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Section 0: Introduction

This problem was brought to the Workshop on ~lathematical Problems in Industry
by Dr. Mary E. Brewster of Pacific Northwest Laboratories. The basic scenario is one
with which anybody interested in ecology and safety is familiar; large tanks have been
filled with toxic waste, and the object is to determine whether or not they are safe.

The tanks in question number about 200 and are situated on the Hanford ·tank farms'
in Washington State. A typical tank has a diameter of 75 feet, is between 37 and 50 feet
deep, and has a volume of order 106 US gallons. The tanks are situated underground and
contain high-level radioactive waste that has been generated as a byproduct of many years'
plutonium production and recovery. The waste also contains components that arise from
radioactive decay processes.

The tanks contain a complicated mixture of components, but for modelling purposes
it is convenient to think of the constituents as 'sludge', 'saltcake' and gas. It is generally
agreed that the sludge may be thought of as a shear-thickening fluid which possesses a
yield stress. Many of the tanks also originally contained liquid, but most of this may
now be regarded as having been pumped out. The saltcake, which consists largely of
sodium nitrate, may be either dry or ·wet' (partially saturated). Some tanks are thought
to contain layers of saltcake 100 inches thick, above a layer of 2 inches sludge, but in other
tanks these dimensions may be reversed so that a thin layer of saltcake overlies a thick
sludge layer. From a safety point of view, the main interest of the current study centres
upon the hydrogen gas contained or produced in the tanks (nitrous oxide, ammonia and
other potentially flammable gases are also produced, but we largely ignore these below;
it should be remembered, however, that these gases may effectively decrease the lower
flammability limit of hydrogen/air mixtures). The gas may be retained in solution (as
ammonia), exist as bubbles in the sludge, or be present in the pores of the salt cake; the
lower flammability limit for hydrogen/air mixtures is about 4 per cent, and safety limits
are usually fixed at around 1 per cent.

The group working on this problem focussed their efforts upon three main questions:

(1) How much hydrogen can the dry saltcake hold? (If the answer is relatively little, then
the saltcake may be disrupted and broken up without fear of potentially dangerous gas
escapes).

(2) Can important parameters be identified for the wet saltcake/sludge system that could
be measured to attempt to characterize the gas retention and release?

(3) How are bubbles released in the sludge and how do they grow? - If the saltcake acts
as a 'lid' and holds in gas, is a catastrophic release event possible, and, if so, how much
gas will be released ?
All of these questions will be addressed below.



IMPORTANT NOTE 1: The team working on this problem was truly transatlantic. For
this reason, no attempt has been made to standardise the units and both metric and
imperial measurements appear. Conversion between the two is easy however, and great
efforts have been taken to ensure that the particular units being used are clearly indicated.

IMPORTANT NOTE 2: After the meeting, the value for the yield stress of the sludge
was revised by three orders of magnitude. In most of this report the 'new' value has been
used, but it is recommended that the reader should check exactly which value has been
used when interpreting any of the results given below.



Section 1: Motion of Bubbles in Sludge

Initially, we consider the problem of bubble generation and rise in the sludge. First
we analyse the growth of a bubble in a viscous material (possibly with nonlinear rheology).
This problem has been considered by Nye (1953). If the bubble is of radius R, and the
sludge velocity is u(r) (in spherical polar coordinates), then

assuming incompressibility of the sludge. The non-zero components of the strain-rate and
stress tensors are

. au
Crr = ar'

. . u
C(J(J = cq,q, = -,

r'

1
T(J(J= Tq,q, = -2Trr,

and Trr < 0 for u > 0 (opening). The second invariants are then (2T2 = TijTij, 2i2 = EijEij)

r 21T(r)T!'(T)dT
[p - Trr] R = v'3 T( R) f (T ) •



R
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~P = V3 0 f(T)'

where ~P = Pb - PIl, Pil is sludge pressure, and TR is the value of T at r = R. For a
Bingham fluid with yield stress T*, the lower limit of (1.9) is T*.

