
Chapter 4

Stress intensity •In a thermoroll

This report describes the mathematical results obtained by a team of researchers working at the

1997 PIMSIPS Workshop investigating the stress buildup and temperature profiles in a thermoroll.

The problem under consideration was brought to the workshop by Dr. Roman Popil of MacMillan

Bloedel Research representing MacMillan Bloedel Ltd. The problem description provided, including

the background, questions, and data are given below in §1, §2 and Appendix A.

The outline of the report is as follows. In §3 we give some physical estimates. In §4 and §5 we

model the temperature field in the thermoroll in two different regions of the roll and we calculate

the corresponding temperature gradient. In §6 we estimate the stress induced by the temperature

gradients in order to determine the location of the maximum stress and to determine any possible

singular behavior of the stress field. Such a singular behavior could lead to the formation of cracks.

Finally, in §7 we state our conclusions.
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2 Background

During the manufacture of coated paper products, a paper-making stock consisting of water and

1% or less wood fibers is prepared by chemically or mechanically separating the fibers from wood.

A screening process removes most of the water; the remainder is removed through pressing against

felts and contact drying. The web is further densified by passing it through high pressure calender

rolls, resulting in about a two-fold decrease in caliper of the pressed and dried paper. The web may

then pass through a number of calender nips. The geometry for one such nip is shown in Fig. l.

This last stage of densification involves high temperatures and pressures that lead to high stresses

in the roll material.

A stack consists of two rolls: one has a polymeric elastomer covering, the other is a solid iron alloy

(the thermoroll). It is our task to estimate the stresses in the thermoroll under standard operating

conditions, and determine whether it is possible, under certain conditions, for cracking or roll failure

to occur.

The thermoroll consists of a hollow cylinder, rigidly attached at either end to a rotating bearing.

It is hydraulically loaded to 350kN /m, leading to a deflection at its center of l.6mm. The roll has

inner and outer radii of 560 and 750mm, respectively. It contains 45 bore holes with radii 16mm.

Oil, heated to a temperature of 253°C, flows through these boreholes at a rate of 33.7 L/s with an

energy influx of approximately 800kW. As noted by Dr. Roman Popil, the temperature on the inner

bores may be a little different from the oil temperature and is typically an unknown quantity. We

label the bore temperature as nore in the analysis below. The typical configuration is shown in

Fig. 1 and 2.

The thermoroll is made by a casting process such that the outer layer, the so-called 'chill" , having

cooled first upon contact with the walls of the mold, imparts a residual radial stress into the roll.

The thermal and elastic properties of the chill are different from that of the bulk material.

The web enters the nip at a temperature of 66°C, typically traveling at 18m/sec. Its temperature,

measured some distance from the nip, increases by approximately 26°C.

Periodically the polymer covered roll is washed, providing a source for dripping water. This may

fall onto the iron roll and subsequently evaporate or 'jump" off the hot surface (and so have little

effect on heat transfer).

A number of sources for stress build-up in this system are easily identified, for example:

• Large temperature gradients (and consequently thermal stresses) will occur in the vicinity of

the nip.
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• The iron roll manufacturing process will invariably lead to built-in stresses (estimated by the

manufacturers to have compressive radial stress components of 150 MPa).

• Another compressive stress field, transmitted through the web, due to the roll's weight and

loading.

• What will be the total stress intensity (residual, thermal, loading ...) induced during this

process?

• Are there conceivable operating conditions under which the stresses could become high enough

to cause cracking, or even worse for catastrophic failure to occur?

4 Physical Estimates

We first estimate whether the energy input from the oil boreholes and the quoted temperature differ-

ence across the roller are consistent. Specifically, we would like to estimate the surface temperature

of the roller.



As will be shown in §4, the perturbing effect of the nip on the rapidly rotating drum is small

except near the nip. Thus, we can approximate the temperature in the annular iron drum between

the oil boreholes and the outer surface as the radial function

The values for roil and rsurj are given in Appendix A, and are roil = 700mm and rsurj = 750mm,

respectively. The boundary condition T = Tbore at l' = roil determines one relation between A and

B while the other relation is found from the given total heat flux into the roller from the oil, which

was quoted in §2. We estimate

dQin~ = 27fToilKTrLroll = P on l' = rsurj .

