be sufficient to provide the desired
accuracy.

A number of different approaches have previously been tried to calibrate radar data. These
range from space-time models of the rainfall field, which incorporate the covariance structure of
that field and measurement errors, to simpler formulations based on linear interpolation, kriging
or surface fitting - see references in [12]. Many of these methods are fairly effective for long-term
forecasts, such as daily rainfall, but fail to make accurate predictions for shorter periods, such as
one hour. Our aim here is to suggest some mathematical models and techniques that might be
particularly useful for short-term forecasts. The suitability of these models should be assessed
using available data. We make no claims to having been thorough and complete: an in-depth
study would require far more time than the amount available to us.

2.1 Theory of radar measurements

The following theoretical summary is based on the presentation in [11]. The backscattered radar
power from precipitation particles is proportional to the summation of the sixth power of particle
diameters (Dr) in a unit volume ilIuminated by the radar beam. Hence the radar reflectivity
factor, Z, is defined as

where Ni is the number of drops per unit volume of air with diameter Di, and N(D) is the
number of drops with diameters between D and D + dD in a unit volume of air. In the absence
of vertical air motions, the rainfall rate, R, is given by

R = i100

N(D)D3V(D)dD,

where V(D) is the terminal velocity of a raindrop of diameter D, which is often approximated
by V(D) ~ 1400D1/2. If one were to substitute a drop size density function in the expressions
above, the result would be an expression for the relation between Z and R. For instance,
assuming that the distribution of the drop size is exponential, one obtains a simple formula of
the form

where A and b are constant parameters. Though the simplicity of (1) is appealing, studies of
various data sets have shown that the drop size distribution normally varies over both time and



space. Even taking account of such variations, the assumption that each drop is spherical with
an exponentially distributed radius might not be a very satisfactory fit - see [10]and references
therein. Furthermore, especially during thunderstorms, vertical air motions can be of the same
order of magnitude as particle terminal velocities. All in all, various factors undermine the
validity of the simple relation (1). A thorough discussion of the different elements (including
hardware calibration and changes in the Z - R relation) that contribute to errors in radar rainfall
measurement can be found in [11]. The same reference also includes a description of a few very
early radar calibration techniques and their performance when applied to real data.

In this section we briefly summarise a number of recent attempts to calibrate rainfall measure-
ments.

In [1], Atlas et al. present a theory for the estimation of total rainfall from an individual
convective storm over its lifetime and the areawide instantaneous rainfall from a multiplicity
of such storms. Their method relies on the existence of a well-behaved probability density
function of rain rate. It involves measuring the volume rainfall using the area-time integral of
the radar echo in excess of a specified threshold over the life of a storm. There are various
difficulties associated with the practical implementation of the method, mostly connected with
the estimation of the values of the relevant parameters and with the calibration of radar data.
However, in [2] the same authors analyse a real data set, and are able to give some evidence in
favour of their technique.

Another technique for rainfall measurement is the window probability matching method
(WPMM). The essence of the method is to use a combination of radar and rain gauge data, and
to match rain gauge intensities to radar reflectivities taken only from small windows centred
about the gauges in time and space. The results are then used to obtain an empirical rela-
tionship between the radar-measured reflectance Z and rain rate R. In this way (in contrast
to many earlier techniques), the method allows for spatial and temporal variations of the rain
rate throughout the radar domain. One study of this type has been conducted by Rosenfeld,
Wolff and Amitai, and its findings can be found in [9]. The authors show that their technique
can significantly outperform techniques based on the assumption of a time- and space-constant
power-law relationship between Z and R.

In two companion papers [12]and [13],Wood et al. examine the accuracy of rainfall estimates
obtained from rain gauges and from weather radar using the HYREX network. The HYREX
network consists of 49 0.2 mm tipping bucket rain gauges, located in a grid of 28 2 x 2 km2

squares in the catchment of the river Brue in Somerset, England. It has provided a data set
unique in the UK thanks to its densely placed rain gauges and radar stations available for
studying precipitation on both local and global scales in space and time.