The kinematic condition on r = R implies that the bubble growth is given by

R S
- = - = s, say,R R3

determines TR. Hence (1.9) and (1.11) determine s as a function of ~p.
As an example, consider a Newtonian fluid with viscosity 7] so that

T
f(T) = -.27]

R ~P
-R 47]

Assume that a mass flux J (mass/unit area/time) of H2 diffuses through the sludge
to the bubble. If the density of the bubble is given by the perfect gas law

where lV[H2 is the molecular weight of H2 (kg kg-mole-1), Rv is the gas constant, T is
absolute temperature, and p is the gas mass density (kg m -3), then

Now let us suppose that the bubble rises slowly through the sludge due to Stokes flow.
If the depth below the salt-cake is z, then a Stokes buoyancy balance gives



where R* is the reactive source term in units of kg H2 (m3 sludge )-1 s-l, and c is the
mass fraction of H2• Following Bird, Stewart and Lightfoot (1960), and using molecular
weights

we have the following relationships. For a 40% mass fraction of H20 in the sludge, the
sludge has molecular weight

where PH2 is the mass density of H2, CH2 is the molar concentration, and the total mass
density P ~ P6 (the sludge density), assuming PH2 ~ P6. Then

CH2 C
XH2 = - .

C6 +CH2 c+(AIH2/Al)

We anticipate that c ~ AtfH2/Atf ~ .074, then

where pg is the gas pressure, xg is the mole fraction of gas in the liquid, and H ~ 7.i5 X 104

bar (mole fraction)-l. Therefore, using (1.24), we have to solve (1.1i) with

pc=~,
H

ac
P6D ar = J on r = R,



oc
- = 0 onor

where r = r* is a notional catchment boundc.ry, which is discussed further below. The
solution is

The question now is, how to choose r*. Our assumption is based on the dynamics
of nucleation (see also Allemann et al. (1990), chapter 7). The concentration profile
between bubbles (- 2r* apart) is supersaturated, and we suppose that beyond some critical
supersaturated concentration, c*, bubbles will nucleate. This suggests that we take c ~ c*
at r = r*, and prescribe c* (from nucleation dynamics, which will not be considered in
detail here). Using (1.29), we find (with r* ~ R)

If the sludge has a yield stress r* (this is - 6700 Pa), then a simple force balance
indicates that bubbles will grow in situ until

r*
R- ~pg = Rc•

\Vith r* = 6700 Pa, ~p = 1700 kg m-3, 9 = 10 m s-2, we estimate Rc - 0.4 m.

The equations (1.15), (1.16) and (1.13) are

R = ~p, z = _ 29PTJSgR2, (Rip) = [3RvTpsD~c/1VfH2]R,
R 4TJ

where ~p = P-Ps, Ps = Psgz+psc is the sludge pressure, and Psc is the salt-cake overburden
pressure.



D.p = P - P~

D.p = 8R/R
p = P~c + z

i = _R2

j3 = 27RvTTJDD.c
?M 2R4'- H2P~g c

We use values Rc = 0.5m, P~ = 1.7 X 103 kg m-3, 9 = 9.8 m s-2, d = 5m, TJ = 1 Pa s,
Rv = 8.3 X 103 kg m2 s-2 kg-mole-1 K-1, T = 330 K, D = 5.1 X 10-9 m2 s-1, D.C = 10-6,

.•"vIR, = 2 kg kg-mole-I;
then

8 = 8R2/9~c ,

2,
D.PO = dR' (1.40 )

p~g c

where, is the surface energy, , ::::::0.07 N m-I (Mahoney and Trent (1995)). Hence
D.po ::::::3.3 x 10-6•

We see that D.p <: 1 for t > 0, and R and p satisfy, to lowest order,

R= (~r3,
where Po is the initial value of p. If we define



II= Pac + Pagd
Pac

to be the ratio of the sludge pressure at the tank base to the saltcake overburden pressure,
then the maximum bubble size at the base of the saltcake is given (relative to Rc) by

The maximum bubble thickness thus increases for thinner saltcakes, and sizeable bubbles
may easily be produced. If II = 10 (5 metres sludge below 0.5 metres saltcake) then
R ~ 2.15 (corresponding to 2.15 m). In conclusion, we find that we may expect bubbles of
order (metres) size may generated by simple aggradation under the saItcake. Since this is
only one or at most two orders of magnitude smaller than the tank radius, the analysis of
section 5 provides a worst-case estimate of the possibility of the release of a large trapped
gas bubble. We note also that, not surprisingly, the size of bubble produced depends
crucially upon the order of magnitude of the yield stress in the sludge; for the resettled
sludge in the notorious 'burp tank' 241-SY-10l, for example, where the yield stress is only
about 10 Pa, the corresponding bubble size reduces to only about 1.4 mm.