Here P is the total heat flux and Lroll is the length of the roller. Using the data provided, and

taking K as that for iron, we estimate B = 39SoC. This indicates a temperature difference between

the borehole radius and the outer surface of

Using a more refined calculation, taking into account the different values of the thermal diffusivity

K for the chill and the core, we estimate a temperature difference of 32°C. In §5 below, we use the

surface temperature of 192°C as measured by MacMillan Bloedel.

Next, we estimate the heat flux and temperature gradient in the roller surface just below the

nip. With a specified nip width of 1.1cm and the heat flow to the web, the estimated radial heat

flux <p is

Thus, since <p = KTr on the roller surface where K is the thermal diffusivity of the chill, we get the

estimated surface temperature gradient

This is much larger than the overall, or average, radial temperature gradient of 5°C/em through the

roll radius. Therefore, it is clear that we must do a careful analysis of the temperature gradients

and the stress field near the nip. This is done below in §4 - §6.

Finally, we estimate the effect of water droplets. Water may be dripped onto the thermoroll

when the paper web is interrupted in order to clean the top roller. The effect of these water droplets

on the formation of micro-cracks seems very difficult to determine analytically. The goal would be to

first calculate the temperature gradient on the surface of the roller just under the droplet. To do so

we would need better observations of droplet size and lifetime. Apparently the manufacturer claims



a droplet lifetime of the order of 1 second whereas MacMillan Bloedel has estimated the "Leidenfrost

thermal flux lower limit" as input information.

We now consider a simple scenario. Suppose that we have a hemispherical droplet of radius a,

where a = 6.2mm. The required latent heat to evaporate the droplet is Clat = 2.256106J Ikg. Thus,

the estimate of the heat flux ¢ into the droplet across a small patch of roller surface under the

droplet is

¢ = ~ (a3p~at) = 2apClat .
3tdrop 7ra~ 3tdrop

Using the estimates a = 6.2mm and the droplet lifetime tdrop = lsec, we get an estimate ¢ =
l07w 1m2, which is four times larger than the heat flux estimated from the nip region. It therefore,

appears crucial to do a careful analysis of temperature gradients and the resulting stress field near

the droplet. This analysis is very difficult and was not done by our group.

In this section we calculate the temperature field in the region away from the nip to determine the

effect of the oil bores on the heating of the drum. This is referred to as the global problem. In

this problem, the nip region is replaced by a point sink of strength Q. The strength of this sink can

be determined by the estimate obtained in §3.

It is convenient in the analysis to fix ourselves in a frame in which the thermo roll is stationary

and the nip region on the edge of the thermoroll is rotating at an angular velocity w = vll's1l1·.t. The

mathematical model for the temperature field T, where T is measured in °C, is

(7a)

(7b)

(7c)

Here kch is the thermal diffusivity of the chill and {)is the Dirac delta function. The parameter", in

(7a) is piecewise constant, with", = "'ch in the chill region rchill < r < rSllrj, and", = "'co in the core

region roil < r < r chill. The values for these constants are given in Appendix A. As a simplifying

approximation to the geometry, in this model we have replaced the individual boreholes by a line of

boreholes along r = roil. Although such an approximation should warrant further study, it greatly

simplifies the analysis. In this model we have also assumed a negligible heat transfer between the

air and the thermoroll. In a more refined analysis than is presented below, a Newtonian cooling

boundary condition should be imposed on the edge of the thermoroll.

There are two goals to the analysis below. Firstly, we would like to justify why the temperature

can be approximated by a radially symmetric function away from the nip region. Secondly, we would

like to estimate the temperature gradient as we approach the nip region.



We introduce non-dimensional variables by p = r / r sur j and T = t / w. The non-dimensional

rotation rate Wn is defined by

We estimate that Wn = 106, which is very large. This value measures the importance of rotation

as compared to thermal diffusion, and can be thought of as a Peclet number. The non-dimensional

model is

T(po,O,t)

Tp(l, 0, t)

(9a)

(9b)

(9c)

Here Po == roil/rsurj, Q = Qrsurj/Koh, while k = 1 in the chill region and k = Kco/Koh in the core.

A schematic plot of the geometry is shown in Fig. 3.

We look for a solution to (9) in the form

(l1a)

(l1b)

(l1c)

Next, we seek a solution to (11) in the rapid rotation limit Wn ~ 1. In the outer region, defined

away from the nip near ¢ = 0, we substitute the expansion

I
F(p, ¢) = Fo(p, ¢) + -F1 (p, ¢) + ... ,

Wn

0,

_k-l F1¢, Po < p < 1.

