
Risk management for traffic safety control

Abstract

This paper offers a range of modellingideas and techniquesfrom mathematical statistics
appropriate for analysing traffic accident data for the East region operation of CLP Power
HongKongLimited and for the HongKongpopulation in general. Wefurther makeproposals
for alternative ways to record and collect data, and discuss ways to identify the major
contributing factors behind accidents. We hope that our findings will enable the design of
effectiveaccident prevention strategies for CLP.

CLP Power Hong Kong Limited is Hong Kong's largest energy supplier. The East Region
operation of the company owns a large fleet comprising of 84 company vehicles of various types
that are driven by 273 authorised drivers, the majority of whom are tradesman drivers. The
majority of CLP drivers are not trained as professional drivers. CLP believe that their accident
rate may be too high and are seeking objective methods to determine an acceptable rate.

Our aim is to study road accident data for CLP. If the rate turns out too high, according to
some reasonable criteria, then further study should be carried out to identify the chief causes
of accidents. Statistical tools should then be applied to test whether any new safety measures
bring significant improvements.

The costs incurred by CLP as a result of accidents are relatively low, approximately HK$lOO
per driver per year. Therefore it is crucial that any accident prevention strategy be highly tar-
geted and cost-efficient for it to be worthwhile. Certain strategies are relatively straightforward
to implement. For instance, one could isolate the drivers with the largest number of accidents
and subject them to appropriate training. However, to be sure that any prevention strategy is
well-focused, we must have a high degree of confidence that our conclusions are not influenced
by random fluctuations. The confidence in test results will necessarily increase together with
quantity of data used to perform these tests. Occasionally, the amount of data at hand is not
satisfactory, and then it is a major challenge to find reliable ways of testing for significance.

The data presently at our disposal consists of the total number of traffic accidents per year,
plus the total number of kilometres driven by the entire fleet during the years 1998 - 2001. Let
us point out that the term 'accident rate' may be defined in a number of ways; it could mean the
number of collisions per, say, 1000 kilometres, the number of collisions in a certain fixed number
of days, or the number of collisions in a fixed number of trips. Tests may lead to very different
conclusions, depending on which definition is adopted. Given the nature of the data in question,
and the generally held belief that the mileage is the primary factor influencing accident rates,
our focus will be on the average number of collisions per certain fixed number of kilometres.
However, anyone of the other parameters could be estimated via exactly the same techniques.
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The natural target for the CLP accident rate is the expectation of the accident rate for the
entire Hong Kong's population. Relevant data that can be used to estimate this expectation
is available from the Hong Kong Transport Department. However, several difficulties present
themselves when one attempts to draw a comparison. Firstly, the definition of an 'accident' is
bound to differ between the two data sets. The CLP criteria are almost certainly more stringent
than the Hong Kong Transport Department ones. This is because minor crashes involving
members of the public may be settled without police involvement, whereas any such incidents
would have to be reported by CLP drivers, so that vehicles involved may be repaired. Further,
driving conditions experienced across the two sets are not believed to be the same. For example,
CLP drivers drive much less frequently at night than a member of the public, and CLP alcohol
rules are far more stringent than those in place for ordinary Hong Kong residents. Despite such
limitations, a comparison of this kind might still be a useful and instructive exercise, particular
when examining year-on-year trends. Nevertheless, it would be far more informative to look at
the performance of drivers in some other Hong Kong companies with similar profile and similar
needs if such data could be found.

One could easily start questioning the usefulness of analysis based on rather crude data,
such as described above. Any findings will be extremely unlikely to help pinpoint major causes
of accidents involving c9mpany drivers. For this reason it is important to adopt a systematic
and detailed method of collecting and recording data. In fact, motor insurance companies have
already carried out extensive research on the causes of road accidents using various statistical
techniques to analyse vast quantities of carefully collected data. Typically, the followingfactors
are found to affect the probability of a driver being involved in a road accident: his or her age,
vehicle type, time elapsed since the driving test, mileage,history of accidents and injuries, history
of repair costs, occupation, primary usage of vehicle, and the history of driving convictions. Of
these criteria, occupation and usage will be the same for most CLP drivers. Marital status and
driving convictions might be inappropriate due to privacy and legal issues. Additionally, one
should factor in circumstances such as road and weather conditions, time of day, work patterns,
and the distance driven during the day.

