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1 Background

CLP Power Hong Kong Ltd. has two different tariff periods, an off-peak period (21:00 to 09:00 and
all day Sundays and Public Holidays) and a peak period (all other hours). The reason is that it costs
CLP Power more to supply power when there is a greater demand for it (at peak time), so the higher
tariff rate during the peak period of the day is meant to reflect that. A similar principle applies over the
whole year. In Hong Kong, throughout summertime when it’s hot and humid, demand is consistently
higher than during other seasons due to extra air conditioning load. Obviously, in the extreme, perhaps
the fairest way for CLP Power to charge their customers is, throughout the year, to have fixed seasonal,
daily or hourly rates or even for example a continuous stream of rates published in advance say every
half an hour, which fluctuate in proportion to changes in demand both daily and seasonally. Regarding
the latter regime, for all except the most technically advanced customers, such pricing structures would
be not be acceptable because customers would not be able to predict their monthly electricity bills with
any certainty. Thus CLP Power sets its tariffs annually and tells its customers the tariff and peak and off
peak periods before the year begins. The objective, therefore, is to set daily peak and off-peak periods
accurately in advance so as to minimise the possibility, on the day, of customers being charged the peak
rate when in actuality the load on the system is low and vice versa. This is not a profit maximisation
problem. In a sense, it is a fairness optimization problem - setting tariffs that most accurately reflect
the true real-time cost of supplying the power. We will assume overall, that customers will not change
their total energy consumption habits if tariff periods are changed. In other words, we assume that the
customers’ response to changes in tariff rates is inelastic.

We separated the problem into two simpler problems. The first problem is to choose the seasonal
tariff periods, and the second problem is to choose the daily tariff periods. During the study group, we
mainly considered the first problem, which is simpler because there are just two seasonal tariff periods,
peak and off-peak. In the second problem, we can have a maximum of four daily tariff periods.

2 Seasonal tariff period determination

Figure 1 shows an illustrative annual demand profile supplied by CLP Power Hong Kong Ltd. The year
is made up of 365 data points, one for each day, but for many purposes it is convenient to treat the time
of year as a continuous variable ¢ in the range 0 < ¢ < 1.

The sample data in Figure 1 show substantial day-to-day fluctuations (shown in blue) around a
smooth mean f(t), shown in red. The value of f on day 365¢ is given by the average maximum de-
mand on that day of all years prior, although computing this average is complicated by day-of-the-week
variations, and also by festivities whose dates vary from year to year. In reality, the daily demand Y (),
shown in blue, arises from sampling a continuous-in-time stochastic process at daily intervals.

TParticipants: K.W. Chung, Paul Dellar, Alistair Fitt, Daniel Ho, Huaxiong Huang, John Ockendon, Shige Peng, Ashley B.
Pitcher, Jonathan Wylie

*We would like to acknowledge the helpful comments from Dr. David Allwright at Oxford and from Ken Campbell at CLP
Hong Kong Ltd.

31



Annual Demand Profile

Demand

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Figure 1: Illustrative annual demand profile supplied by CLP Power Hong Kong Ltd.

2.1 A simple model

We modelled the daily demand Y (¢) using uncorrelated day-to-day fluctuations around a prescribed
seasonal average f(t),

Y(t) = f(t) + X(2), @1

where for each day 356¢, X (¢) is an independently distributed normal random variable with zero mean
and prescribed variance o2 (t),
X(t) ~ N(0,0°(t)). (2.2)

The variance ¢2(t) would also be calculated using data from previous years. It is a function of time
because certain times of the year may be more volatile in terms of expected maximum daily demand.
For example, the fact that the summer is more prone to extreme weather conditions, may make demand
more volatile during that time of year. The actual demand on day 365t is thus distributed as

Y () ~ N(£(t), 02(1)). 2.3)
To reiterate, this makes sense when X (¢) and Y (¢) are each 365 random variables labelled by a discrete
index t = n/365 forn = 1,2,...,365. Treating ¢ as a continuous variable below enables a convenient

approximation of sums over the 365 discrete points by integrals over a continous interval 0 < ¢ <
1.

Next, we assume that the peak period goes from time ¢ = a to time ¢t = b, where 0 < a < b < 1.
The variables a and b are our control variables. The peak season in Hong Kong is the summer, so we
should find that the interval a < t < b corresponds to the middle half of the calendar year.