(13a)

(13b)

Since F1 is periodic in ¢, it follows that f~7r F1¢d¢ = 0. Therefore, upon integrating (13b), we

obtain that Fa satisfies
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One boundary condition for Fa is Fa = nore at P = Po. There are two possible conditions that

can be imposed for the second relation. One choice would be to specify the flux out of P = Po as in §3,

which would determine B. The second choice would be to satisfy the boundary condition Fop = O.

Note that a better approximation to the boundary condition would be to impose a Newtonian

cooling condition on the surface of the roller characterized by some Biot number, representing a

heat transfer coefficient between the air and the chill. Specifying the flux out of the boreholes would

enable us to calculate this coefficient. The temperature field, away from the nip region, is obtained

by substituting (14) in (10).

Our first conclusion is that in the limit of rapid rotation the temperature field away from a thin

zone near the nip region is radially symmetric.

The solution (14) is not valid in the vicinity of the nip region where ¢ = O. Thus, as is usual in

singular perturbation problems, we must construct an inner solution near ¢ = 0, p = 1. The extent

of this region is O(w;;-l). We introduce the local variables p and ¢ by

-F¢ Fpp+F¢¢, O<jJ<oo, -00':5.¢<00,

Fp(O, ¢) Q8(¢),

F -+ 192 as p -+ 00 .

(16a)

(16b)

(16c)

We have used the surface temperature of 192°C quoted by MacMillan Bloedel Research as the far

field condition. A plot of the geometry is shown in Fig. 4.
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Here Ko(z) is the modified Bessel function of the first kind of order zero. In terms of the original

variables, we have

Therefore, using the asymptotic behavior of Ko(z), we observe that as we approach the nip region

the change in temperature !:::,T = T - 192 behaves logarithmically like

Here Q is the strength of the heat sink. Thus, for the global problem the temperature decrease as

we approach the nip region is only logarithmic with the distance from the nip. The effect of the

resulting temperature gradient on the stress field is estimated in §6.

We now calculate the temperature field in the region near the nip. This is referred to as the local

problem. In the near-nip region, the geometry is approximately planar as shown in Fig. 5. The

contact region between the paper and the roller is approximately 2cm as shown in this figure. The

goal is to estimate the temperature gradients near the leading edge where the paper first comes

into contact with the roller (see the figure). It is in this region that we expect the temperature

gradients to be largest. Note that the calculations below are done in a frame for which the leading

edge is located at X = 0 (see Fig. 5).

From the data given in Appendix A, the values for the thermal diffusivity of the water Kw, the

chill Kch and the core Kco are



From these values, we can estimate a Peclet number, which is a dimensionless parameter giving a

measure of the relative strengths of convection compared to the thermal diffusion. Since Pe = vL/ K,

we can estimate a Peclet number using v = 18m/see, L = 2cm, and K = 0.lcm2/sec to get Pe =
18000, which is very large. Hence the temperature field near the nip is dominated by convection.

We now formulate the model. We approximate the temperature field in the near nip region using

a steady-state convection-diffusion equation

where we take L = 2cm and Pe = VL/Kch. In terms of these variables, the length of the contact

region between the paper and the roller is extremely large and thus, as a good approximation, we

take the contact region to be of semi-infinite extent occupying the region .r < 0, Y = 0. In terms of

these new variables, the chill region extends very deeply below the contact region and hence we will

take the chill to occupy the region below the x-axis.

We now formulate the boundary conditions. The line x > 0, Y = ° is where the roller is exposed

to the air and hence we assume that there is negligible heat transfer between these two media (i.e.

Ty = ° for x > 0, Y = 0). This assumption should be examined more carefully in a more refined

analysis. In addition, we assume that the temperature field and the heat ft.ux are continuous across

the contact region.

Next, we give far field conditions for the temperature field. The surface temperature of the roller

obtained from the global problem is estimated by MacMillan Bloedel Research to be T = 192°C. This

yields the asymptotic matching condition T -> 192°C as y -> -00. Finally, the web temperature

into the nip is 66°C and thus we set T -> 66°C as y -> +00.