In the study presented in [13],data from HYREX was subjected to strict quality control to
identify periods when gauges were not functioning properly; data corresponding to such periods
was rejected. Care was also taken to detect more unusual forms of precipitation, such as snow,
hail and freezing rain, since these may be expected to activate the tipping mechanism of a
rain gauge in a diff~rent way to regular rainfall. Certain control procedures were also applied
to radar measurements. Having addressed the issue of quality control, the resulting data was
used to estimate measurement accuracy at different time and space scales and as a function of
rainfall intensity. An empirical approach was pursued by the authors which involved dividing
the time into 15 minute intervals and treating each interval separately. For each interval the
"true" rainfall was set to the average rainfall over a large number of gauges and the estimate and
error were calculated. Then the interval length was varied to investigate the effect of the time
scale over which measurements are made. The accuracy of radar measurements with respect to



gauge estimates was also examined without taking account of long-term bias in radar data. The
essence of the approach is the assumption that there are so many rain gauges used in calculating
the mean rainfall T, that it is essentially the same as the unknown true value for the pixel. The
value from each single rain gauge or radar pixel, R, can be used to define an estimate of the
mean square error of R for a chosen time-frame as

The procedure then involvesaveraging valuesof 82 across time frames or using many time frames
to construct scatter plots of log8 against logT. The reader is referred to [13]for details of the
methods and results.

The companion paper [12]explores the accuracy of calibrated (that is, rain gauge-adjusted)
weather radar data. When comparing rain gauge and radar performance, one tries to use the
value for a distant rain gauge as an estimate of rainfall in a given pixel. When radar estimates
are concerned, one does not have to rely on the value for a remote pixel, since a value at the
point of interest will be available. In view of this fact Wood et al. investigate two main issues.
Firstly, at what distance from a 2 km pixel will the rain gauge measurement be outperformed by
a coincident radar pixel? Secondly, can accuracy be improved through rain gauge calibration of
the coincident radar pixel value? The paper uses different forms of calibration factor to correct
the radar image. Two basic categories are long-term (static) factors and short-term (dynamic)
factors. The long-term factor involves the calculation of a single corrective parameter from all
the data and then applying it in an identical way to all time frames. Two types examined in [12]
were the long-term arithmetic mean ratio bias and the geometric mean ratio bias. The use of
long-term factors can be improved upon by employing dynamic calibration factors, which are
recalculated for each time-frame, for instance every 15 minutes. The basis of the method is to
fit a surface to calibration factor values estimated at a number of rain gauge locations and to
scale the radar field by the coincident factor values to derive a more accurate calibrated radar
field. Wood et al. further investigate a hybrid method which partitions the calibration factor
into a spatially-uniform long-term component and a spatially-varying dynamic component. The
resulting factor will take on the form of the dynamic calibration at short distances but behave
like static calibration over long distances. Overall, this hybrid approach outperforms rain gauge,
uncalibrated radar, and statically-calibrated radar estimates for the majority of rain gauges in
the catchment. The detailed descriptions of the different factors and their performance can be
found in [12].

2.3 Spatial-temporal models of rainfall fields

Mathematical modelling of rainfall fields themselves has potential value for use in radar cali-
bration. The work by Wheater et al. [10]presents a number of different modelling techniques
and tests their performance using the data from the HYREX experiment discussed above. We
note that the models in [10] assume that calibration errors do not seriously bias the spatial
and temporal structure of the observed fields. The next challenge would therefore be to com-
bine modelling of rainfall with calibration of radar data. In [10], the authors merely use the
data to investigate the influence on rainfall behaviour of various factors such as topography (in
particular elevation), large-scale spatial variability, and seasonal effects.

The models used in [10] provide an explicit representation of observables such as the clus-
tering and movement of rain cells. However, they do not attempt to capture the detailed deter-
ministic evolution of the physical processes involved. Instead, this evolution is seen as governed
by simple stochastic point processes determined by a small number of parameters with clear
physical interpretation. Two main classes of models are spatial-temporal models and multi-site
models. The former depict the temporal evolution of rainfall over a continuous spatial region



and are suitable for radar data; the latter do the same at a discrete set of locations in space,
and thus are appropriate for studying rain gauge data. Both types are based on a hierarchical
structure where rainfall fields occur in a temporal Poisson process, rain bands (storms) occur
within each field in a spatial Poisson process, and rain cells occur in each storm clustering in
time and space. Typically, all the components in the hierarchy move. Detailed descriptions
together with the results of the analyses can be found in [10].

In the context of rainfall ~odelling, two other papers are worth mentioning, namely [4, 5].
There the authors investigate evidence for long-term changes in precipitation in the Galway Bay
.region of Western Ireland. The paper studies rainfall occurrence and rainfall amounts by fitting
Generalised Linear Models.

3 Space-time models of radar and rain gauge data

In this section we discuss the results of Brown et al. ·contained in [3]. There the authors
combine several modern statistical techniques in a novel way, with very promising results. They
build an empirical space-time model to describe the relationship between radar reflectance and
rainfall intensity. The modelling strategy reflects the fact that the gauge data are spatially
sparse but temporally dense. First, a time series model is fitted to the data at each individual
site. The time-space covariance structure of the minimum mean-square error predictors of the
dynamic regression coefficients is then examined and used to formulate an integrated space-time
model for the entire region. The model has been tested on data from a weather radar station
at Hameldon Hill, Lancashire, England. The radar reflectance value at a gauge site is assumed
to be the value at the nearest pixel centre. Also, reflectance values have been pre-processed to
remove known anomalies.

