
Chapter 3

Optimal Lumber Production from
Softwood Sawlogs

David Baar, Advanced Numerical Methods,davebaarCDnumericalmethods. com
Lou Hafer, SFU /Comp Sci,louCDcs. sfu. ca

David Kirkpatrick, UBC/Comp Sci,kirkCDcs. ubc. ca
Ramesh Krishnamurti, SFU /Comp Sci, rameshCDcs. sfu. ca

Philip D. Loewen, UBC/Math, loewCDmath. ubc. ca
Michael Monagan, SFU /CECM, monaganCDcecm. sfu. ca

Marc Paulhus, Calgary/Math, paulhusmCDmath. ucalgary. ca
Mihaela Radulescu, UBC/Math, mihaelaCDmath. ubc. ca

written by
Philip Loewen

30 September 1997

This problem deals with the maximization of the "value recovery number" for the processing of
raw logs at sawmills in British Columbia. This quantity has the units of dollars per cubic metre,
and is defined as the dollar value of usable lumber produced divided by the volume of raw material
processed. Sawmills in the interior of British Columbia are of particular interest because the logs
processed there are typically of small diameter and the current volume recovered is low, typically
45% to 55%. Each log sawn in a given mill can be given its own value recovery number, and clearly
maximizing the aggregated criterion is equivalent to finding out how each individual log can be
broken down into boards of the greatest total dollar value.

The first cut running the length of a log is of central importance: it defines a plane one can visu-
alize as being rigidly attached to the log; all subsequent cuts must be either parallel or perpendicular
to this plane. Determining the best first cut on each incoming log, which might have nonconvex
cross-sections ("cats"), be bent ("swept"), or even have a nonplanar central axis ("corkscrew"), is
a complicated optimization problem that must be solved in 3-30 seconds. This is the length of
time that elapses as the log moves along a conveyor between a laser-operated surface-measurement
station and the first rank of saws the log will encounter during the manufacturing process.

Equipment in the sawmill can shift the front and back ends of the log laterally, and then spin the



log about an axis parallel to the direction in which the conveyor is moving, to provide a prescribed
orientation relative to the vertical bandsaw blades that will make the first cut. The lateral positions
of these blades can also be varied to control the widths ofthe boards this first cut produces. Typically
there are two or four vertical blades; some mills also have two chipper heads on the outside of the
blade assembly. For example, in a mill with two blades and two chippers, a log can be split into
three planks with planar vertical sides. Figure 1 shows the end view of a possible first cut in such
a mill: the two blades cut the lines separating regions (a) and (b), while the chipper heads reduce
the material in region (c) to wood chips. As shown in Figure 1, the "centre cant" (region (a)), is
typically wider than the "flitches" (region (b)). One reason for this is that the chain used in the
log transport unit limits the separation of the two innermost blades to at most two or three inches,
depending on the equipment.
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After the first cuts are made, the three timbers in regions (a) and (b) are resawn to produce
lumber of standard dimensions. All three are laid down on one of their cut surfaces and passed
through ranks of either bandsaws or circular saws. For the flitches labelled (b), dimension lumber
lying on its wide face results; for the centre cant (a), resawing produces dimension lumber standing
on end. Figure 2 shows a possible breakdown of the boards cut from the log in Figure 1. (Note
that the flitches shown at the top and bottom of Figure 2 and the centre cant between them are
resawn on quite different pieces of machinery in an actual mill; also, there is no assertion here that
the breakdown in Figure 2 is optimal.)

The dollar values of lumber vary according to market conditions, grade, and dimension. For the
purposes of this discussion, we considered only the most important of these factors, namely, the
correlation between the dimensions of a board and its wholesale value. J .E. Aune of MacMillan
Bloedel supplied the typical values in Table 1 below. This table gives the price per cubic metre,
calculated as the product of the base price with the length factor. Thus, a load of 1 x 10" boards
all 16 feet long is worth $170 per cubic metre, whereas a load of 1 x 10's all 10 feet long is worth
only $170xO.70=$119 per cubic metre. Notice that the length factors in this table are not simply
increasing (multiples of 8 being especially valuable), and that differences in the length factors can
reverse the trend suggested by the base prices. For example, 16-foot lengths of 2 x 6 are worth only
$190xO.80=$152 per cubic metre, but ripping those boards in half lengthwise to produce 16-foot
2 x 3's yields a value of $160 per cubic metre.