In order to determine the two tariff periods, we need to set target demand levels for the peak and
off-peak periods, denoted by m,, and m,, respectively. To minimize mismatch, i.e., lower demand (less
than m,,) in the peak period or higher demand (more than m,) in the off-peak periods, a natural choice
is to set m,, as low as possible and m, as high as possible. It is easy to see that without additional
constraints, a possible solution which minimizes the mismatch is to set m,, equal to the lowest demand
and declare the entire year as peak season, or vice verse, assign the highest demand to m, and declare
the entire year as off-peak period. Even though no mismatch occurs in either scenario, they are obviously
not “sensible” solutions. Recall that the objective for setting the tariff periods is to reflect the fact that
the cost of providing services is higher when the demand is also higher. To incorporate this additional
“information”, we assume that the levels m,, and m, are set a priori at some “reasonable” values and our
task at hand is to pick a and b so that the mismatch is minimized. In Appendix B, we describe another
approach where m,, and m,, are determined as a part of the minimization problem, by minimizing the
averaged mismatch, instead of the rotal mismatch.
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Let u(a,b) denote the total (sum of the areas of) mismatch expected in each peak or off-peak pe-
riod,

u(a,b) = E[/Oa—{—/bl (Y(t) - mo)+dt} + E[/b (mp — Y (1)) "dt|. (2.4)
a
The superscripts + in (2.4) indicate the maximum of the bracketed quantity and zero. For example,
(Y(t) - mo)+ = max (Y () — m,,0). (2.5)
We thus want to minimise u(a, b) over all possible values of a and b, finding

min u(a, b). (2.6)
{a.b}

The probability density function of our normally distributed random variable Y (¢) with mean f(t)
and variance o2(t) is

1 (y— f(t))?) ;
= =2 e ) 2.7
ST ( 202(t) =
Next, we want to find the expected values for (2.4). First, we have
o+ [ 1 B (- @)
E(Y(t)—m,) = /mo Um(y M) €Xp ( ——20(t)2 dy. (2.8)

This integral may be evaluated as

o m, — 2
B (1) -mo)* = e (_<_f@>

27 20(t)?
_ l(m — f(t))exfe (mo_—f(t)) =
2\ \Vaot) )
in terms of the complementary error function
erfc(z) = % /:O et dt. (2.10)
Similarly,
+ o (y = f(1)?
E(m,—-Y(t)" = /30 . 27r(mp — y) exp (—W> dy,
_a® _(mp— f()?

-+ % (myp — f(2))erfe <_%

We thus obtain

)
Mot} = /0 { (\;(%QXP <_%ﬁ> - % (mo — £(t)) erfe (m&_%?l) } gt
o {28 (52 - L sy

)
. /b { 0(21‘3 exp (—W) + % (mp — f(t)) erfc <—m”2;a(’;(;—)> } dt.

In practice, these integrals over continuous time ¢ could also be replaced by sums over 365 days using
discrete daily values for o(¢) and f(t).
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2.2 Numerical examples

In order to illustrate our approach, we now present several numerical examples. We choose the function
f(t) to be
f(t) = — cos(27t) + 4. (2.13)

For o(t), we use three different values: o =0, 1, and 2.

Example 1: ¢ = 0. In this case, there is no random fluctuation and we can solve the problem
explicitly. It is easy to see that when m, = m, = m, a and b are the two roots of f(¢) = m, in which
case u(a,b) = 0, i.e., no mismatching occurs. For example, if m = 4, thena = 1/4 and b = 3/4, and
if m = 4.5, we have a = 1/3 and 2/3. On the other hand, if m, > m,, mismatch cannot be eliminated
and in this case. Let t,; < t,2 be the two solutions of f(t) = m, andt,; < ¢, are the two solutions of
f(t) = my. Since to1 < tp1 and tp2 < to 2, it is easy to see that the solution exists and £, 1 < a < £,
and tpo < b < t,2. For example, for m, = 3.5 and m, = 4.5, we have t,; = 1/6, t,; = 1/3,
tp2 =2/3 and t, 2 = 5/6 and the solutionisa = 1/4 and b = 3/4.

Having established the existence of a solution (and its dependence on the choice of m, and m,,
for the deterministic case), we can now examine the effect of the randomness on the choice of tariff
periods.