To summarize, the model for the temperature field in the near nip region (see Fig. 6), where T

is measured in 0 C is

(23a)

(23b)

(23c)

(23d)

(23e)

T+y(x,O)

T+(x,O)

T+

T_y(x,O) = 0 for x> 0

T_(x,O); 6T+y(x,0) = T_y(x,O) for x<O,

Here T+ and T_ are the temperature fields in the web and the chill regions, respectively. The small

parameter 6 is the ratio of the thermal diffusivities of the web and the chill,

The goal is to calculate the temperature gradient near the leading edge (x, y) = (0,0) and to

determine its singular behavior. In particular, we calculate

The problem (23) is difficult to solve analytically and hence we will seek an asymptotic solution

valid for small 6 (i.e. 6 ~ 1). When 6 is small, the extent of diffusion of heat from the roller into

the web is limited, and hence the temperature in the chill region deviates only slightly from its

asymptotic value as y -7 -00. In addition, a thermal boundary layer occurs in the web region near

y = 0 and it has a width 0(61/2). The relevant asymptotic expansion for 7+. is

-UOx UOfjfj y> 0, (28a)

uOfj(x,O) 0 for x> 0; uo(x, 0) = 192 for x < 0, (28b)

Uo -7 66 as y -7 +00. (28c)

(29a)

(29b)
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To get a well-posed problem, we solve (28) in the region x < 0, with the "initial" condition

uo(O, fj) = 192. The solution is readily found to be

uo(x,fJ) = 66+ 126 Erfc (fJ/2(-x)1/2) ,

where Erfc(z) is the complementary error function. Thus, the isotherms occur along the curves

fj = C(_X)1/2 for c> 0 and x < 0 (see Fig. 7). A simple calculation then yields

126
uOfj(x,0)=-(_?rx)1/2' for x<O,

which is used in (29) (see Fig. 8).

The solution to (29) can be found in terms of the Green's function, G(x'; x), which solves the

adjoint problem corresponding to the convection-diffusion operator in (29)

{j (x' - x) , y' < 0, -00 < x' < 00 ,

o on y' = o.
(32a)

(32b)



G(x'; x) = - 2~ e(X'-x)/2 [Ko (Ix' - xl) + Ko (Ix' - x* I)) .

132]00 1 , I '
v(x,y) = - Vif -00 V_x,G(x ;x) y'=odx .

Substituting (30) and (34) into (26) and (27) yields the temperature profile in the web and the chill

regions, respectively. It is easy to show that the limiting behavior of v as we approach the leading

edge is

where C = -252/Vif.
The solution for T_ in the paper becomes invalid in an 0(8) neighborhood ofleading edge. This

follows from the fact that we have neglected the diffusion term T-xx in obtaining (28). Hence we

need an inner-inner region where x = 0(8) and y = 0(8). Introduce the new variables

o for x> 0;

66 as fJ -> +00 .

(38a)

(38b)

(38c)

(39a)

(39b)

The solution v must match with the behavior (35) in the far field.

The solution to (38) can be found explicitly in terms of the parabolic coordinates ~ and 7] defined

by

A_I (.<:2 2)
X -"2 <, -7] ,



In terms of these coordinates the problem (38) reduces to the following ordinary differential equation

problem for u(1]):

Using the definition of the change of coordinates we can calculate the derivative needed in the

problem (39) for v. We get

'(A 0) 126 ~
u x, = - (-71"X )1/2' 101' X < 0,

d ' (A2 + A2)1/2an r= x y .

Substituting (44) into (37) determines the temperature field in the chill region of the thermoroll in

the immediate vicinity of the leading edge where the paper first makes contact with the roller.

The main conclusion from this analysis is that this temperature field near the leading edge has

the behavior

for some constant B. Thus, it has an infinite gradient of square-root type at the leading edge. In

§6 we estimate whether this singular form leads to a singular stress field at the leading edge.

We now estimate the stress field induced by the temperature gradients calculated in §4 and §5. We

will consider both the local and the global problems.

The equilibrium equation from elasticity theory for the displacement vector u is

3(1- v) "V ("V. u) _ 3(1- 2v)"V x "V xu = o:"VT.
(l+v) 2(1+v)

Here v is Poisson's ratio, o:"VT is the body force induced by the thermal gradient, and 0: is a constant.

The stress tensor CTij is determined in terms of u by



Here>' and G are the Lame' constants. Thus, the stress is (essentially) proportional to the first

derivatives of u.