The problem first stated at the Workshop was to suggest efficient ways to maximize the value
recovery number defined above for each given log. We were given very few constraints within which
to work, the most important being that every cut had to run the length of the log, and that all cuts



Nominal Base Length Factors
Size Price

($/m3
)

8' 10' 12' 14' 16' 18' 20'
1 x 3" $100 0.60 0.70 0.80 0.90 1.00 0.90 0.85
1 x 4" $120 0.60 0.70 0.80 0.90 1.00 0.90 0.85
1 x 6" $150 0.60 0.70 0.80 0.90 1.00 0.90 0.85
1 x 8" $150 0.60 0.70 0.80 0.90 1.00 0.90 0.85
1 x 10" $170 0.60 0.70 0.80 0.90 1.00 0.90 0.85

2 x 3" $160 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 X 4" $180 1.00 0.70 0.80 0.90 1.00 0.90 1.00
2 x 6" $190 0.80 0.80 0.80 0.80 0.80 1.00 1.00
2 X 8" $210 1.00 0.90 0.80 0.90 1.00 0.90 1.00
2 x 10" $240 0.90 0.80 1.00 1.00 0.90 0.90 0.80

after the first had to run either parallel to or perpendicular to the plane of the first cut. (The written
specifications of the problem do not place restrictions on the number of parallel cuts that can be
made in a single pass, although practical limits were discussed in meetings between team members
and MacMillan-Bloedel's representative J. E. Aune.) We were allowed to move the log laterally at
either end, and rotate it about an axis parallel to the conveyer. An improvement of 1% in value
recovered would be valuable to MacMillan Bloedel. Later, we learned that MacMillan Bloedel were
primarily interested in finding efficient ways to determine the best first cut. The sequence here is
immaterial: both problems amount to the same thing. It is clear that regardless of what the first
cut may be, once it has been made, the products that result should be res awn in the best possible
way in order to maximize profit. So if the goal is to make an intelligent choice of the first cut, the
preference of one choice over another can only be determined by optimizing the products resulting
from both choices, and associating their payoff values with the corresponding initial decisions. This
is why there is no sure way to determine the best first cut without going through some procedure
that determines the entire bundle of products that subsequent steps will ultimately associate with
the first cut.

If we relax the problem from "find the best first cut" to "find a very good first cut", a second
interpretation becomes possible. Experience may well lead to effective "rules of thumb" that often
result in first cuts that are very close to optimal, despite being comparatively cheap to implement.
In order to gain this experience, of course, one must completely solve the log breakdown problem in
many individual cases. But, if we assume that this has been done and that the results are known,
there may be some way to make intelligent use of this accumulated wisdom to save computation
time, produce better results than the necessarily approximate optimization methods now employed,
or even do both.

Here are succinct statements of our two problems.

Problem 1. Given a log of known dimensions, determine the best location for the opening cut. As
a byproduct, completely describe all saleable products that can be produced following this first cut.



Problem 2. Given extensive log-optimizing experience, propose new methods to determine a nearly-
optimal first cut, without necessarily generating any more information about subsequent stages of
processzng.

Problem 1 is a mathematical optimization problem, in which there are three continuous variables
(lateral shift of the butt end, lateral shift of the top end, and rotation angle) and a number of
discrete variables (number, relative positions, and dimensions of each board in the bundle to be
manufactured). Various constraints also come in, due to the number of sawing stations available
to process incoming timber, the number of blades at each station, and the physical limits on their
relative positions. These features typically vary from one mill to the next, and one expects the
optimal breakdown to vary along with them.1 What is more, any deterministic representation will
fail to capture the random errors introduced by the equipment in an actual mill. (For example, J an
Brdicko says that ordering the rotation of a log by some angle 0 about its long axis will trigger a
sequence of mechanical events that rotate the log by an actual angle 1J that may differ from 0 by 10 or
15 degrees.) Thus an implement able solution should take into account the need for robustness with
respect to perturbations of the specifications-the truly practical problem might be to maximize the
average value recovery under plant uncertainty, or even to maximize the worst-case value recovery
over parameter regions near to the values of top shift, translation, and rotation that our methods
propose.