Example 2: o =1, 2. In this case the random fluctuation is normally distributed with a constant
volatility 1 and 2. Again, the solution depends on the values of m, and m,. When m, = m, = m, we
find that the solutions (a and b) are the same as that of the deterministic case. However, the minimized
expected mismatch is no longer zero. For example, for m, = m, = 4.5, we havea = 1/3 and b = 2/3
and u(a, b) = 0.173. Changing the volatility from 1 to 2 does not change the value of a and b but u(a, b)
is now changed 0.511. When m,, < my, e.g., m, = 4and m; = 4.5, we obtaina = 0.290 and b = 0.710
for both o =1 and 2 while u(a, b) = 0.265 for o = 1 and u(a, b) = 0.636 for o = 2.

The insensitivity to random fluctuation of the solution (a and b) could be due to two possibilities: the
symmetrical nature of the demand curve or constant volatility. We have, therefore, also tried a function
for the variance that changes over time, namely, o = exp(—25(¢ — 0.5)?) +0.2. However, our numerical
tests show that the solution is almost identical to that of a constant volatility.

2.3 Implementation in practice

Since we do not have data from CLP Hong Kong Ltd., the numerical examples used in this report are
for illustration purposes. However, the setup and methodology are applicable to CLP’s problem. In
order to use our approach, CLP needs to determine the function f(t¢). This function represents the
mean maximum daily load of all prior years on day 365¢. The resulting function will actually be a
discrete function, but it will have to be interpolated to form a smooth function of £, 0 < ¢ < 1.5 In our
example, we used f(t) = — cos(2nt) + 4, because did not have access to enough data with which we
could calculate a better estimate for f(¢). However, this function does have the property that the mean
maximum daily load is higher in the summer months, which is why we chose it for our examples. In a
similar way, CLP must find the standard deviation function (), which represents the standard deviation
of the maximum daily load of all prior years on day 365¢. Again, this function will need to be interpolated
to form a smooth function, just like for f ().

§0ne could keep f(t) as a discrete function, but then the integrals in the expected value calculation would have to be
converted to sums, and our numerical procedure would need to be modified slightly.
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3 A general setup for seasonal and daily tariff periods

In principle, we can generalise the approach in the previous section to determine both seasonal and daily
tariff periods. We assume that the loading is given by

Y = f{t)+ X (3.1)
where X; is a random variable that satisfies the following stochastic differential equation
dX; = a(Xy, t)dt + B( Xy, t)dB;. (3.2)

Here dB; is a Brownian motion, i.e., dB; ~ N(0,dt). It follows that p(z, t), the probability density
function of X, satisfies the Kolmogorov forward equation, cf. [1]

pe+ (ap)e — =(B°p)az =0 (3.3)

1
2
which can be solved with an appropriate initial condition. The corresponding probability is P(z.t) =

J* . p(z, t)dz. Changing variable from X; to ¥; = X; + f(t), we have P(y.t) = foyo_f p(z,t)dz =
[?. p(z + f,t)dz. Therefore, the probability density function for Y is given by p(z + f,t).

3.1 Seasonal tariff period determination

In this case, the expectation (2.4) to be optimised becomes

u(a,b) = [/0 /mof(t) (z+ f(t) — mo)p(x.t)dxdt_
+ [ /b 1 /m Ojfm (z+ f(t) — mo) p(r.t)d.rdt_ (3.4)

+ [/ﬂb /TZ#(” (m—ax— f(t))p(z, t)dxdt— :

3.2 Daily tariff period determination

If we only focus on a one day period, then we can apply the same approach for seasonal tariff period
determination where there are two periods during the day. Over a longer period of time, one may still
apply the same approach but allow for non-periodicity in the mean f(t), i.e., the expectation to be
minimised is u(a, b) = Zk\:l v(a, b, k) where

v(a, b, k) = {/ / (z+ f(t+ k) —mo)p(x, t + k)d.r.dtJ
0 Jme—f(t+k)
1 o0
- [/ / (z+ f(t+k) —mo)p(z.t + k)d.rdt] (3.5)
b mo— f(t+k)

b pmp—f(t+k)
+[/n /x ) (mp—1’_f(f+k))p(:v.t+k)d;udf].

In this case, the unit of time is a day (instead of a year) and N is the number of days relevant to the
optimisation process. If we assume that f(¢) is periodic on a yearly basis then N = 365. Note we have
used the same notation for f and p when different time units are used, for simplicity.
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4 Summary and recommendations

We considered the seasonal tariff period problem by optimising a functional u(a, b) where a and b are
controls which determine the peak and off-peak time intervals. The minimal « can be found numerically
by combining inspection and using the first order (necessary) conditions. This could probably be done
analytically, however, it involves solving a system of integral equations because the control variables
appear in the limits of integration.