With such data in hand it is feasible to come up with statistical tests to determine the
key factors that increase the rate of accidents or lead to the highest repair costs. not just
the result of chance events. The information obtained through the tests should then enable
design of an effective accident reduction strategy. Without the knowledge based on analysis of
statistical data, any strategy would necessarily have to rely on guesswork. On the other hand,
identification of drivers with a significantly higher rate of accidents would make it possible
to institute additional training where required. Determining problem vehicles might lead to
re-examination of decisions on purchases or leases. Identification of problem work conditions
or habits would afford CLP the opportunity to educate drivers and raise their awareness of
work-related risks.

A few common-sense ideas also come to mind. For instance, perhaps a reduction in the
number of accidents could be achieved through improved scheduling of tasks. One could try
matching drivers who are statistically safest to vehicles and tasks that are statistically most
dangerous. Certain tasks could be scheduled so as to enable drivers to avoid rush hours, etc.
Naturally, any such precautions will be limited by numerous practical constraints. It would be
wise to first estimate their expected benefits if a well-informed management decision is to be
taken.

Additionally, we recommend examining the temporal homogeneity of the data. The rate of
accidents may wellvary over time. For instance, drivers might be more vigilant followinga serious
crash, then after a certain period grow complacent, and hence be more likely to be involved in
an accident. Similarly, weather and road conditions change fairly frequently. However, in order
to test such variations more detailed data is required than that so far made available to us.



Different tests require different form and structure of data. For example, there are only
a small number of vehicle types, and it is straightforward to test for significant variations in
accident rates among the different types. On the other hand, the age of the drivers varies
continuously. We may either divide them into discrete age groups, or instead choose to use a
non-parametric technique to analyse the accident rate as a function of driver age.

The following sections contain the technical details of the study. We first carry out tests
suited to the type of data that we have been provided with, namely the number of accidents
within a fixed distance driven. However,we stress that increasing the levelof detail in gathering
data increases the range of techniques available for use in analysis. We outline some of these
techniques at the end.

2 Probability model
Our first task is to determine whether the mean accident rate for CLP drivers differs significantly
from the mean rate for Hong Kong overall. We remarked in the introduction that the accident
rate can be defined in more than one way. It can mean the number of collisions within a fixed
distance driven, the number of collisions during a fixed length time period, or the number of
collisions in a fixed number of trips. Here we consider the number of collisionsper fixed distance
driven.

Since there is far more data on road accidents available for Hong Kong overall than for
CLP drivers, we feel that the followingapproach will be most appropriate. We adopt the same
probability model for both sets of data, involving some unknown parameter whose value is
not necessarily the same in both. We then estimate the value of the parameter for the Hong
Kong model, and test whether the corresponding value for the CLP model equals our estimate.
Intuitively, the amount of data for the Hong Kong public at large is so much larger than the
corresponding amount for CLP, that if we were to perform some kind of two-sample test, the
information concerning CLP would get 'lost' among the information pertaining to all of Hong
Kong. This approach might also be considered in comparing the accident rate for a particular
type of vehicle in the CLP fleet with the rate for the rest of the fleet.

We start by obtaining a reliable estimate of the accident rate J.Lo per specified fixed distance
driven for Hong Kong overall. Subsequently, we shall carry out a hypothesis test for the CLP
data. This data is assumed to come from the same distribution, possibly with a different
parameter J.L. Thus we test the null hypothesis Ho : J.L = J.Lo against the alternative HI : J.L =I J.Lo
(two-sided test) or HI : J.L > J.Lo (one-sided test).

