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Abstract

Sudden slip on geological faults or other discontinuities in rock may
be preceded by an initial phase of ”slow” fault creep. A simple plane
strain model of a suddenly loaded fault is analysed to illustrate the
possible transition from stable slip behaviour to accelerated, unstable
slip. The model assumes that a peaked shear load is applied sud-
denly to the fault region. The rate of slip movement is assumed to be
proportional to the difference between the applied shear stress and the
cohesive and frictional slip resistance. It is found that the evolutionary
fault movement can be described succinctly by a non-linear ordinary
differential equation describing the activated length of the sliding fault
as a function of time. The differential equation is found to depend on
a single, dimensionless parameter whose value determines whether the
fault slip decays monotonically or accelerates in an unstable manner.

1 Introduction

The occurrence of sudden rock failure near excavations (so-called “rock-
bursts”) in deep level mining operations is of continuing concern to the
South African mining industry both as a potential cause of serious injuries
to miners and as an inhibiting factor for the exploitation of valuable min-
eral resources. Surface tremors may, in extreme cases, even cause damage
to buildings or other infrastructure. Understanding some of the underlying
deformation mechanisms of rockbursts can clearly have considerable ben-
efits in devising engineering strategies to ameliorate the potential damage
and safety risks of deep level mining. Three main areas of interest are:
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1. Prediction: Precursory signals of seismic activity or other changes may
be used to infer the impending onset of large seismic events.

2. Excavation damage: An improved understanding of wave propagation
effects, initiated by sudden rock failure, can be used to design improved
support systems in underground excavations.

3. Localisation theory: Further advances in understanding the intrinsic
structure of rock failure mechanisms can assist in the assessment of
the likelihood of rock failure in the vicinity of existing excavations.

During the MISG study week, in January 2006, efforts were concentrated
on formulating a simple model to address the first area of interest, relating
to the prediction of a seismic event. In this model, fault creep is studied to
investigate the transition from stable to unstable slip behaviour.

2 Fault Creep Model

In order to fix ideas, consider the case of a simple fault (plane of weakness)
represented as a discontinuity surface in the plane z = 0. The fault is as-
sumed to be located in the region —b < y < b and to extend indefinitely in
the z direction implying a state of plane strain with respect to the z-axis.
The fault is loaded by a shear stress oy, and a normal “clamping” stress o,
as shown in Figure 1.
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Figure 1: Stress components acting on a fault discontinuity.
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The apphed shear stress, o 82 , is assumed to be constant and the normal
stress, 00, (y), is assumed to be compressive (negative) and to have a peaked,
symmetrical shape with the absolute stress value increasing away from the
centre of the fault at y = 0. It is postulated that slip on the fault is controlled
by a “creep” law of the form

229 _ efrty, )~ ptw1)] o

where Dy(y, t) is the slip extent at position y on the fault at time ¢. D, (y,t)
is equal to the absolute value of the difference between the displacement

components u;‘ and wu,; on opposite sides of the fault according to

Di(y,t) = |Auy 3,9)| @

and the slip displacement discontinuity component, Au,(y,t) is defined to
be

Auy(y:t) =uf (y,1) — uy (y,1) - (3)

The absolute value of the total applied shear stress, 7, is given by

; 4

(Y, 1) = |oy2(y, ) + ng

where 0y, (y, t) is the shear stress induced at position y along the fault by the
slip displacement discontinuity component, Auy(y,t). The slip resistance

p(y,t) is determined by the prevailing cohesion and friction on the fault at
position y and time ¢. & is a proportionality constant. The slip resistance p
is assumed to be defined by the following relationship.

p(ya t) = SO - ﬁDS(yat) + #Un(y) s (5)

where So = initial cohesion (MPa),
B = cohesion slip weakening rate (MPa / m),
= coeflicient of friction,
on(y) = absolute value of the normal “clamping” stress
(MPa) applied to the fault at position y as illus-
trated in Figure 1. (i.e. on(y) = —0%,(y) > 0).

Equétion (5) is operative when the slip extent, D, , is less than the maximum
limit D} implied by
So
DI =22, 6
:= 3 (6)
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When D, = %Q, the slip resistance is presumed to be equal to po,(y) .