Section 2: The Dry Saltcake

In this section of the report we attempt to ascertain the amount of Hz gas present in
the (dry) saltcake portion of a cylindrically symmetric tank. The first question to ask is:
what is the dominant mechanism driving the gas flow in the dry saltcake? We answer this
by comparing the diffusive and convective time scales in the medium. For this, we first
note that the diffusivity of Hz in the dry saltcake is reduced by the tortuosity OX ~ 1, which
measures the relative deviation of a particle path in the porous medium from a straight
line (X = 1). We assume that for the dry saltcake the tortuosity is around 10. Then we
have

D "'" Da _ 0.6 cm2/sec _ 0 06 2/
d "'" - - ---- -. em sec.

X 10
A typical height scale of the dry saltcake is given by

Hd ::::::100 in = 250 em.

Therefore, we have the following diffusive time scale, which roughly measures the time it
would take for a particle of the gas to diffuse out of the porous medium:

TD = HJ = (250 cm)2 = 12 days.
Dd 0.06 cm2/sec

For the convective time scale, we need to know the volumetric flux rate G of gas
produced by the sludge, and the radius r of the tank. Typical values are

This produces a convective velocity which we shall need often:

G 31.25 cm3/sec -6
U = 1rr2 = 1r(1125 cm)2 = 7.86 x 10 em/sec.

Note the rather small size of U. So the convective time scale, which roughly measures the
time it would take for a particle to traverse the medium driven only by convection, is given
by

Tc = Hd = 250 em = 1 yr (2.6)
U 7.86 X 10-6 em/see .

Therefore, in the dry salt cake the diffusive process dominates.
Since over four decades have passed since these tanks were first filled with waste, we

assume we have a steady state equation which depends only on z, so our system reduces
to the following:



where C is the concentration of H2 in the gas mixture. We have assumed that at the
top of the saltcake (:: = Hd). atmospheric convection takes away any hydrogen gas that
may still remain. Now at the interface with the sludge (z = 0). we can impose one of
two conditions. First. we know that the percentage of H2 in the gas mixture produced in
the sludge (denoted by Cp) is approximately 0.3. However, our system is such that air
from the top can also diffuse down to the boundary of the sludge, so the actual 'uol'ume
fraction may differ.

A more reasonable boundary condition is given by the flux of H2 gas, which we can
calculate. The volumetric flux of gas out of the sludge is given by the velocity of the gas
at the sludge boundary, which is the gas produced divided by the area:

G
flux of gas out = -2 = u.

1fT

The flux of hydrogen gas into the porous medium is given by the flux out multiplied by
the proportion of H2 in the mixture. which gives us a flux per area as if the entire saltcake
were porous. It is not, and thus we must divide by the porosity f of the medium (f = 1 if
the saltcake were completely porous). Therefore, we have

ac CpU
flux = -Dd~(O) = --.

uZ f

CpUx
C(z) = D (Hd - z).

af

C(O) = CpTD.
Tef

Since TD « Te, we have that C(O) «Cp. This confirms our hypothesis that air has
diffused down to the sludge layer. We shall also need the average value of C in the
saltcake, which is easy to calculate since the profile is a straight line:

c = CPUXHd.
2Daf

Two quantities we wish to know are the volume of the gas in the dry saltcake Vd.H2

and the volume fraction of the gas et>e,H2 if it were released all at once into the void space.
For the first, we note that we must multiply the average concentration of the gas by the
porosity to get the void fraction et>d,H2 of H2:



Note that this calculation removes the porosity € from our result. Then we get the volume
by multiplying by the total volume of the saltcake:

Lastly, to calculate iPe.H2' we divide by the dome space. This is not necessarily a cylinder,
but the value is known:

Vd.H2 CpG'(H~
4>e,H2 = -;-;:- - ?D TT •

te - a Ve

We now calculate the values for a real tank, namely 5112.
following:

U = 2.68 X 10-7 em/see,

_ (0.3)(2.68 x 10-7 cm/sec)(10)(2i5 em) _ 1 84 10-4
4>d H - 2 -. X ,

, 2 2(0.6 em' /sec)

Vd,H
2

= 7r(1125 cm)2(275 cm)(1.84 x 10-4) = 2.01 X 105 cm3 = 7.45 ft3,

Vd 1.84 x 10-4 -4
4>e,H2 = 4>d,H2 v~= 1.6 = 1.15 x 10 ,

which is far below the lower flammability limit of 0.04. If the tank is composed mostly of
dry salt cake, then this calculation would lead to a preliminary conclusion that the tank
is safe. However, if the tank has a relatively large amount of wet saltcake, then further
calculations are needed. These calculations will be undertaken in the following sections.