Consider the local problem for which the temperature field behaves like (45) at the leading

edge. Then decomposing V'u in terms of a radial component Ur and an angular component Ue, we

get the following equations from (46):

3(1- v) (orrur + ... ) _ 3(1- 2v) (Oreue + ... ) = 0: ( C,) sin (~) ,
(l+v) 2(1+v) l' 21'2 2

_3(_1-_v_)(_or_eu_r+ ... ) + _3(_1_-_2v_)(orrue + ... ) = -0: (_C_,) cos (~)
(1+v) l' 2(1+v) 21'2 2

From these equations, a simple dominant balance argument shows that the two components satisfy

u,. = 0(1'3/2) and ue = 0(1'3/2) as l' -+ o. Thus the stress field has the form

Hence the stress field is not singular at the leading edge, and there is no significant stress intensi-

fication, such as that determined by a stress intensity factor. In fact, the stress field behaves like

that for a contact problem (i.e. a Barenblatt "crack").

Now consider the global problem where the nip region is approximated by a delta function. The

geometry is shown in Fig. 4 and the temperature field has the behavior given in (19). Substituting

T ~ In l' into (46) we can obtain the behavior of u,. using a dominant balance argument. We

estimate o,.ur = O(ln 1') and hence the radial component of the stress is (J"r = O(ln 1'). Thus, the

stress field grows logarithmically in the outer region but is then cut off as we approach the inner-

inner region. Once again, we conclude that there is no significant intensification of the stress, such

as that determined by a square root singularity for which a stress intensity factor can be defined.

The main focus of our group was to calculate the temperature gradient in the thermoroll and to

determine whether this gradient can lead to an intensification of stress in the nip region.

The temperature gradient was calculated for both a global temperature model in which the nip

is represented by a point source and a local temperature problem, defined in the vicinity of the

nip region, where we studied in detail the region where the paper first comes into contact with the

roller. For both the local and global temperature problems we calculated the singular behavior of

the thermal field. In §6, we used the singular behavior of the thermal field in a model to estimate

the stress field for both the local and global problems. The goal was to ascertain whether such

a temperature gradient can lead to a singular stress field. Such a stress field is known in other

circumstances to induce crack formation. Our conclusion in §6 is that the stress field is not singular



for either the local or global problems, and hence, from our model of the thermoroll, the temperature

gradients are not likely to be the cause of roll fracture.

We also showed that in the limit of large drum rotation, which is the usual operating regime of

the thermoroll, the temperature distribution inside the thermoroll is well approximated by a radially

symmetric function. This can allow for an accurate calculation of the surface temperature on the

roller once a more precise boundary condition can be applied to the roller surface.

Finally, a crude physical estimate in §3 suggested that there can be extremely large temperature

gradients as a result of dripping water onto the thermoroll. This problem certainly warrants an

intensive investigation.

We are grateful to Dr. Roman Popil of MacMillan Bloedel Research Ltd. for his explanation of this

problem to us and for his detailed comments on this report. We would also like to thank Dhavide

Aruliah for preparing the figures for this paper.

Web temperature out of nip = 92°C

Web temperature into nip = 66°C

Web velocity = 18m/see

Web width = 7770 mm

Inner core radius = 560mm

Outer core radius = 750mm

Thickness of chill

Thickness of shell

Thermal conduct. chill

Thermal conduct. core

Bore hole radius

Number of bores

Oil flow rate

Oil temperature

= 12mm

= 49mm

= 24W/mK

= 48W/mK

= 16mm

= 45

= 33.7L/sec

= 253°C

The thermal diffusivities of the water, chill and core, which we label by /\'w, /\,ch and /\'co, re-

spectively, are now calculated in terms of more conventional units. For water, p = 103 kg/m3
,

Cp = 4186 J /kg-K, k = 0.6 W/mK, and thus

/\,w = k/ pCp = 0.142 X 10-6 m2/sec = 0.142 x 10-2cm2/sec. (50)



Lastly, Kco = 2Kch.

Finally, we quote the estimate of the heat flow into the web given by Macmillan Bloedel Research.

For each unit length along the roll we have dmj dt = 1.1kgjs and the heat flux into the web is

Here 6T = 26°C is the temperature difference along the web. This input estimate might be based

on too much water content, and if so it would turn out that the heat input into the web is smaller

by a factor of ten.