Let us start by making a general preliminary comment about goodness of fit. The Poisson
distribution has often been used to model the frequency of occurrence of events such as accidents
in fixed intervals of time or distance. Previous studies [7, 6, 4] of sequences of industrial and
road accidents have demonstrated it is usually a good fit at least to a rough approximation.
Nevertheless, we should test to see the validity' of the Poisson assumption for our data. If
significant discrepancies from a Poisson model were found either for CLP or for Hong Kong, it
would be necessary to look for another model. Possible reasons why the Poisson model might
occasionally be unsuitable would be variations of accident rate over time or strong correlations
among drivers.

The usual approach is to draw a probability plot. The general technique works as follows.
Suppose we have a random sample Xl,'" ,Xn, assumed to come from a distribution F. Let
X(1{' ... , X(n) be the corresponding order statistics. We plot ordered data values X(i) against
F- (i/ (n+1)). If the assumed model is correct, then the plot should be an approximate straight
line. There are also ways to test the homogeneity of data using the likelihood ratio statistic.
This is all based on standard theory, which can be found for instance in [5]and in many other



3 Parametric tests involving the Poisson distribution

We can model the number of accidents in a given fixed distance interval, say, 1000 kilometres,
by a random variable X which has a Poisson distribution with mean p. If Z is the number of
accidents in n days, or in 1000n kilometres, then Z has a Poisson distribution with mean np,
provided that accidents in any two disjoint intervals are independent. Now suppose we have a
random variable

where pz is the expected value of Z, that is pz = E[Z].
In our case Po will be the expected number of accidents per 1000 kilometres for the Hong

Kong public. The test assumes that we have a reliable estimate of that expectation, which, as
remarked above, is a separate problem. However,one that is not too difficult to deal with, since
the amount of data for Hong Kong is large enough to enable us to find a fairly precise confidence
interval for the parameter in question.

Generally, in a one-parameter model with log-likelihood 1(0), and observations Xl, ... , Xn
(these are realizations ofthe random variables Xl, ... ,Xn), the observed information is

J(O) = _a;~~).

Let 0 be the value that maximises £(0), that is the maximum likelihood estimate. We have for
o near 0,

1(0) ~ l(O) ~ ~(O - 0)2 J(O).

When the number of observations n is large, then 0 is approximately normal. To be precise,
under certain regularity conditions we have



where the convergence is understood in distribution. Thus an asymptotic approximate (1- a)%
A A -1/2 A A -1/2confidence interval is ()± cp-1(1 - aj2)I((}) or ()± CP-1(1 - aj2)J((}) , where cp is the

distribution of a standard normal N(O, 1) random variable (with zero mean and unit variance).
When Xl, . .. ,Xn are independent Poisson with mean (),then the maximum likelihood estimator
is the sample mean:

A 1 ~
()= x = - LJ Xi·n .

l

The observed information and Fisher's information are J((}) = nxj(}2, and I((}) = nj(}. Thus it
is straightforward to calculate the maximum likelihood estimator for Hong Kong data, and then
use it to test the CLP data as described below.

3.1 Uniformly most powerful test

We start by stating the Neyman-Pearson Lemma [5],see also standard statistics textbooks.

Lemma 3.1. Let X = Xl,'" , Xn be a random sample from a distribution with parameter (),
where () E e = {(}0,(}1}, and let L(x,(}) be the likelihood function. If there exists a test at
significance level a such that, for some positive constant k,

1. L(x,(}o)jL(x,(}d ~ k, for each x E C1 (that is, for all x in the critical region),

2. L(x, (}o)jL(x, (}1) > k, for each x E Co (that is, for all x outside the critical region),

then this test is most powerful at significance level Q for testing the null hypothesis Ho : () = (}o

against the alternative hypothesis HI : () = (}1'

The Neyman-Pearson Lemma deals with simple Ho versus simple HI' However, we can try
to find a uniformly most powerful test of size a (that is, a test that is most powerful for each
simple alternative hypothesis in Hd. Let J.L1be an arbitrary point in (J.Lo,oo) and consider
testing Ho : J.Lz = nJ.Loversus HI : J.Lz = nJ.L1. The likelihood ratio is

f ( ) -nJ.ll II Xi j ., ( ) L:i Xi1 x, J.L1 = e i J.L1 Xl' = e-n(J.ll-J.lO) J.L1 .
fo(x, J.Lo) e-nJ.lo IIiJ.LOXijXi! J.Lo