Section 3: No Production
in the Wet Saltcake

Next we consider flow in the wet saltcake. From conservation of mass for the gas, we
have .

where P is the density and v the velocity of our diffusing species. As before, we want to
model steady flow which only depends on ::, so equation (3.1) becomes

d(pgvg) =0.
dz

We assume that in the wet saltcake, the gas behaves like an incompressible fluid, so we
have a constant Pg. Therefore, we have a constant vg•

We consider this as flow in a porous medium; therefore the velocities in the liquid and
gas phase are given by

VI = - ~: (~' + Pig) , (3.3a)

vg = - k;: (?: + pgg) , (3.3b)

where k is the permeability of the saturated saltcake with respect to the diffusing species
and J.l is the viscosity and P the pressure of that species. We assume that at steady state
the liquid is not moving and is simply serving to saturate the medium and coat the pores,
so we have

dpi
- = -pig·dz

The pressures in the gas and liquid are coupled by

where Pc is the capillary pressure, 4>g is the volume fraction of our gas, K is the curvature
and , is the interfacial tension. Since our velocity is a constant, we assume that the
capillary pressure is also a constant, so we may combine (3.3b)-(3.5) to yield

Vg = - kgw (-Pig + pgg) ,
J.lg

Now to avoid the problem of considering how large bubbles wilt move into small pores.
we assume that the bubbles are produced at the boundary of the wet saltcake with the



sludge. However, the cross-sectional area of the pores available for transport is now given
by the volume fraction of the gas 4>g(O), rather than the full porosity e, as was true in the
dry saltcake. Therefore. we have

kgu.,g G
t'g(O) = ---(Pg - p,) = 2.· (0)

~g rrr ~g

Since our velocity vg is a constant, we have from (3.7) that

U
4>g(O) .

Now we are going to use our expression for kgw to estimate the void fraction </>gof the
gas with respect to the total volume of the porous medium. For a porous medium with
spherical particles, we have that

where dp is the diameter of the particles in the medium. This is a form of the Kozeny-
Carman equation (see, for example, Bear (1972)). However, note that since our $g is so
small, the exponent of </>g in the numerator will be crucial. Also, equation (3.10) is based
on the assumption that there is a more or less continuous distribution of gas (which would
correspond to a higher value of <1>g). However, this may not be the case here. These faulty
assumptions may perhaps lead to errors in our estimates.

Now we examine equation (3.10) in both regions. In the wet saltcake, the void fraction
consists only of the gas, since the liquid is reducing the pore size:

J;, 4>~
kgw = X (1-4>g)2'

However, in the dry saltcake, there is no liquid, so the void fraction consists of the full
pores. Therefore, we use the porosity:

J;, e3
k d=----.

9 X (1 - e)2

Once again, the reasoning used to derive equations (3.11) is exactly analogous to that used
to derive (2.8) and (3.7).

There are two ways of measuring </>g. The first way is to set the two values of kgw
from (3.11a) and (3.8) equal to one another:

U~g ~ </>~
g(PI - Pg)<!>g(O) = X (1 - <1>g)2'



Then if kgd can be determined experimentally, equation (3.14) yields an expression for cPg.
In either case. we then have

cPW,H2 = CP<Pg, (3.15)

VW,H2 = 7rr2 HwcPw,H2' (3.16)

VW,H2 (cPe,H2 = ~. 3.17)

Now we introduce some typical measurements to get an estimate of <pg. We have the
following values:

dp ~ 5 X 10-3 em, 9 = 981 cm/sec2.

The gas released from the sludge is approximately 40% N2, 30% H2, 25% NH3, and 5%
~H3' Therefore, for J.Lg and pg, we use the viscosity of air, since the gas released by the
sludge is similar to air, and the values shouldn't be that different. For all calculations of
J.L and p, we use a temperature of 1400 F = 600 C, which is the approximate temperature
of the sludge. So we have

J.Lg = 1.999 X 10-4 g/( cm·see), 9 ..•- 10-1 / 3PI = . I I X g em .
(3.18b)

We also use the value of U from (2.5).
Using (3.18) in (3.13), we have

4>: (7.86 x 10-6 cm/sec)[1.999 x 10-4 g/(cm.sec)](10)
(1 - </>g)2 - (981 cm/sec2)(5 x 10-3 cm)2(9.77 x 10-1 - 1.06 x 10-3) g/cm3

1.57 x 10-8
- (2.45 x 10-2)(9.76 x 10-1)

= 6.56 X 10-7

cPg = 0.028.



d>w,H2 = (0.3)(0.013) = 0.0084,

VW,H2 = (0.0039)rr(1125 cm)2(1000 cm) = 3.35 x 107 cm3 = 1240 ft3,

1.55 X 107 cm3
<!>e,H2 = 6 -- 108 3 = .050 .

•/ i) X cnl

(3.20 )

(3.21 )

This exceeds the lower flammability limit of H2. Therefore, we see that the situation where
there is a large amount of wet salt cake and a significant volume of sludge underneath
producing gas can be quite hazardous. However, it is also prudent to recall that we
are modeling a highly unlikely event: that is, that all the gas in the wet saltcake could
simultaneously be released into the dome space.