For our first foray into this field, we ignored all these complicating factors, and dealt only with
the single constraint explicitly stated in the written problem statement provided to all workshop
participants-namely, that all cuts must be parallel or perpendicular to the first one made2.

The information on which the optimization described above is to be based comes from a laser
scanning station positioned along the conveyor that moves the log toward the saws. If we consider
the z-axis to lie along the direction in which the conveyor is moving, the scanner records the (x, y)-
coordinates of 36 points around the perimeter of the log every time its z-coordinate increases by some
fixed amount. MacMillan Bloedel provided 15 data sets of such coordinates, which we reformatted
into a collection of 45 files-3 for each log. In these files, all measurements are in inches. File x07 .dat
contains a 36 x N matrix of x-values in ascii format; files y07 .dat and z07 .dat contain 36 x N
matrices with the corresponding y and z-values. Taking the k-th column of these three matrices
gives the 36 data values for the log in position k: the number of columns (N) varies, depending on
the length of the log. The naming conventions are simple: log numbers from 01 to 15 can take the
place of 07 in the description above. For each of these logs, the fixed spacing between z-coordinates
of successive measurements is 4 inches, so the z-data is particularly simple. (Each column in matrix
znn. dat is constant, and the values are simply 0,4,8,12, .... ) These data sets are available for
anonymous ftp, from ftp.math.ubc.ca, in directory /pub/loew.

The test data provided by MacMillan Bloedel can be visualized in several ways. A three-
dimensional mesh plot joining the measured data points helps one to visualize the log as a whole
(see Figure 3 below). In each of the data sets provided, this picture looks very much like a truncated
right circular cone. In many Cases the lateral sides of the cone are very nearly parallel to its axis,
so that the truncated cone is virtually a cylinder. In other cases, the taper is pronounced. (J. E.

1Comparing optimal breakdowns among various mill configurations could thus provide valuable guidance in choos-
ing the configuration for a new or reconditioned sawmill.

2 Some of our formulations may be adaptable to accommodate the curved cuts now being proposed in the lumber
industry.



Aune writes, "Log scalers talk of taper as the length of log corresponding to a one inch reduction in
diameter, i.e., one inch in twelve feet meaning little taper, one inch in six being a lot of taper.")

Another way to plot the data is to make a two-dimensional plot showing the rings of measurement
points superimposed on one another. This view, which amounts to looking straight down the log
along the conveyor axis, reveals the effect of taper most clearly. It can also reveal situations where
the natural axis of the log does not line up with the conveyor axis. (See Figure 5 below.)

To see the taper, one can plot the distance from each of the measured points on the log to either
the conveyor axis or to (some estimate of) the log's natural axis as a function of distance along the
log. (See Figure 4 below.) When the conveyor axis and the natural axis coincide, this provides a
series of vertical clusters of 36 radius values: the taper can be estimated by fitting a straight line to
this data, but (as J. E. Aune has noted) a parabolic fit is usually better.

Figure 3: 3D Image of Test Log No. Figure 4: Radius data for taper esti-
3. mate.

Figure 6: End view along regression
aXIS.

A summary of physical characteristics of the test logs appears in Table 2. Here, the natural axis
of the log was computed using linear regression through the set of all input data points, the taper
was estimated as above, and the column labelled "top shift" gives the minimum distance the log's
top needs to be moved to make the log's natural axis parallel to the conveyor axis. The table shows
that log number 12 tapers very little, while log number 13 tapers a lot. Most of the logs landed
on the conveyor within a fraction of a degree of the conveyor axis, but perfect alignment could still
entail shifting one end by a noticeable amount; the alignment is worst for log number 3, where a shift
of over 13 inches seems to be indicated. We emphasize that this is actually the relative shift between
the top and bottom ends of the log: in a working mill, it may also be necessary to shift the whole



Log Length L Log-to-Conveyor Top shift L,diam/ L,z = 1/x,
Number (inches) angle () (degrees) (inches) where x = '"

1 168 0.96 2.8 42
2 248 0.47 2.0 229
3 160 4.67 13.1 52
4 160 2.77 7.7 98
5 160 1.59 4.4 108
6 160 1.11 3.1 78
7 160 0.40 1.1 312
8 160 0.44 1.2 198
9 160 0.96 2.7 37
10 160 1.96 5.5 56
11 160 0.82 2.3 45
12 156 1.86 5.1 645
13 160 1.26 3.5 36
14 124 0.81 1.8 145
15 1100 0.12 2.3 104

log parallel to the cutting axis so that it is roughly centred as it approaches the headrig. For the
purposes of optimal breakdown, however, we can ignore this rigid translation simply by assuming
that there are no limits on the lateral positions of the saws.