The induced shear stress, Oyz, In an isotropic elastic material can be
determined from the displacement discontinuity value Awuy using an integral
equation relationship for the stress components, Oyy ; Ozz and oy,. This
relationship can be expressed compactly using the following complex variable
representation. (See, for example, Linkov and Mogilevskaya, 1994). At a
general field point Z = y + iz in the complex (y, z) plane

iG [ [Ad¢—Adl | 2Z —{)Ad¢
27r(1—u)/_b{ (Z-¢)2 + Z =) } (M

G fbf Rdl A
7w ”‘mr(l—v)/_b{(Z—c“)? (Z—-oz} ’ ®)

where ¢ = /=1, G is the material shear modulus and v is Poisson’s ratio.
A = Auy+iAu, is the complex displacement discontinuity vector at position
¢ of the fault segment. In the present case, ¢ assumes values on the real
line —b < ¢ £ b and the displacement discontinuity opening component
Au, = u} —~u; = 0. Hence, oy: can be deduced from the imaginary part
of the limiting form of equation (7):

o iG_ 9 [ [b Auy(Q)dC
oot =i iy g | [ 24} o

In order to simplify the analysis, assume that the slip profile Ay ({) has
the following specific shape

Auy(¢) = a(b® = ¢*)*?, (10)

where a and b are parameters that depend on the time, t. The character-
istic shape of this slip profile is illustrated in Figure 2. It should be noted
that when { = +b the slope of Auy is zero and the induced shear stress
0y, remains finite near the edges of the slip region. This behaviour may be
contrasted to the conventional fracture mechanics assumption of a uniformly
loaded crack of fixed length where the crack slip or opening displacement
is proportional to z!/2 at a distance z from the crack tip, within the crack
and where the stress values become infinite immediately ahead of the crack
tip. In the present case, the far field crack-normal load is assumed to be
peaked (Figure 1) and the fault slip region limits #b(t) at time ¢ are adjusted
to ensure that the total shear stress is equal to the shear resistance at the
edge positions &b(t) . Under these assumptions, equation (10) provides the
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A
Au,

Figure 2: Assumed discontinuity slip profile shape.

appropriate asymptotic edge behaviour.

Substituting equation (10) into equation (9), it can be shown that

/_ '; afs” ;f):/zdc = an [(b2 ~2)(Z2-VZ-8 ) 4 ¥ f—} NG

Differentiating the right hand side of equation (11) with respect to Z and
employing the limiting relationship

lirthlo VZ2 -0 =+i/b2—y2 for |y|<b), (12)
22—

gives the expression for the induced shear stress component o, in the slip
region as
3aG

Oye = T 6 —2y%] for |yl <b. (13)
In equation (13) it is understood implicitly that the active slip region —b(t) <
¥ < b(t) is a function of time, ¢, following the imposition of the far feld
shear stress 082 at t = 0. Substituting equation (13) into equation (4) and
assuming that agz >0, the total (positive) shear stress magnitude is given
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by

o _ _ 3a(t)G

W) = op =g PO -2 for Wi<e),  (9)

where the slip amplitude a(t) and the half-length parameter b(t) are written
as explicit functions of time.

3 Determination of the active slip length

The evolution of the slip patch half-length b(t) requires the general coupled
solution of equation (1) and equation (9) to determine the slip function
Awuy(y,t). However, using the postulated representation of the slip function,
given by equation (10), the simplifying assumption is made that the slip
behaviour is governed essentially by the stress and slip state at the particular
point ¥ = 0. From equations (14), (10) and (5)

3a(t)Gb?
7(0,8) = 0%, — —4((’5%_—1/532 , (15)
p(0:t) = So — Ba(t)b>(t) + poy , (16)

where o, is the absolute value of the compressive normal stress component
0zz at y = 0. The further explicit assumption is made that the peaked
shape of the normal stress component, illustrated in Figure 1, is given by
the function

on(y) = 03 + 792, (17)

where +y is a fixed parameter. The half-length b(t) is defined by the condition
that 7(b,t) = p(b,t) and that at this point the slip value Dy(b,t) = 0. Using
equations (5), (14) and (17) this implies the equality constraint

o , 3a(t)Ge3(t)

— 0 2
Oyz 4(1 — l/) = So + Moy, + M’Yb (t) : (18)
Hence,
41—~
o) = 2 [t et~ 4] . (19)

Finally, noting that Ds(0,t) = a(t)b3(¢) and substituting equations (15) and
(16) into equation (1) yields the ordinary differential equation

2
% (ab3) . ,:00 3Gab

yz 4_1—(1——1/_) - So + ,Bab3 - /,LO’S:' . (20)
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At time t = 0, the shear slip on the fault is zero (D,(0,0) = 0) and the
initial activated half-length, by , is deduced from equation (18) to be
(o9: = So — pay)
b2 = Y n , 21
0 o (21)

with the implicit understanding that 022 — So— pod >0 and py > 0.