We may also use (3.18) in (3.14), yielding

_ (7.86 X 10-6 cmjsec)(0.3)3[1.999 x 10-4 gj(cm'sec)]

kgd(981 cmjs.ec2)(9.76 x 10-1 gjcm3)(0.7)2
9.04 x 10-14 cm2

kgd



Section 4: Production
the Wet Saltcake

•In

Next we add the complication of gas production inside the wet saltcake. 'We assume
that some proportion 0: of the gas is produced inside the wet saltcake. An easy estimate to
make would be to assume that the liquid in the sludge and the liquid in the wet saltcake
would be equally likely to produce gas, and each would produce at a rate proportional to
its volume:

volume of liquid in wet saltcake (e - ~g)H w
0:= -

total volume of liquid Hs + (e - </>g)Hw

Other estimates might use surface area instead of volume as the relevant measurement in
the porous medium.

The volumetric flux of gas from the bottom would then be given by

v (0) = U(l-o:).
9 </>g(O)

The total production rate of gas is given by the total mass of gas produced in the wet
saltcake divided by the area of the salt cake:

total production rate = pg~O: = pgU 0:.
1rr

To get a production rate per height, we simply note that at each height, the pore density
is related to the volume fraction of gas, so we have

production rate _ pgU 0:

height - Hw(e-</>g)"

d(pgvg) _ pgUo:
dz - Hw(e - </>g)"

Note that our work in section 3 corresponds to the case when 0: = o.
We see that in this case our velocity will be a function of z. We can then no longer

assume that our capillary pressure will be a constant. By comparison with experiments,
we can give an approximate form for K( </>g):



Substituting (4.7) in (4.4) and using the fact that we are assuming that the gas is incom-
pressible, we have

Note that we have a second-order differential equation for which we have prescribed only
one boundary condition. However, if we do prescribe another condition, equation (4.9) can
be solved numerically for </>g.

In order to simplify matters, we normalize z by letting z = H wy:

\Ve can simplify (4.10) even further if we measure the relative magnitudes of the bracketed
terms. Using values from section 3, we have that the magnitude of the first term is

Given the fact that at 60° C, 'Y = 66.2 gjsec2 (Batchelor (1985», we have that the second
bracketed term is

I I
j 26 d</> 66.2 sec-;w d: = O(</>g) x - 100~ cm = O(</>g) (6.62 x 10-2 g. cm2jsec2

).

Therefore, even without </>gbeing small (which it is), the second term is dominated by the
first term, so we now have, to leading order,



Note then that Hw does not appear in our equations to leading order except through the
parameter a.

Since we have reduced our second-order differential equation to a first-order one by
considering parameter sizes, it is then reasonable to conclude that we have a boundary
layer near y = O. However, In order to calculate the gas in the saltcake, we only need to
calculate ~g, which is defined as

Therefore, even if we do have a boundary layer, since we would be averaging across its
negligible width, the contribution from the boundary layer to the average value (bg would
be negligible.

Now we make another simplifying assumption. First, we note that </>g is small, so we
neglect it when compared with €. Then (4.1) becomes

€Hw
a = ----

Hs+€Hw

a;(PI - pg)g <t.>: [ray U(l - a)
-------= - + ---

XJ.lg (1 - </>g)2 € </>g(O)

</>~ .UXJ.lg [ay + (1 - a)]
(1 - </>g)2 = a;,(PI - pg)g -; <7>g(O)

= ~ [ay + (1 - a)] .
K. € <7>g(O)

If a =1= 1, then equation (4.15) may be solved algebraically for </>g(O) and then for </>g(y).
However, we wish to consider the case where a = 1; that is, we assume that all the

gas is produced in the wet salt cake. One way that this can happen is if the volume of
sludge is much less than the volume of liquid. Then we have that Hs ~ €Hw• Using the
values from section 3, we require that

But we have experimental data that shows that in some tanks Hs can be as low as 5 em.
so this is a reasonable assumption for some tanks. In this case, equation (4.15) becomes