(The top shift amount equals L tan (), where L is the length of the log's projection onto the
conveyor axis and () is the angle between the log's natural axis and the conveyor axis, as shown in
Table 2. It is included mainly to convey a sense of scale, since the required motion may not lie in
either a horizontal or a vertical plane, and when it has been completed, the log's natural axis may
be some (parallel) distance away from the axis of the conveyor.)

Figures 3-5 illustrate the various properties of test log number 3. This log has the highest value
we found for the angle between the natural axis and the conveyor axis (and consequently for the top
shift amount), and tapers more than one inch in five feet.

2 Mathematical Optimization
With regard to the full optimization problem of most efficient log breakdown, we have progress
to report on several fronts: selecting the cutting axis, breakdown for cylindrical logs, and cutting
planks from flitches. Although a week was not enough time to produce a full three-dimensional
optimization package, we are confident that the analysis and ultimate solution of these subproblems
will provide insight and perhaps even auxiliary code that will be useful in the general value-recovery
problem.

The regression axis used to investigate the given logs in the previous section is optimal in one sense:
it is the line for which the sum of all squared distances to the data points (measured in planes
perpendicular to the conveyor axis) is the least possible. It clearly gives a better approximation to



a reasonable cutting axis than the conveyor axis does, and has the advantage of being very easy
to compute. An alternative is to choose a line that minimizes the sum of squared distances to
the data points (measured not in planes, but in rn?): this can be determined using the Singular
Value Decomposition at somewhat greater computational expense. Our experience on the test
data described above was that the SVD approach gave axes that were indistinguishable from the
regression lines for practical purposes, so we will not discuss SVD in detail here. However, for logs
with substantial curvature, the SVD may be an appropriate tool to identify the natural plane in
which the log lies. (The results for logs in our data set were inconclusive, since they exhibit very
little "sweep".)

The standard mathematical techniques just described are optimization-based, but they involve cri-
teria that are geometric, and not easily related to the real objective of maximum value (or volume)
recovery. Another way to choose a cutting axis without going through a complete breakdown op-
timization is to choose the axis along which you find the maximum volume of "usable wood". By
usable wood, we mean wood of allowable lengths from Table 1, i.e., 8',10', ... ,20'.

To find this, postulate a cutting axis and have the computer construct a contour map of the butt
end of the log by shading all areas that go 20' down the log, 18' down the log, 16' down the log,
and so on, down to 8'. See Figure 7. Multiply the shaded areas by their associated lengths to find
the volume of usable wood associated with the given cutting axis. Use a continuous optimization
routine to choose the cutting axis for which this volume is maximized.

A randomized optimization approach would be easy to implement. Given a proposed cutting
axis, Marc Paulhus proposes that one choose at random a pivot point and a direction to move the
end of the log, and test if this perturbation improves the usable volume. If so, then accept it;
otherwise, keep the original orientation. Repeat this process until random choices of a given size
scale no longer help. At this point reduce the size of random perturbations and continue.

In Paulhus's experience, this "tweaking process" will quickly find the maximum weighted contour



map that corresponds to the cutting axis which provides the greatest potentially usable volume. Even
if this is not the axis you wish to cut, it might be a good starting point for a search.

When we looked at the wire frame model of the first log from the test data MacMillan Bloedel
supplied (compare Figure 3), we were struck by the log's almost perfect cylindrical shape. We had
been discussing an algorithm for determining the axis to cut along by finding the largest cylinder that
fits entirely inside a given log, expecting that we would later have to do better even than this. When
we realized that our suite of test data included a number of logs that are very nearly cylindrical,
we put this discussion aside in order to look directly at the problem of breaking down a cylindrical
log. We wanted to determine whether the "centre cant plus side flitches" approach reviewed by
MacMillan Bloedel was the best sawing strategy after all. The "cant" algorithm is described below.