If J.L1> J.Lo,then this is monotonic increasing in x = ~L:i Xi for any fixed J.L1and J.Lo,and so the
likelihood ratio critical region whereby Ho is rejected in favour of HI if h (x, J.LI)j fo(x, J.Lo)> ket,

say, is equivalent to the region that rejects Ho when nx > Cet for a suitable Cet. This critical
region is most powerful for any J.L1> J.Loand so is uniformly most powerful.

For an a size test we require

PrJ.lO(nx> cet) = a.

Now by the above, Z is Poisson with mean nJ.Lounder Ho, and so we want

1 - t;:'nJ.lO(cet) = a = 0.05,

say, where t;:'J.I(k)= L:~=oJ.Lxe-J.ljx!. The probability of type II error when J.Lz = nJ.L1 is

(3 = PrnJ.ll (nx ~ cet) = t;:'nJ.ll(cet),

and the power of the test is equal to 1 - (3. Note that the power depends on the actual mean
J.Lz·

When n is large, then by the Central Limit Theorem, under the null hypothesis Z is
approximately normally distributed, Z '" N(nJ.Lo, nJ.Lo), So we could compare the statistic
(nJ.Lo)-1/2(L: Xi - nJ.Lo) against statistical tables for a standard normal N(O, 1).



3.2 Two-sample approximate t-test
It is possible to carry out a two-sample test, which does not entail first estimating the mean for
Hong Kong. However, for reasons given above, this might turn out not to be very informative.
We divide the distance driven by CLP drivers into n fixed length intervals, and Xi will be the
number of accidents in the i-th intervaL We divide the period or distance in miles driven by
all Hong Kong drivers into m fixed length intervals, and Yi will be the number of accidents in
the i-th intervaL We assume that Xi and Yi are all independent Poisson with mean /-Lx and /-Ly
respectively. We wish to test the hypothesis Ho : /-Lx = /-Ly against HI : /-Lx "# /-Ly. We can do
this using the asymptotic approximate normality of 2:i Xi and 2:i Yi.

Let X = ~2:~=1Xi and let Y = ~2:~=1Yi be the sample means for the Xi and Yi. Let
Sxx = 2:i(Xi - X)2 and Syy = 2:i(Yi - y)2 be the sample variances. When n and m are
large, then the statistic

X-y
. / sxx+Syy (1+ l)V n+m-2 n m

has an approximate t-distribution with n +m - 2 degrees of freedom. Thus we can calculate its
value for our data and compare against t-distribution tables.

The theory presented here is based on the approach in [5], but can also be found in numerous
statistics textbooks. Suppose we want to test in a situation where the adopted probability model
involves several unknown parameters (in this case, the mean number of accidents per, say, 1000
kilometres for Hong Kong, and the corresponding mean number for CLP Power). Let 6 be the
parameter space and let 60,61 be subsets of 6. We want to test the null hypothesis 0 E 60
against the alternative 0 E 61, We use the likelihood ratio, >.(x) defined as

>.(x) _ sup {L(x, 0) : 0 E 60}
- sup {L(x, 0) : 0 E 61}'

Here the numerator and denominator represent the likelihood of seeing what we have seen under
the null and alternative hypotheses respectively. In particular, if 61 = 6, then for a realization
x, we determine its best chance of occurrence under Ho and its best chance overalL The ratio can
never exceed unity, but, if small, would constitute evidence for rejection of the null hypothesis.

Since the function -2 log>.(x) is decreasing in >.(x), it follows that the critical region of the
likelihood ratio test can also be expressed in the form

01 = {x: -2 log>.(x) ~ c}.

The statistic A(x) = -2 log>.(x) is called the likelihood ratio statistic. There is a general asymp-
totic result for the likelihood ratio statistic, namely that under certain regularity conditions A
converges in distribution to a random variable X~, where p = dim 6 - dim 60. This follows, as
one might expect, from the Central Limit Theorem. We omit the proof details, as they are quite
involved and technical in nature.