Note that since </>g is small, </>g is approximately proportional to yl/3 for small y. Hence, we
would expect our neglected interfacial tension term to produce a layer in the derivative of
</>g, which would contribute even less to our calculation of ~g than we originally guessed.



vVecould no~ invert (4.16) numerically to solve for <1>g. However, with a little trickery
we can calculate <jJg without solving the cubic. For we see that since <l>g(O) = 0, we have

1

1 14>g(1) <1>3
<l>g(y)dy = [1- y(<jJg)]d<l>g, where Y(<I>g) = K€ . 9 2'

o 0 (l-<I>g)

- "11 (1 - u)3<l>g=<I>g(l)-l\.€ 2 du
1-4>g( 1) u

{
A.3(1)+3<1>2(1)-4</> (1)-? }= A.. (1) - K 31 [1 - </> (1)] + If'9 9 9 - - 1 .

If'9 € og 9 2 [1 - <I>9 ( 1 )]

K€ = (5 X 10-3 cm)2(0.3)(9.76 X 10-1 gjcm3)(981 cmjsec2
)

(7.86 x 10-6 cmjsec)(10)[1.999 x 10-4 gj(cm·sec)]

= 4.57 x 105

<I>~(l) = (K )-1 = ? 19 10-6
[1 _ <l>g(I)]2 € _. x

<l>g(l) = 0.01287

1>g = 0.01287 - (4.57 x 105)(7.21 x 10-9) = 0.00958.

Note that since 1>g ~ €, our assumption to neglect </>g when compared with € is valid.
Therefore, we have

<l>w,H2 = (0.3)(0.00958) = 2.87 x 10-3,

1.14 X 107 cm3 ~
</>e,H2 = 6.75 X 108 cm3 = .011. (4.24)

This is lower than the flammability limit of H2, though still over the commonly accepted
"danger limit" of 1% H2. Therefore, we see that the case 0: = 1 is safer than the case
0: = 0, all other things being rougWy equal. Therefore, we see that the magnitude of the
threat is related to how small 0: is.



Section 5 The release of large gas bubbles

The calculations of section 1 showed that bubbles of size O(1) metres may be produced
in the sludge. The possibility thus arises that there will be a build-up of gas beneath the
saltcake. In a worst-case scenario, the saltcake suddenly ruptures and releases the stored
gas; a model to predict the amount released in such an event clearly depends on the
properties of the saltcake and the mechanisms involved in rupture.

The first mechanism that will be discussed relies on the observation that observations
indicate that the saltcake is effectively 'glued' to the sides of the tank. If a gas cavity
at a given pressure forms beneath a saltcake layer of a given thickness. then the saltcake
will deform and eventually rupture. 'Lubrication puncturing' of the saltcake layer is then
discussed.

Assume that a layer of H2 has collected beneath a saltcake that is 'stuck' to both
sides of the tank. The layer is assumed to be composed of agglomerated bubbles, and has
pressure p( t). Gas generation causes the pressure to rise, and, since (as observed above)
the diffusion and convection times in the saltcake are of the order of a number of days,
the gas layer cannot escape and therefore (since the sludge is incompressible) deforms the
salt cake.

To study this phenomenon, we examine the problem of the deformation of a loaded
circular plate of (undeformed) radius R and height 2h. In its undistorted position. the
plate is assumed to occupy the region {O ~ r ~ R, I z I~ h}. On the assumption that the
h ~ R, we may employ plane stress theory (see, for example, Timoshenko and Goodier
(1987)). Introducing the standard Airy stress function 'I/J( r, z), and assuming that there is
no 8-dependence, we find that 'I/J must satisfy

Denoting the components of the stress tensor by T and assuming that the r, 8 and z
components of displacement are given by u, v and w respectively, we note that, according
to plane stress~ the quantities v, TrfJ and TfJ:: are zero, though in general Tee is not. Also.
in terms of the Airy stress function, we have