1. Find the largest width w in the list of usable dimensions (see Table 1) that fits horizontally
into the log. If the log radius is r and the prescribed width is w, one can make a rectangular
plank of any thickness up to t* = V4r2 - w2 down the length of the log.

2. Stack as many planks of the chosen width w as possible vertically into the log. Since planks
come in thicknesses of 1 and 2 inches, we can pack any integer height. Thus the thickness
actually to be used should be

This thickness will be cut into two-inch thick planks in preference to one-inch thick ones as
the former are (always?) more valuable. So there will be t /2 two-inch planks if t is even, and
(t - 1)/2 two-inch planks plus one one-inch plank if t is odd.

These two steps determine the width and thickness of the centre cant. MacMillan Bloedel argued
that this should be a good approach because it tries to extract as many of the most valuable planks
from the log as possible. J an Aune also pointed out two optimization-based refinements to this
method:

1. The number of planks in the cant should be optimized over different rotations of the log. This
is irrelevant for a cylindrical log (or, more generally, for a truncated cone), but will often be
important for a log of irregular shape.

2. Since the width wand thickness t of the centre cant must be chosen from a short list of
marketable values, there will often be freedom to shift the cant to the left, to the right, up, or
down inside the log. For example, moving the cant slightly to the left may permit a thicker
plank to fit on the right-or vice versa.

Macmillan Bloedel stated that they did not know whether this centre cant approach was the best
in general or not. We believe that it is not, and describe a better general approach below.

An obvious problem with the cant approach is that the four pieces which are left over are often
not efficiently utilized. We thought that it might be better to split the log vertically into slices,
preferably two inch thick slices, and then optimally pack each vertical slice. The intuition is that
this approach will utilize the top and bottom of the log better than the cant approach because more
often it will be filled with the thicker planks. Moreover, this approach still yields a simple cutting



solution~there is one vertical cutting pass required for the log followed by one horizontal cutting
pass for each vertical slice.

To test our hypothesis that the vertical slice approach is better than the cant approach, we
constructed the following experiment. We implemented a program which computes a packing for
the cant approach as described above where we allow it to add any number of planks to the left of
the cant (and symmetrically to the right), and above the cant (and symmetrically below it) to fill
up the remaining space. Then we implemented the vertical slice method with three variations:

We computed the best packing for each and take the maximum of the three.
We used the sample market price data provided by MacMillan Bloedel to determine which was

the optimum decomposition of the vertical planks.
Using only cylindrical logs, we applied both algorithms to a series of 101 logs of fixed length

whose diameters ran from 10 inches up to 20 inches in O.l-inch increments and took the average
improvement in the wholesale value of the products introduced by our approach over the cant
method. vVe repeated this experiment seven times, once for a log of each of the standard lengths.
We did noL make any cuts perpendicular to the long axis of the log (such as cutting a 20-foot board
into a pair of lO-foot boards).

Some of the cutting schemes resulting from our implementation appear in Figures 8 and 9. The
experimental results are summarized in Table 3. This table shows seven standard lengths, and the
average improvement in value recovery for the slice algorithm over the cant approach. In most of
the individual trials contributing to this average statistic, the slice algorithm gave a packing with
the better dollar value. The cant approach did come out ahead in a reasonable number of trials,
however, and occasionally the two methods tied. Obviously, one could try both methods and use
the one with the greatest value.

Log/Lumber Average Gain in Value Vertical Slicing over Cant Method
Length (ft) using Vertical Slices (%) # Wins # Losses # Ties

8 10.8 97 0 4
10 2.8 69 29 3
12 0.6 52 46 3
14 5.1 77 20 4
16 2.1 67 23 11
18 2.0 64 34 3
20 11.8 97 1 3

The reason for the high variance is due in part to the prices. The prices in Table 1 show that for
8' and 20' planks, the value of the 2/1 thick timber compared to the 1/1 thick timber is higher than
that for the other lengths. If one compares the packings visually one can see clearly what is going
on, namely that the vertical slice algorithm packs in more of the thicker lumber. Hence the higher
prices for 8' and 20' lengths yield the highest improvements in Table 3.