For the daily tariff period problem, we can apply the same approach for the seasonal tariff period
problem when there are two tariff periods. For problems that are allowed more than two tariff periods,
more work is needed.

To apply our approach, some followup studies are needed to be performed. First of all, data anal-
ysis has to be carried out to estimate the mean loading curve f(¢) as well as the volatility o(t), if the
distribution of the random fluctuation turns out to be normal. We have also provided a framework for
a more general stochastic demand process but the parameter values have to be estimated using existing
data. Secondly, CLP also needs to decide which setup (minimize total or time averaged mismatch) is
more suitable for their needs.

Using simple examples, we have shown in section 2 that by setting the target demand levels a priori
and minimizing the total mismatch, we can find tariff periods which minimize the mismatch and the
solution is quite insensitive to the random fluctuations in the daily demand. We have tried o = 0, 1,2
and o(t) as a given function of time, and the solution depends mainly on the choice of the target demand
levels. In our second approach (minimizing the time averaged mismatch), which does not set the target
demand levels a priori, the situation is different. When the target demand level for the peak tariff period
is set to be the average of demands at the beginning and the end of the peak period, the volatility of the
daily demand has a visible effect on the solution, cf. Appendix B. When o(t) = 1, i.e., the volatility
of the maximum daily load for any given day of the year is the same. It turned out that the answer is
a = 0.25 and b = 0.75.When we considered a function o(¢) which changed over the course of the
year with higher volatility over the summer months, we obtained an optimal solution of @ = 0.150 and
b = 0.850. This essentially says that a higher standard deviation in the summer months means that we
need to enlarge the peak tariff period.
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A Probability density function for a mean-reverting Ornstein-Uhlenbeck
process

We wish to relate the general model in Section 3 to the simple model constructed in Section 2.

For electricity load data provided by CLP, we postulate that the stochastic process follows

dX; = —Xqds + n(s)dBs, (A.1)
which is a special case of the general model with « = —X and 8 = 7). The equation for the probability
density function is

2
pe— (¥p)z — %pm =0. (A2)
We seek its solution in the form
L
p= e 202(1) (A.3)
o(t)V2m

/ 2 2
gl =g | S =1} =p, (A4)
o 20 o2

which leads to

/ 2 %
241y, (A.5)
o 20
or
72 = 20° 4 (2) (A.6)
from which o can be solved as
1
« (¥ t 0 Z
o= (056‘”’ — / e_z(t_s)ngds) (A.7)
0

where oy = o(0). In this case X; has a normal distribution with zero mean and variance o, correspond-

ing to the simple case considered in Section 2. Note that if 7) is a constant, we obtain

2
g = [08€2t = % (1- e'gt)} (A.8)

which is stationary only when o = 1/v/2.

B An alternative setup for the seasonal tariff problem

We assume that periods of high demand in the two off-peak seasons 0 < ¢t < aand b < ¢t < 1 occur
when Y (t) > f(a) and Y (¢) > f(b) respectively. Since we may not have f(a) = f(b), we further
assume that a period of low demand in the peak season a < ¢ < b occurs when Y (¢) < m with

fla) + f(b)

37



I _oad

(b)
Sfla)i é

OFF—PEAK § PEAK ' OFF—PEAK
0 a b 7

Figure 2: The division of the year into peak and off-peak seasons, illustrating the regions of unseasonably
high or low demand that we wish to minimise.

However, this may or may not be the best possible choice. Figure 2 shows the peak and off-peak intervals,
and the regions of unseasonably high or low demand. We wish to minimise the expected area in the
regions shaded red. These regions are regions of mismatch, where maximum demand for that day is high
but the off-peak tariff is charged or where the maximum demand for that day is low but the peak tariff is
charged.

Let u(a, b) denote the sum of the areas of mismatch expected in each peak or off-peak period, in

proportion to the duration of the period,

u(a,b) =

E[/O (@ilep— f(a))+dt]
+1LE[/: (Y(t) - f(b))+dt] (B.2)

fpeeiE Ub (m — Y(t))+dt] :

The superscripts + in (B.2) indicate the maximum of the bracketed quantity and zero. For exam-
ple,
+
(Y(t) = f(0))" = max (Y(t) - £(b),0). (B.3)
The scaling by the length of the periods suppresses “trivial” solutions in which the mismatch during peak
periods is minimised, for example, by having an off-peak period of zero duration.