For our data, we can use the likelihood ratio. test in a number of ways. First, just as before
we could test Ho : /-L= /-Lo against HI : /-L "# /-Lo. This form of test relies once again on having a
good estimate of the mean number of accidents per fixed length interval for Hong Kong. Here,
the dimensions of 60 and 6 are zero and unity respectively, so that p = 1. Also, it is not difficult
to check that



Alternatively, we could proceed as follows. Let XI, ... , Xn represent the data corresponding
to CLP Power, that is Xi is the number of accidents in a fixed interval involving company
drivers. We assume that Xl, ... ,Xn are independent Poisson each with mean J..tx > O. Let
YI,··. ,Ym be the data corresponding to Hong Kong, that is 1i is the number of accidents in a
fixed interval (of the same length as before) for Hong Kong overall. We assume that YI, • .. ,Ym
are independent Poisson each with mean J..ty > O. We can take

(
1 + fiY;. ) Ei Xi (1 + ~iXi ) Ei Y;

>'(X Y) = i X. i 1";
, l+m 1+1!.

n m

Additionally, the likelihood ratio statistic can also be used in testing for variations in rate
of accidents over time and space. Thus it can settle the issue of the homogeneity of the data
mentioned in section 2.

The range of statistical methods available to us is greater if data is collected with more detail
and care. For instance, it would be useful to record the date and time of each accident. Then the
basic data consists of a sequence of intervals of varying length. Analysis may therefore be applied
to the time intervals (or distance intervals) between accidents as well as to the frequencies of
accidents occurring in successive fixed intervals. If we can assume that accidents are taking place
at random in time and at a constant average rate, we shall obtain the same estimate of this rate
either from the average number of accidents occurring in successive fixed intervals or from the
average length of the varying interval between accidents. However, if we require more details,
such as in testing changes in time, then methods of analysis based on accurate interval data will
be more powerful than those often employed using only the accident frequencies in relatively
long fixed intervals. We now present various methods available for use in analysis. Methods of
this kind were used in [6]and [4] to analyse the records of time intervals between explosions in
coal mines during the period from 15 March 1851 to 22 March 1962. The reader is referred to
these two papers for more details.

First of all we can test for goodness of fit by drawing a probability plot, as described earlier, or
drawing a histogram and fitting an exponential curve. If the fit appears good, we can proceed
to carry out an analysis which relies on the properties of the exponential distribution. For more
details about goodness of fit testing the reader is referred to [6,4, 2]. The last reference contains
a brief analysis of time intervals between the failure of air-conditioning equipment in aircraft.



5.2 The distribution of the sample mean of intervals

If interval lengths T1, ... , Tn are independent exponential random variables with mean A, and
T = k 2:i Ti, then 2nAT is X2 with 2n degrees of freedom. Then, with obvious notation,
[X~/2/2nl, XLQ/2/2n~ is a (l-a)% confidence interval for the unknown parameter A, and should
give an accurate estimate when n is large. We could use this to estimate the mean separation Ao
in time or space between two accidents involving Hong Kong drivers. We could then calculate the
value of that statistic for data concerning CLP drivers, and test the null hypothesis Ho : A = Ao
against the alternative HI : A =I- Ao (two-sided test), or against HI : A > Ao (one-sided test).

5.3 Ratio of two sample means

If 1'1 and 1'2 are sample means for independent samples of nl and n2 intervals, then AI1'I/A2T2
will have an Fn1,n2 distribution. Thus to test whether Al = A2, we may refer lI/l2 to the tables
of the F distribution. In this way we could test for significant differences between the accident
risk for CLP drivers and Hong Kong drivers, assuming that intervals between accidents are
independent exponential random variables.