(c) Value-Optimized Slice Breakdown

Figure 8: Possible Breakdowns of a Cylinder with Diameter 15", Length 20'



(b) Value-Optimized Slice Breakdown

Figure 9: Possible Breakdowns of a Cylinder with Diameter 18.1", Length 10'



We have not yet implemented the cant-placement optimization suggested by MacMillan Bloedel.
Of course, this same idea should be applied to both algorithms. But, because the vertical slice
algorithm packs the top and bottom better already, it will not benefit from this refinement as much
as the cant algorithm. Thus the percentage improvements reported here are somewhat higher than
we would expect in practice. Other optimizations may further narrow the gap.

Before we attempted to implement this optimization we found out from Jan Brdicko of MPM
Engineering that the vertical slice approach, called "live sawing" in the industry, is already known,
and indeed known to be more efficient in general. "So why isn't it used?" we asked. We were
informed that in some (very few?) mills, it is in fact used, but because most(?) saw mills use
only 4 vertical blades (some have 6) it cannot be done in a single pass. However, if the vertical
slice algorithm is significantly better, then one could imagine making two passes. Given this very
positive data, MacMillan Bloedel might consider a study to implement and compare a vertical slice
algorithm with the cant algorithm (with optimizations included) on real data to determine how
much better it would be in practice, and whether it would be worthwhile to reconfigure any sawmills
to accommodate the vertical slice approach.

To make efficient use of the sideboards labelled (b) in Figure 1, it is necessary to know how to get
the maximum possible amount of lumber out of a one- or two-inch thick plank with irregular edges.
This is a stand-alone sawmill optimization problem of independent interest, but it also plays a vital
role in the full problem, since a complete analysis of the full-log problem requires that the optimal
value of each cutting product be worked into the calculations. Also, the pieces of timber produced
by the live-sawing method just discussed are mathematically equivalent to flitches. Finally, the
flitch-sawing problem is a natural place to start for mathematical reasons: it is (approximately)
two-dimensional instead of three, so it should be easier to solve than the full problem; furthermore,
ideas arising in the 2D case could possibly turn out to remain useful in the general case.

We imagine the sideboard lying on one of its cut faces, and assume for simplicity that all of its
edges are vertical. Then the measurement points of the edges of the sideboard provide the vertices
of a polygon F in the (x, y)-plane, from which we desire to cut rectangular subsets whose total dollar
value is a maximum. The long sides of all these rectangles must be parallel. We have partial results
for two approaches, both of which apply to an arbitrary plane polygon F (although we expect F to
be long and narrow): first, a method for maximizing the length of a board with given width lying
inside F; second, a simple way to detect if a board of given width fits inside F.

(a) Maximum Length for Given Width
Given the vertices of closed polygon ("flitch") F in rn? whose sides do not intersect, one can easily
compute the intersection between F and a horizontal strip S( a, b) = {(x, y) : a ::; y ::; b}, where a
and b are prescribed saw positions and w = b - a is one of the widths of standard lumber. The idea
is simply to work around the perimeter of the flitch F, taking note of the points where line segments
between successive vertices (measured data points) cross the top or bottom of the strip. The polygon
of intersection, corresponding to the shape of the board that would remain after sawing along the
lines y = a and y = b, has for vertices the collection of all the crossing points together with all the
vertices lying inside the strip. With this description for the set C = F n S( a, b) in hand, finding the
maximum number of rectangles ("planks") in the set C and their lengths is also straightforward. To
illustrate, Figure 10(a) shows a 12-foot long flitch and two parallel lines separated by 4 inches. In
Figure 10(b), the computation of yield for this scheme has been determined by the method above.





When these capabilities are combined with a method for shifting and rotating the flitch F into
an arbitrary location relative to the saw lines y = a and y = b, one has a method for evaluating the
possible number and length of boards of a specific cross-section associated with a particular cutting
scheme. Optimizing the value of such a solution over the possible shifts and rotations of the given
flitch can be done by standard subroutines. Figure 10(c) illustrates the outcome for this example.

