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Metal-lined continuous fibre reinforced plastic (FRP) over-wrapped pressure vessels are used in

aerospace applications, for storage of breathing air in fire fighting and scuba diving and for the storage

of compressed gaseous fuels on natural gas and hydrogen vehicles. Continuous fibres, generally about

15 p,m in diameter and made of glass, carbon or kevlar, are embedded in a polymer matrix. The

metallic liner is made of a ductile material - generally steel or aluminum alloy

After the metallic liner has been wrapped, the composite vessel is subjected to a process termed

Autofrettage. In that process the vessel is internally pressurized to the point that the ductile metal

liner undergoes a small amount of plastic deformation (unlike elastic deformation which disappears

upon removal of stress, plastic deformation remains after the stress has been removed). Upon

depressurization of the vessel, the metallic liner remains under compression and the FRP under

tension.

Acoustic emissions associated with fiber breakage are being developed currently as a non-destuctive



means of assessing the structural integrity of metal-lined continuous FRP over-wrapped vessels.

Laboratory experiments have been carried out with flaws such as cracks and saw cuts of varying

dimensions oriented in an axial-radial plane and located in the metallic liner, in the FRP or in both.

Pressurization of the flawed vessel leads to fiber breakage, the extent of which is being examined

with the intent that it will be a measure of structural integrity of the vessel. The results, however,

suggest that the acoustic emissions attain a maximum for an intermediate flaw size. Low emissions

are recorded when on the one hand the vessel has insignificant flaws, or on the other if the vessel

has serious flaws. This non-monotonic variation of acoustic emission occurs whether the flaws are

located in the metallic liner, in the FRP or in both.

The experiments suggest that the stress intensity at the discontinuity (crack tip) attains a max-

imum at an intermediate flaw size. A mathematical corroboration is desired.

Dr. Ahktar informed us that an axial cut in the FRP resulted in the removal of the "hoop stress"

provided by the cut fibres leaving a problem in which the liner has a circular strip free of outer

stress. This strip will then bulge. At this point the problem was dubbed, "The Hernia Problem."

The problem was modelled as an infinite elastic cylinder encased in fibres except for a strip of

axial length t. It was found that the non-monotinicity could be explained by a Linear Elastic Shell

model for the liner in which the FRP provided a normal force on the part of the shell that was

wrapped because of the tension in the fibre. The fibres at the edge of the cut are stretched more

than those further away.

The acoustic energy measured is due to the breaking of the fibres at the edge of the cut and its

magnitude depends on the number of fibres breaking. This depends on the tension in the fibres and



hence on the radial displacement of the liner at the edge of the cut.

In what follows we show that this displacement is a non-monotonic function of the crack length.

We define two constants 0: = POa2
/ Eshs, which has dimensions oflength, and A = 1+Efh f / Eshs

which is dimensionless.

The liner is treated as an infinite circular cylindrical shell with the axial distance x measured

from the centre of the bare strip caused by the cut. The problem is axially symmetric and the

normal displacement w is a function of x only.

The fibres are considered as bands of elastic strings. The strain in the fibre band is w / a and

the tension is Efw/a. This produces a normal force Efhfw/a2 on the outer surface of the shell.

The equations for an elastic shell may be found in Timoshenko and VVoinowsky- Krieger, Theory of

Plates and Shells. After simple manipulation, they give the following differential equation for w.

h2 d4 W w___ 8 +_
12(1 - v2) dx4 a2

h2 d4 w AWs +_
12(1 - v2) dx4 a2

In deriving this equation, the axial stress resultant,which is constant,has been taken to be zero.

The effect of a non zero constant is to change the value of 0:. Since the equations are linear, this

will only lead to a change in the magnitude of wand will not change the nonmonotonic behaviour.



The boundary conditions for the problem are w'(O) = w"'(O) = 0, because of the symmetry; and as

x -----.00, w -----. (E, h:~a;J hJ) f, which is the normal displacement for the completely wrapped

cylinder.

The usual length scale for a circular cylinder is Jhsa and we define a length scale b for x as
1

b = (3(1 - v2)h;a2)"4 • This leads to the following problem for w with" x " now being xlb and

L = lib.



wl/I/(x) + 4w(x) = 40: , 0 < x < L,

w/II/(x) + 4.\w(x) = 40: , L < x,
0:

W -. >: as x ---+ 00,

w/(O) = w/I/(O) = 0,

This problem is easily solved analytically and the displacement w can be obtained as a function

of x (see Figure 2).

Putting x = L gives the displacement at the edge of the crack as a function of L. This is found

to be non-monotonic. Graphs of tV as a function of L are given in Figure 3 for some values of .\. It

may be noted that the value of L at which w is a maximum increases as .\ increases provided that

b ,which depends on hs and a remains constant. In the graphs, a unit on the L axis corresponds to

a crack of length 2b.

Two numerical examples were examined. The first with a steel liner had Es = 203, 000 MPa,

Ef = 43,700 MPa, hs = 6.3 mm, hf = 7.8 mm, a = 163.5 mm, and v = 0.28. This gives .\ = 1.2665

and b = 41.4 mm. The maximum displacement w occurs at L = 1.2076 or for a crack of length

2bL = 100 mm. This is in reasonable agreement with Dr Akhtar's experimental result of about 3 in

or 76.2 mm.

The second example with an aluminum alloy liner had Es = 71,708 MPa, Ef = 43,700 MPa,

hs = 13.8 mm, hf = 6.3 mm, a = 1.52 mm, v = 0.3. This gives .\ = 1.2782 and b = 58.87 mm. In

this case the maximum of w occurs when L = 1.2087 or a crack of length 2bL = 142 mm. This time



there is very good agreement with the experimental value of about 5.5 in or 139.7 mm.

From the Figure 3, it is seen that the value of L at which the maximum displacement occurs

changes very little as A changes and that a value of about L = 1.2 seems appropriate for a wide range

of values for A. The actual length of the crack for maximum displacement is then approximately

2.4b and is governed almost entirely by the thickness and diameter of the liner.



4 Appendix

We give here the solution of the differential equations and boudary conditions in a form which is

convenient for the matching at x = I.

A cosh x cos x + B sinh x sin x + 0:, 0 < x < L

e-{3 (x-L)(a cos(3(x - L) + bsin(3(x - L)) + I' L < x,

This solution satisfies the boundary conditions at x = 0, and as x ---+ 00. To make the solution

C3 at x = I, we must solve the equations
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where C = cosh L, 5 = sinh L, c = cos L, s = sin L. This was solved using Maple to give a as a

function of L. The displacement at x = L is a + X.