Trr = (vV2'I/J - 'l/Jrr) %

Tee = (VV2'I/J - ~'l/Jr) %

T:::: = ((2 - v)V2
ljJ - 'I/J::::)%



Trz = ((1 - V)'\l2'11' -li'zz)r

1+v
u = --r~'rz

1+ V 2
W = -r(:~(l- V)'\l ~,- ~'zz)

where, as usual, v and E denote the Poisson ratio and Young modulus for the saltcake.
The boundary conditions to be satisfied are Tn = Tn = 0 on z = h, (assuming that the
top of the salt cake is stress free) whilst on z = -h we have Trz = 0, Tzz = -po On r = R,
the clamping gives u = w = O. As posed, this is not a simple problem to solve, though it
can be done in terms of complex potentials. A simpler approximate approach consists of
seeking a polynomial expression for tjJ. Some simple calculus shows that an appropriate
expression is given by

tjJ = A (16z6 -120z4r2 + 90z2r4 - 5r6) + B (8z6 -16z4r2 - 21 z2r4 + 3r6) +

C(8z4 -24r2z2 +3r4) +D(2z3 -3r2z) +F(r2z+z3)

where the constants A, B, C, D and F are to be determined. Imposing the stress conditions
on z = ±h and also insisting that the average x-displacement is zero on r = R, we find
that

:'1 P (11 + 8) B PCP D P F = P~.= - 84480h3 V , = 2816h3' = - 256h' = 60(v -1)' 20(v - 1)

_ pz3
? vp _ ~(2 2 2

Trr - 8h3 (- + v) + 2(v _ 1) 32h3 vr + 3r + 4h )

Tzz = - 4~3 (z + 2h)(z - h)2

3rp( 2 2)Trz = - 8h3 h - z . (5.10)

Thus the maximum value of Tn is given by -p and the maximum value of Trz is -3Rp/8h,
and, since we assume that R » h, is likely to be the larger. When the value -3Rp/8h
exceeds the yield stress uy of the saltcake at some point, the saltcake will rupture and the
gas will be released.

To close the model, the pressure must be related to the height of the cavity and the
amount of gas contained therein. Again, some simple assumptions are used to accomplish
this. Setting z = -h, the cavity volume Vc may be calculated by evaluating



Assuming a constant temperature To, we know that from the perfect gas law p( t) = Pg RTo
where R is the gas constant and Pg the density of the hydrogen. The mass of gas AI that
will be released will therefore be given by AI = Vc Pg, and thus

\1 = pVc
" RTo

8hO'y
p---- 3R .

In order to get some feeling for the amounts of gas that could be released, some (wild)
guesses for the relevant parameters were used in the absence of concrete data. The values
R = 10m, h = 112m, v = 3/10, E = 1010 Pa, O'y = 5 x 10Y Pa, R = 8.3 m2 Isec2 II\.
and To = 3301\. gave a gas release of mass 3091 kg; to determine whether or not this is
threatening, correct values would have to be used.

To study this mechanism, we assume that a bubble at (constant) pressure Pb( t) lies
in the region y > 0, the distance from the bottom of the bubble to the x-axis (a layer of
saltcake) being denoted by h(x, t). Because of the coordinate system chosen. gravity is
assumed to act in the positive y-direction. The equations of motion for the flow in the
region between the bubble and the saltcake are given by

1
Ut + UUx + vUy = --Px + v(uxx + Uyy)

P

1
Vt + UVx + vVy = --Py + v(vxx + Vyy)

P

Ux + vy = O.

The mechanism for saltcake fracture in this case is the large pressure that is produced in
the thin gap between the bubble and the saltcake; denoting a typical gap width by ho and
assuming that distances in the x-direction are characterized by L, we write 6 = ho ILand
assume that a typical velocity is given by U. Non-dimensionalizing according to u = ii,
v = 6Uu, x = Lx, y = 6Ly, t = LilU and P = /-lUI(L62)fi, we find, upon dropping the
bars. that the lowest order equations for the flow are



For 9 to enter the lowest order equations, it is essential that the non-dimensional quantity
(related to the Bond number)

j.lU

ppLfJ3

is order one. These equations may now be solved, subject to the obvious conditions that
U = v = 0 at y = 0, whilst at y = h we have u = ht + uh:c and Uy = O. To derive an extra
condition for the film/bubble interface, the pressure PI in the film may be related to Pb(t)
usmg

PI - Pb = -,hxE

where, is, as usual, the surface tension. Carrying out the standard lubrication-type
integration of the continuity equation now gives the equation for h( x, t) as

which must be solved subject to (for example) h = ho(x,O) and h:c = hEEE = 0 at x = O.
The pressure on y = 0 may then be determined, since it may be written in temrs of h( x, t)
as

if this pressure exceeds a (known) critical pressure, then the slatcake punctures and the
gas bubble is released. Various submodels to completely determine the shape of the bubble
were discussed during the meeting, but there is clearly scope for further work here; although
this model does not provide then simple estimates that the models above a re capable of,
mathematically, it is probably the most interesting.