For wide flitches, it may be possible to extract more than one usable board. Our methods for
finding the length of boards compatible with a given pair of cut lines extend easily to finding the
lengths of a bundle of boards lying side-by-side, in various positions down the flitch. We would plan
to use some discrete optimization engine to generate sequences of board widths for processing by
this length-optimization algorithm, and do a rapid search for the best possible collection of widths
(with its corresponding orientation).

One aspect of this method requiring further study is the objective function in the optimization
just demonstrated. So far, we just maximize the total length of all boards produced. Thus, our
implementation assigns the same value to one twelve-foot board as it does to four three-foot boards.
This is obviously unrealistic, but in order to get reasonable results from any continuous optimization
package, one needs an objective function whose gradient (exists and) is nonzero at the vast majority
of points. The true objective function-valued in dollars-is constant in the whole range of lengths
from 8 to 10, then constant again from 10 to 12, and so on. Further study would be required to find
an objective function that captures the essence of the problem's discreteness while having no flat
spots.

Reversing the design in the previous subsection holds considerable potential. Under this scheme,
the discrete optimization routine would propose not just a list of widths, but the full shape of
a "template" of lumber, including lengths and relative positions of the finished boards. Then a
continuous subprogram ("oracle") would be used to determine if the current template can actually
be cut, and if so, to give the flitch orientation relative to the blades that makes it happen. The
discrete driver would take the usual branch-and-bound or knapsack approach, although the details
of how to structure the search space will take some careful thinking to work out. We can, however,
describe an oracle that detects the viability of a given template.

We outline the special case in which the template to be realized is a single plank, 6 inches wide.
Deciding whether or not this fits into a given flitch is more complicated than simply asking if the
flitch is at least six inches wide everywhere along its length-the flitch in Figure 10 is seven inches
across everywhere, and we did not even get eight feet of 4-inch wide lumber! The key concept here is
convexity: a simple plank can only fail to be realizable if one of the vertices of the given polygon lies
inside it. So if we can lay the bottom edge of the plank along a line through the flitch that lies above
all the lower vertices and at least 6 inches away from all the upper vertices, the plank will fit inside
the flitch. The line we want must therefore separate the set of lower vertices from a system of disks
with radius 6 centred on the upper vertices. And a line has this separation property if and only if it
separates the upper convex envelope of the flitch's bottom vertices from the lower convex envelope
of the disk-augmented upper vertices. Figures 11 and 12 illustrate this: both involve computer-
generated flitches with considerable taper and exaggerated random variations in upper and lower
surfaces. Both figures show (i) the flitch profile itself; (ii) the upper vertices enlarged into disks of
radius 6"; and (iii) the convex envelopes just mentioned. In Figure 11 the convex envelopes cross,
so it is impossible to cut a 6" plank the length of the flitch; in Figure 12 the convex envelopes are
separated, and a possible pair of cut lines to produce a 6" board is shown. (In the interests of error
rejection, we position the cut lines to divide any excess width equally between the top and bottom



edges, and to choose the midpoint of any nondegenerate interval in which the side slope of the cut
board is allowed to lie.)

This method can be extended to determine the feasibility of templates more complicated than
just a single plank. To accommodate a shorter board of width 4" on top of the left end of the
plank, it suffices to know the length of this board, and to increase by 4" the radii of the circles in
the corresponding portion of the upper flitch boundary. For this more general template, we cannot
guarantee feasibility of any template that avoids the flitch vertices-one can imagine a straight-line
segment of the boundary that cuts off the corner of the shorter board just mentioned-but we expect
the slope of the separating line we find to be so small in practice that if we agree always to position
both ends of any shorter boards directly above or below a vertex of the flitch, this problem will never
become a practical issue. Indeed, an even coarser approximation may be adequate in practice: given
enough data points, we may be able to enlarge the upper vertices not into disks, but simply into
vertical segments, or to use segments at vertices near the flat parts of the template and disks near
its non convex corners. (This will save some effort in the computation of the upper convex envelope
for the augmented top edge, since each disk can in principle contribute a circular arc, whereas each
segment will contribute just its lowest point.)