Space-time models have recently been used in various environmental monitoring applications.
It is common to have a discrete-time formulation, with a random variable ¥i,t defined at unit
times t and a finite set oflocations i in some index set I. The time series ¥it at the III locations
can be linked via a spatially correlated set of variables Zit with a covariance structure derived
from an underlying continuous spatial process Z (x) realised independently at each time t.

Other classes of models are so-called separable models, where a space-time process Y(x, t) is
decomposed as

Y(x, t) = M(x, t) + S(x, t)U(x, t).

Here M(x, t) = F(x) + 'fJ(t), where F(x) is a purely spatial process, called the mean-field;
similarly S(x, t) = H(x)K.(t), where H(x) is the spatial field; also, 'fJ(t), K.(t) are both white noise.
Finally, U(x, t) models residual space-time variation.

Another approach, very similar in spirit to that discussed in [3] is to represent Y(x, t) as

where S(x, t) incorporates space-time dependence whereas €(x, t) is spatially and temporally
uncorrelated.

In the future it would be useful to try a few different models of this form for the radar
. calibration problem and test their performance on real data. In order to improve on previous
studies, the choice of representation should take account, in a more sophisticated way than has
so far been used, of the physical processes involved.

3.1 Single-sitemodel

Consider a single site where we record both gauge measurements and radar rainfall estimates at
equally spaced time intervals through a rainfall event. The model assumes that the relationship



between gauge and radar re~ectance measurements can be described by a power law,

Gt = aRf et, (2)

where Gt is the gauge measurement at time t, Rt is the radar measurement and et is a multi-
plicative error term. Although previous research has shown that the spatially and temporally
invariant power law is not a good fit, there is hope for improvement through introducing a
suitable form of dependence upon time and space into the relationship.

Taking logarithms of (2), we obtain a linear relationship, with a special treatment of zero
values. The zero value for radar reflectance is thought to give a very reliable indication that rain
is not currently falling, that is Rt = 0 implies that Gt = 0 with high probability. Zero values
may therefore be treated as missing data. The parameters a and (3 may vary stochastically over
time. We write down the linear observation equation

where yt = log (Gt), Ut = log (Rt), and Zt is an uncorrelated Gaussian noise with mean 0 and
variance 0';. The stochastic processes At and Bt describe the evolution of the parameters a and
(3 above via the state equations

where TJt and €t are uncorrelated Gaussian stochastic processes with zero means and respective
variances O'~ and o'~, and ¢A and ¢B are parameters each lying in the range 0-1. The equa-
tions (4) and (5) define standard first-order autoregressive processes. Since both ¢A and ¢B
each have modulus strictly less than 1, these processes are said to be stationary. This means
that At and Bt hover around the constant means J.tA and J.tB respectively. Given the availability
of a set of observations up to and including AT and BT, the optimal predictor I steps ahead is
the expected value of AT+1 and BT+1 conditional on the information available at time T. This
predictor is optimal in the sense that it has minimum square error - see [6] for a theoretical
exposition of time series.

The time series in equations (4) and (5) are in state space form [6]. Therefore, the Kalman
filter [6] can be applied to them, leading to efficient algorithms for prediction and smoothing.
Furthermore, the Kalman filter enables the maximum likelihood estimation of the unknown
parameters 0'2, J.tA, J.tB, ¢A, ¢B, o'~ and o'~.

The results reported in [3] appear to suggest that the assumption of a first-order autore-
gressive vector process is reasonable (errors are uncorrelated). The prediction intervals on the
B-parameter remain wide, so that it is rather poorly identified. The authors' interpretation
of this is that the predictive ability of the algorithm is not very sensitive to the power law
parameter, and in subsequent analysis this parameter is treated as constant, denoted by (3.

3.2 Spatial Analysis

Brown et al. go on to suggest an integrated space-time model to describe the relationship
between gauge measurements and radar reflectance values on a 2 km x 2 km pixel grid. The
reflectance values are given at each of the N pixels whereas the gauge values are given only at n
sites, where n «N. Formally, the model is defined on the set of N pixels but the measurements
}'it at non-gauge sites are treated as missing data.