4 Non-dimensional form of the slip equation

It is apparent that the unknown slip profile parameters a(t) and b(t) in
equation (20) depend on the following nine material and loading parameters:
So, B, 1, K, G, v, 02,_, o) and v. However, this complex model can be
simplified significantly by defining the non-dimensional slip length, B, and
time, T', according to the relationships

pb
G ?
T = pkt . (23)

From equations (21) and (22), the non-dimensional expression for the initial
activated fault half-length is given by

2 _ B8 _ [agz — 5o —uag}

B= (22)

= 24
B 0 G2 G2 Y ( )
Employing equations (22), (23) and (24) and eliminating a(t) between
equations (19) and (20), yields the following differential equation for the slip
length, B, that includes only the two non-dimensional parameters By and v
aB 3
dT 4(1-v)
The initial condition is that when T =0, B = B,.
The cohesion falls to zero at the centre of the slip region, y = 0, when
Ds(0,t*) = D = So/B . At this time a(t*)b?(t*) = So/B and, using equa-
tions (19) and (21), the critical slip length, B* , can be deduced to satisfy

3503*
41— v)puyG?

Also, employing the residual slip resistance

(3B - B})— = B*- BB+ (2B2 - BY). (25)

(B*) -~ B{B" = (26)

pon(y) = pop + uyy?® (27)
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yields the appropriate differential equation when B > B*

3

(88" = B}) 7 = (B)" ~ BY(E") +

(2B2 - B?).  (28)
Both equations (25) and (28) have a separable structure allowing direct
quadrature. This can be carried out in terms of simple analytic functions for
equation (28) once the transition time T* is determined. In order to expose
the structure of equation (25), it is useful to define the non-dimensional slip
length variable, Y , and the parameter A by

_B
-5

_ 3 _ 3 G wy 1/2
A= 4(1 — V)BO o 4(1 - V) <E) [0-82 —Sp— /1'0'2:' >0. (30)

Y © (29)

It is of particular interest to note that A depends on all the basic model
parameters except the slip rate proportionality constant x which is subsumed
into the non-dimensional independent “time” variable, T. The analogous
equations to (25) and (28) may then be written, respectively, as

O - & —v _viae-Y) o 1gvsY, )

(3vy2-1) % = (Y2 -Y*+A2-Y?) for Y>Y*, (32
where Y™ is inferred from equations (24), (26) and (30) to be determined by

350ﬂ2 /\SO

Y* 3 _ Y* — — .
) A1 —v)BiuyG? ~ 09, — So — pol

(33)

It can be seen that the right hand side of equation (31) is always positive as
long as Y? < 2. When Y2 > 2 the right hand side of equation (31) can be
written as

3 _
$0=07-2 [ ) =079l -], g
where vi_y
o= 1T (39
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It may be shown that g(Y) has a local minimum value,Apin ~ 2.9696,
at Y2 = (5++/17)/2 in the region Y2 > 2 . Consequently, if A < Ay, then
J(Y) will never be zero when Y2 > 2 and since

(?}‘%}:)—1) ~ O(Y) as y — oo, (36)
the slip length may be expected to grow exponentially until the cohesion loss
is complete. From equation (30), the condition A < Amin corresponds to the
requirement that the initially activated length By is sufficiently large — an
intuitively plausible condition. Alternatively, if A > Apig (and the initially
activated fault length is sufficiently small) then when f(Y) falls to zero,
fault creep slip will no longer proceed. This is, again, a plausible conclusion.
Clearly, the parameter A defines the basic condition for stable or unstable
slip evolution following the imposition of the initial shear load on the fault.
Notably, parameter A does not depend on the slip rate proportionality con-
stant x which only plays a role in determining the time scaling of the slip -
length evolution. The constant x does not influence the fault slip stability
behaviour.

The influence of the parameter \ on the slip length evolution trajectory,
determined by equation (31), is illustrated in Figure 3 for the specific val-
ues A = 1, A = 2 and A = 4. This demonstrates the unstable and stable
evolution of the slip activation length, ¥, when A\ < Apmin and X\ > Amin
respectively. It may also be noted that \ plays an analogous role to the
critical slip nucleation length parameter G /B highlighted in the analysis of
fault slip stability by Uenishi and Rice, 2003.

5 Conclusions

A simple fault creep model has been analysed. It is found that the fault
movement can be described in terms of a single non-linear ordinary dif-
ferential equation. This differential equation can be expressed in terms of
non-dimensional variables, ¥ and T, representing the active “length” of the
fault and the “time” respectively and, remarkably, a single dimensionless
parameter A. Parameter X is inversely related to the length of the ini-
tially activated region of the fault plane. It is demonstrated that a critical
value,Amin ~ 2.9696.. ., of the parameter \ determines the stable or unsta-
ble evolution of the fault length trajectory. Specifically, if A < Amin the slip
extent will extend in an unstable manner and if A > Amin the slip extent will



18 J.A.L. Napier

Creep model response

Slip length, Y
[ 2] £ -3

N

0 200 400 600 800 1000 1200

Figure 3: Explicit evolution of the non-dimensional fault activation length,
Y, for three values of the critical stability parameter ).

be limited. It may be of interest to explore the slip evolution model further
in three dimensions and to investigate multiple interacting fault structures
as well as elastodynamic behaviour.
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