Section 6: Further Research

Other areas of research are immediately suggested by the results in sections 1-5.
Most simply, the result that 0: = 1 in section 4 could be relaxed. This would then allow
sections 3 and 4 to be combined into one general result for all 0:. Different forms of the
permeability law (3.10) could be used to determine their effect on our results for $e.H2•

If possible, a measurement of kgd could be taken so we could use (3.23) to determine <Pg•
Numerical simulations of equation (4.9) could be performed in order to see if we lost any
significant qualitative structure when we made our simplifying assumptions. The bubble
size calculations of section 1 seem to indicate that there is a possibility of fairly large single
(rather than continuous) gas release events if large bubbles build up beneath the saltcake
and produce pressures high enough to cause a rupture. Evidently there is a complicated
'trade-off' in this situation, as one might expect that a thick layer of saltcake, though less
prone to rupture, could hold more large, trapped bubbles. For very thick saltcake layers,
however, the sludge layer is likely to be too thin to produce much gas. Further work on
the models is section 5 could therefore be undertaken to determine the most hazardous
relative df'!'lths of sludge and saltcake.

A number of different models have been considered in this report, and there are clearly
many ways in which the data may be interpreted. If a single recommendation had to be
made based on the work carried out, however, then it is likely to be to the effect that.
whilst there seem to be few scenarios in which the flammability limit is reached, there are
'worst cases' where the recognized safety limits may be exceeded and there is cause for
concern.



Nomenclat ure

Units are listed in terms of length (L), mass (A1), or time (T). The equation number
where a particular quantity first appears is listed.

C: concentration of H2 with respect to the gas mixture., dimensionless (2.7).
co: molar concentration of species a, dimensionless (1.21).

d: diameter, units L (3.10).
D: diffusivity of H2, units L2 IT (2.1).
E: Young's modulus, units jVfLIT2 (5.7).
g: acceleration of gravity, units L/T2 (3.3a).
G: total production rate of gas mixture, units L3/T (2.4).
H: height ()f n layer of the tank, units L (2.2).
h: height e"e ccaltcake,units L (5.8).
k: permeabiiity, units L2 (3.3a).

K: dimensionless parameter (3.13), value

K = a;,(PI - pg)g.

UXJJg

Alo: Molecular weight of species a, units Al IAl - mole (1.14).
p: pressure, units M/LT2 (3.3a).
r: radius of tank, units L (2.4).

R: bubble radius, units L (1.8).
'R: universal gas constant, units L2 IT2 I K (5.12).
t: independent variable measuring time, units T (3.1).

T: time scale, units T (2.3).
Toa: components of stress tensor, units All LT2 (5.2).

U: convective velocity of the system, units LIT (2.5), defined by

G
U=-.-rrr2

v: velocity of a fluid species, units LIT (3.1).
V': volume, units L3 (2.13).
y: nondimensional variable measuring height (4.10).
_. independent variable measuring height, units L (2.7).
a: proportion of gas produced in the wet saltcake, dimensionless (4.1).
,: interfacial tension, units AI/T2 (3.5).



b: coefficient in <P g-dependent capillary pressure equation (4.5)., units L -1.

E: porosity of the porous medium. dimensionless (2.8).
\: tortuosity of the porous medium, dimensionless (2.1).
Ie curvature. units L -1 (3.5).
0: volume fraction. dimensionless (2.12).
lP: Airy stress function. (5.1).
p: viscosity, units .\I ILT (3.3a).
v: Poisson's ratio. dimensionless (5.2).

T*: yield stress of sludge. units 1\;IILT2 (1.32).
uy: yield stress of saltcake. units ,;.vll LT2 (5.13).

p: density of constituent of the mixture, units ~flL3 (3.1).

a: as a subscript, used to indicate air (2.1).
c: as a subscript, used to indicate capillary pressure (3.5).

C: as a subscript, used to indicate convection (2.6).
d: as a subscript, used to indicate the dry saltcake (2.1).

D: as a subscript, used to indicate diffusion (2.3).
e: as a subscript, used to indicate the empty portion of the tank (2.14).
g: as a subscript, used to indicate gas (3.1).

H2: as a subscript, used to indicate hydrogen gas (2.12).
I: as a subscript, used to indicate liquid (3.3a).

p: as a subscript, used to indicate the particle forming the porous medium (3.10).
P: as a subscript, used to indicate a production rate (2.8).
s: as a subscript, used to indicate the sludge (4.1).

w: as a subscript, used to indicate the wet salt cake (3.3b).
- ~sed to indicate average values (2.11).
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