The Kalman filter will output maximum likelihood estimates of model parameters. Hence
we can construct the minimum mean-square error predictors of the process Ait at non-gauge
sites and predict the unobserved values of ¥it as

¥it = 0, if Rit = 0,

¥it = Ait + ~Uit, if ~t > O.

Since radar fields are almost continuous in space, the model should be constructed so that its
parameters may be interpreted as parameters of a continuous space-time process A(x, t). That
is, one should be able to extrapolate the covariance structure to continuous space-time.

A complete spatial model can be formed by combining the single-site models into a first-order
vector autoregressive model:

The simplest form of this, with identical values of the parameters at all sites and excluding all
spatial interaction, would be a model with iP = ¢I, and H = O"~I. To build in spatial interaction,
at least one of iP and H would have to be non-diagonal.

In the above model, the covariance structure is as follows:

fk = cov (At, At-k),

fo = ¢foiPf + HHT,

The corresponding numerical values, for given data, will be output by the Kalman filter.
Again, the reader is referred to [3]for suggestions as to possible choices of the matrix H and

iP. The model becomes computationally easier to handle for the choices that make it separable.
In a separable model, the correlation function

p(x, t) = corr {A(xo + x, to + t), A(xo, to)},

factorises in the form p(x, t) = PI (x)P2(t). However, it has been shown - see [7]- that a station-
ary Gaussian process Y(x, t) has separable covariance structure if and only if the conditional
expectation of Y(x, t + 1) given the values of Y(u, t) for all locations u in a set including x
is equal to the conditional expectation given only the value of Y(x, t). Thus separability can
substantially restrict the allowed structure.

Brown et al. [3] analysed both separable and non-separable versions. Their computational
results show the rainfall data to be well-approximated by the separable model. Furthermore,
various diagnostic checks they conducted suggest no gross violations of the overall fit. The
predictions were reasonably accurate, though only up to a certain time, and the level of accuracy
was significantly lower at sites away from calibration gauges.

The aim of the reference [3] was to calibrate space-time radar reflectance values against
tipping bucket gauge measurements, without use of any other explanatory variables. Within
this framework their approach was to develop the simplest possible space-time model consistent
with the data. One could improve on their findings by trying to combine statistical methods
with greater understanding of the physical situation. It might be useful to include prevailing
wind directions and topographic information as additional explanatory variables in the basic
observation equation (6). Some of this extra information could also be included in the covariance
structure. The current formulation absorbs almost all the physics into the latent stochastic
process A(x, t). Further, it might be fruitful to build a model of the raindrop size distribution
as a function of the rain rate, and then use it to determine the functional dependence between
radar reflectivity and rain rate.



4 Other methods of estimating rainfall intensity

A research group in the Engineering Department at the University of Essex has embarked
on a project concerning the verification of the theory that the difference in the attenuation
experienced by a pair of microwave links (operating at different frequencies along the same path)
can, for certain frequency combinations, provide accurate path-averaged estimates of rain rate.
A detailed introduction to the experiment is given in Holt et aI. [8]. There are several pairs
of microwave "links" (link=a microwave transmitter and receiver) and one wants to measure
the attenuation (that is, signal loss) on each link, sampling every second. Using appropriate
attenuation difference/rain rate relationships - see [8]- one can estimate path-averaged rainfall.
In the experiment, the longest link is 23.3 km, and the shortest is 8.9 km. Various frequency
bands have been investigated, and for each pair of frequencies the specific attenuation difference
has been calculated as a function of rain rate.

Additionally, data are available from a network of tipping-bucket rain gauges, and from
these Holt et al. have calculated comparable path-averaged rainfall estimates. Subsequently, it
becomes a matter of determining how accurate the link estimates are. There is a small amount
of radar data as another rainfall estimate to compare with. So far, the research has experienced
various problems; the main ones are as follows:

• The links are subject to non-rain induced fluctuations (due to, for instance, atmospheric
effects, equipment effects, etc.). These fluctuations make it difficult to identify the baseline
attenuation level from which to estimate rainfall.

• Clearly, there is no exact measure of rainfall: links, radar and gauges all provide estimates
of varying quality. In particular, the measurement of rainfall in urban areas or in steep-
sided valleys can be problematic, as it is difficult to find good locations for rain gauges,
and radar cannot sense near to the ground. So in effect, as with all the other studies,
one is always comparing different estimates without really knowing which one, if any, are
actually correct.

Despite the difficulties, initial data tests have been quite encouraging, and further work is
underway. The group are hopeful that the experiment, in combination with rain gauge and
radar data can bring about improvements in storm water management and flood warning in the
future. Detailed descriptions of the experiments already performed, and interpretations of the
results can be found in [8].
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