The problem of finding how far along a given line segment one can travel before hitting the boundary
of a given polygon in the plane or polyhedron in three-space is one that computer graphics experts
need to solve in order to predict the shading of computer-generated solids. This is exactly the same
problem we face, either in measuring distances inside the log from the butt end toward the top, or
in seeking dimension lumber inside a given flitch. In the computer graphics community, the desired



procedure is called "ray tracing." It would be instructive and likely very useful to explore the ray
tracing literature and assess its possible impact on log optimization technology.

So far we have dealt with quantitative approaches that could be used as components of a full cutting
optimization system. If, instead, the goal is to make an educated (hopefully near-optimal) guess
at a reasonable first cut without solving the full breakdown problem in advance, several ad-hoc
procedures come to mind.

In the absence of a perfect algorithm a selection of good and essentially different algorithms can
help. If two algorithms exist, called A and E, and both are applied to every incoming log, one
can choose the one producing the higher value for each instance. Even if algorithm A produces the
better recovery 99 times for every 100 logs, the presence of algorithm E has made a contribution.

As computers become cheaper and more powerful, there has been a move away from lookup tables
and towards real-time optimization for calculating log breakdown strategies. A hybrid approach
may be worth considering, however. Here the idea would be to single out a small list of essential log
parameters that can be computed using the measurement information, and to use this list as a key
into some large database of successful cutting patterns used in the past. In a pure lookup scheme,
the database would provide the cutting axis directly; in a hybrid approach, the database would
give intervals likely to contain the optimizing values of the continuous variables, and conventional
optimization software would be instructed to restrict its search to these regions. This would either
reduce execution time, or use the time available more efficiently, to make a more thorough exploration
of the set of most interesting parameter values.

Another idea is to build a database that will become more intelligent the more it is used. Again, use
essential log parameters to determine the "type" of each incoming log. Consult the database to find
all of the cutting patterns which have applied to this type before. Apply them all to the log (under
different orientations) and choose the best result, then cut the log according to this scheme. If the
value recovery number that results falls below some preassigned efficiency level (which may depend
on the log's type), send the image of the log to an offline computer that spends as much time as
necessary to find what the best way to cut this log would have been. Then add this cutting scheme
to the database.

The latter two approaches incorporate the notion of "essential parameters" that capture features
of the log that are important when selecting a good cutting pattern and orientation. There are
obvious suspects: the length, taper, and sweep of the whole log come immediately to mind, along
with the sizes, eccentricities and principal axes orientations of the cross sections; other quantitative
measures can also be imagined. (Characterizing the cross sections using the first few Fourier coeffi-
cients of their (27f-periodic) radius functions, for example, might provide an easy way to detect "cat
face".) To identify correlations between the value recovery number and the parameters thought to be



essential, we propose a statistical search3 through idealized cutting reports. These would be based
on the raw log data gathered by a particular mill in real operation, but with the actual breakdown
replaced by a truly optimal cutting pattern generated by exhaustive offline search. If the observed
correlations can capture the variation in optimal yield, then we can have some confidence that the
parameters singled out as "essential" are sufficient. If not, and unexplained variation remains, it
would indicate that some important property of the log has been overlooked; a natural response
would be to look for it and repeat the statistical analysis described above. (Offline computation
of the "idealized" cutting reports mentioned above may represent a significant computational chal-
lenge, but the payoff would be a database containing many patterns that improve on the best current
practice. Running the statistical search on actual cutting schemes used in the real mill could also
be done, but it would produce recommendations that are no better than what is done already ...
although they may be produced faster than they are by full-scale optimization.)

Until the statistical analysis described above is done, we cannot be sure that a correlation between
yield and a small number of log shape parameters will exist. If there turns out to be no correlation,
we will be forced to conclude that there is no way to consistently produce good cutting patterns
based on a small number of log parameters, and encouraged to pursue further the idea of efficient
full-scale optimization in real time.
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• Web page for MPM Engineering: http://www.mpm-eng.com/

• Web pages on Lumber Recovery from Logging and Sawmilling Journal:
http://www.forestnet.com/log&saw/lrf/lrf.htm
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showing nice graphics of the optimization process:
http://www.nanoose.com/

• Web page for Inovec Optimization and Control Systems of Eugene, Oregon (another maker of
log optimization software):
http://www.inovec.com/index.shtml

3The method of "Kriging", known to geophysicists, statisticians, and others who need to interpolate large data
sets, may be of use here.
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