We thus want to minimise u(a, b) over all possible values of a and b, finding

min u(a, b). (B.4
min u(a. ) )

The probability density function of our normally distributed random variable Y~ with mean f(¢) and
variance o (t) is

, 1 [ (t))2>
= — e B.5
b= sover P ( 202(1) o
Next, we want to find the expected values for (2.4). First, we have
B + _[® 1 - _(y—f(t))2>
B ()~ 1(@)" = [ * —= (= fanesn (-LLQE ) ay ®.6)
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This integral may be evaluated as

. + ) ex
E(Y(t)—f(a)) - \/ﬁ P

(B.7)
1 f(a) = f(2)
- 3 (#(a) = Fyeste (LO=T10)
in terms of the complementary error function
erfe(x) = % /100 e~ dt. (B.8)
Similarly, ,
b =12,
Em-Y(t) = [N . 27r( — y)exp < 20 (1) > dy,
_a(®) _(m—f@)°
- T (-Tre) Y
1 — f(®)
3 (m — f(t))erfc (— 50 (1) )

We thus obtain

u(a,b) = é/oa{f/g_;exp (-W)_%ma) (t))erfc< (\)f ()())}dt
+1ibll{%exp<—%)—émb> (t))erfc< (\)[ f”)}dt

+bia/ab{3<2t_jrexp (—(””;Tf)(ﬁ”z)%(m—f“”“&( f!Z(>)>}C“ o

In the real application these integrals over continuous time ¢ could be replaced by sums over 365 days,
using discrete daily values for o(¢) and f().

The solution can be obtained by evaluating the objective function u(a, b) using Maple and applying
the necessary conditions du/da = du/0b = 0. Since the necessary conditions gives all extrema, in-
spection or second order derivative test is also needed to find the global minimum. Our numerical tests
show that the solution of @ and b is affected by the choice of volatility. For example, we have a = 0.25
and b = 0.75 for 0 = 1. Again, this corresponds well with CLP’s current seasonal tariff periods. In the
second case, we set 0 = exp(—25(t — 0.5)?) + 0.2, where o(t) is higher in the summer and lower in the
winter, we find that the optimal solution requires an increase in the length of the peak season, given by
a = 0.150 and b = 0.850. These numbers make sense because in this case, our choice of the function
o(t) says that demand for power is more volatile in the summer, so it is more likely to get large outliers.
Consequently, the peak interval needs to be widened to capture as many of these outliers as possible.
Attached below is a Maple worksheet for evaluating and plotting wu(a, b).

Maple worksheet.
>restart;

>assume (sigma (t)>0,t>0) ;

>innerintl:=int ((y-£f(a)) *exp (- (y-£(t)) "2/ (2*sigma(t)"2)),y=f(a)..infinity) ;

>innerint2:=int ((y-£f (b)) *exp (- (y-£(t)) "2/ (2*sigma(t) "2)),y=£f(b)..infinity) ;
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>funl:=(a,b)->1/(sgrt (2*Pi)) *int (1/sigma(t) *innerintl, t=0..a)/a;

>fun2:=(a,b) ->1/(sqrt (2*Pi)) *int (1/sigma(t) *int (( (£ (a) +£ (b)) /2-y) *exp (- (y-
f(t)) 2/ (2*sigma(t) "2)),y=-infinity.. (f(a)+£f(b))/2),t=a..b)/ (b-a);

>fun3:=(a,b)->1/(sqgrt (2*Pi)) *int (1/sigma (t) *innerint2,t=b..1)/(1-b) ;
>sigma:=t->exp(-(5*t-5/2)"72)+0.2;

>f:=t->-cos(2*Pi*t) +4;

>with(plots) :

>pl:=plot3d(evalf (funl(a,b)+fun2(a,b)+fun3(a,b)),a=0..1,b=a..1,axes=boxed,
axesfont=[HELVETICA,12], labelfont=[TIMES, ITALIC,16],labels=[a,b,ul):

>display (pl) ;

>best:=100;

>for a from 0.005 to 1 by 0.005 do
for b from a to 1 by 0.005 do
candidate:=evalf (funl (a,b)+fun2(a,b)+fun3 (a,b)) :
if candidate<best then

abest:=a:

bbesE:-=bi:

best:=candidate:

end if:

end do:

end do:

print (abest) ;

print (bbest) ;
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