5.4 Extreme observations in samples from an exponential distribution

The application of the above tests depends on the assumption of homogeneity. Tests for homo-
geneity may be based on the distribution of extreme intervals. Let T(n) and T(I) be the longest
and shortest among n independent intervals. We could carry out tests using statistics T(n),

T(n)/nT, T(n)/T(1), T(n) - T(I)' Something else that we can do is break the whole sequence of
intervals into k groups of m successive intervals and test for a significant difference between the
k means, each of which is an estimate of A. In this way, we could detect variations in the process
over time, for instance a decrease in accident rate.

One may wonder what to do if we happen to have some unusually long or short intervals:
are these simply outliers resulting from random fluctuations or do they constitute significant
evidence against the probability model adopted? In such cases, whether the exponential distri-
bution should still be the basis of future application depends on the purpose. If occurrences of
very short or very long intervals are of concern, then it would be unwise to use it. However,
if the main interest lies in the mean, the standard deviation or simply in rough extrapolation,
then the exponential model would still be sensible.

In parametric hypothesis testing the distribution under the null hypothesis is either completely
specified or is given except for a finite number of unknown parameters. Consider a situation
in which the null hypothesis involves explicitly or implicitly, arbitrary and usually unknown
densities. The words distribution-free and nonparametric are used broadly for the resulting
techniques.

One simple nonparametric test is the so-called median test. Suppose we have a sample XI, ... , Xn
from an unknown distribution F. Let X(I)"" , X(n) be the corresponding order statistics. Let
XM denote the median of F, that is XM = F-1(1/2). Then for 0 ~ r < s ~ n, we have



If the above expression takes value 1 - 0: for a suitable 0:, then (X(r),X(s)) is a (1 - 0:)%

confidence interval for XM. Given a realisation X(l)' ... ,x(n) of the order statistics, we obtain
such a confidence interval (X(r), X(s)), and then for any value x within that interval we cannot
reject the null hypothesis that the median equals x at the (1 - 0:)% significance. Now for
many common probability distributions (generally, ones that are highly concentrated around
the mean), the mean and median are very close, and so we can also make statements about the
mean of such a distribution on the basis of the median test.

We refer the reader to [1] for a description of some other nonparametric tests. In general,
these are rather more involved than parametric tests, and their use involves a certain loss of
efficiencyand power. On the whole, provided data are screened for outliers, results of nonpara-
metric tests are not very different from those of analogous parametric tests. Also, their main
emphasis lies on avoiding assumptions about the distribution; in many applications, however,
the most critical assumptions are those of independence.

function g(a) = E(XIA = a). model and make use of the Maximum Likelihood Estimate
technique as explained above. is to use non-parametric methods.

In this section we briefly discuss a related report, namely [3]. The main purpose of that project
was to conduct a detailed statistical investigation into the effects of safety cameras on the reduc-
tion of accident numbers. Other goals were a comparison of the road safety for Cambridgeshire
and the whole of Britain, and also a detailed analysis of the effects of factors like speed and
seasonality on the distribution and severity of accidents.

Cambridgeshire appears to have a poor accident record if we consider the number of injury
accidents per heads of population. However, in [3] that comparison was shown to be unfair. In
fact, the level of traffic in Cambridgeshire is higher than the national average, and the analysis
showed that the overall safety record for Cambridgeshire is just as good as the safety record
for all of Great Britain. The main difficulty lay in lack of reliable data on the number of miles
travelled in Cambridgeshire per year; the data available pertained only to the annual increase
in traffic.

The analysis of accident causes used contingency tables, probability plots and generalised
linear models. Clear relationships emerged between factors like speed, weather and seasonality
and the severity of injuries suffered in accidents.

The effects of safety cameras are extremely hard to measure. For instance, it is not feasible
to fit a sensible model at a single site where the average number of accidents is less than one a
month due to too much random fluctuations in the data. This excludes application of techniques
such as time series. However, a new method developed in [3]managed to demonstrate that safety
cameras have indeed had a positive effect on road safety.

The thesis also considers different ways of modelling accident data, such as time series,
moving averages procedures and exponential smoothing techniques. Such models can then be
used to predict future observations (such as the number of accidents per month) as an estimate
of the current level of the series which is a weighted average of past observations up to the
current point in time.
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