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EFFICIENT LOADING OF INTERMODAL CONTAINER
TRAINS

Andreas Ernst! and Peter Pudney?

Efficient loading and unloading of trains is crucial if rail transport is
to compete with road transport. The cost of rail transport can be
reduced by improving the placement of containers on trains so that
the number of wagons required is minimised and so that the train can
be operated safely and efficiently. The cost of terminal operations,
and the delays experienced by customers’ trucks, can be reduced by
improving the procedures used to load and unload trains.

We divided the problem into three subtasks. The first task is to
develop a load plan for a train based on the expected mix of con-
tainers. An ideal plan specifies positions on the train for various
container types in a way that minimises the number of wagons re-
quired while meeting a number of packing, safety and aerodynamic
constraints. The second task is truck dispatching — when a truck
arrives at the terminal, where should it be sent? This problem is
not straightforward because trucks arrive randomly and loading and
unloading occur simultaneously, and so the ideal position for a con-
tainer may not yet be available. The third task is to dispatch the
stackers that transfer containers between trains and trucks in such a
way that truck waiting time is minimised.

The train planning problem can be formulated as an integer program-
ming problem, but it can also be solved using the OASIS software
already owned by National Rail Corporation. Train plans can be
made more flexible by using container classes rather than specific
container details.

The study group suggested several truck dispatch schemes, but did
not have sufficient data to evaluate the schemes.

1CSIRO Mathematical and Information Sciences, Private Bag 10, Clayton South MDC, VIC
3169, Australia. Email andreas.ernst@cmis.csiro.au

2Centre for Industrial and Applicable Mathematics, University of South Australia, Mawson
Lakes SA 5095, Australia. Email peter.pudney@unisa.edu.au



Efficient loading of intermodal container trains 125

The study group also developed and evaluated several stacker dis-
patch policies for a single stacker. These policies are easy to imple-
ment; multi-stacker versions of two of the policies should be devel-
oped and evaluated using real data.

1. Introduction

National Rail Corporation operates rail freight terminals in Adelaide, Mel-
bourne, Sydney, Brisbane, Alice Springs and Perth. Customers deliver contain-
ers to these terminals, where they are loaded onto trains. At the other end of the
train journeys the containers are unloaded from the trains onto the customers’
trucks.

The times and costs associated with loading and unloading are major imped-
iments to the competitiveness of rail with road transport. There are two ways
these times and costs can be improved:

e The cost of rail transport can be reduced by improving the way containers
are stacked on the train, so that the number of wagons required to carry
a given load and the running costs of the train are minimised.

e The operating costs of the terminal and the delays experienced by cus-
tomers’ trucks can be reduced by improving the procedures used to load
and unload the trains.

A typical train is composed of a variety of wagon types and carries a variety
of container types, with up to 150 containers. A full train may have a nomi-
nal 8 hours in which to unload the incoming containers and load the outgoing
containers. Both activities occur in parallel, with several trains being worked
simultaneously using common lifting equipment and labour.

The primary problem is to assign containers to wagons in such a way that
the number of wagons required is minimised. But the load planning problem is
not straighforward:

e there are several wagon types, with different lengths, deck heights and
mass limits;

e there are many container types, with different lengths and heights, and
masses that vary between 2 and 35 tonnes;

e some containers can be stacked on top of others, but some containers
cannot have another on top; and
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e the train must have reasonably good aerodynamics and mass distribution.

The problem is made even more difficult by the fact that the trucks that
deliver and collect containers arrive at random times. When a truck arrives at
the terminal it may be delivering one or more containers, collecting one or more
containers, or both. The truck must be sent to a point alongside a wagon, where
it waits for a stacker to load or unload it. Containers are usually transferred
directly between trucks and wagons, but if necessary a container can be unloaded
from the train onto the ground to free up a wagon slot.

Containers are transferred between trucks and wagons using overhead gantry
cranes or reach stackers. A reach stacker is a mobile crane with a lifting frame
that attaches to a container. The Melbourne terminal has a pair of gantries
straddling four sidings, another pair of gantries straddling one track, and reach
stackers; the Adelaide terminal has three reach stackers. The time taken to
move a crane or stacker from one position to another is significant, and so it is
important that waiting trucks are not scattered widely around the terminal, and
that the trucks are served in an efficient order.

2. Subdividing the problem

The problem as described in the previous section is complex and difficult
to manage without some form of simplification. After some discussion it was
decided that to make the problem manageable it was sensible to divide it into
three parts that require different types of decisions to be made. Each part can
then be solved by a different type of algorithm in order to give an overall solution
to the problem. The three parts of the problem are:

Load Planning: At the highest level the decision to be made is how the load
should be arranged on the train. This problem assumes that we have a
known list of containers and simply want to arrange these in an optimal
way on the train. All operational restrictions due to the (as yet unknown)
arrival times of the containers are ignored. Also, no consideration is given
to the unloading of containers.

The ‘ideal’ loading plan can be calculated ahead of time, before the first
truck arrives. Hence it is possible to spend more computational time in
arriving at a good solution than is possible during the ongoing loading and
unloading of the train.

The loading plan arrived at in this step provides a goal to aim for. Nat-
urally the fact that the order in which trucks arrive is not known may
make it impossible to follow the loading plan exactly. Nevertheless, to the
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degree to which it is possible to follow this plan, it should provide a useful
guide. Furthermore, when changes need to be made to the plan due to
operational considerations, it is not necessary to re-optimise the complete
loading plan but simply to try to find some minimal change to the plan
which can accommodate the new requirements.

Truck Dispatch: When a truck arrives at the gate it must be assigned a posi-
tion on the train for its container. The choice of position should be guided
both by the loading plan arrived at earlier as well as the operational con-
siderations of the stacker movement. In essence this phase holds together
the other two parts of the problem. Note that trucks collecting containers
may also have a choice of container if the company has more than one
container on the train.

Stacker Dispatch: The short term decision problem is to determine the order
in which to service the trucks that have been assigned a position next
to the train. For this problem, no distinction needs to be made between
loading and unloading of the train; it is simply a matter of minimising
the time spent traveling by the stackers while maintaining a good service
standard for the trucks.

Each of these three problems is discussed in more detail in the following
sections.

3. Load planning

Load planning is concerned with determining a good stacking plan for the
containers on the train. This plan will be referred to as the ideal plan since it
ignores the operational constraints involved in loading and unloading the train.
The aim is to provide a guide to how the train should be loaded in order to fit
all of the containers with a nice overall container distribution for the final loaded
train. While it may not be possible to follow this ideal plan exactly, it provides
a guide to be used in the next phase (truck dispatch).

There are a number of objectives and constraints that need to be considered
in generating the ideal plan:

e Length Restriction: The most obvious constraint is imposed by the length
of the containers. Obviously the combined length of containers that can
be placed onto a platform cannot exceed the length of the platform. In
practice there are only a very limited number of combinations possible.
Containers are usually 20, 40 or 48 feet long, while platforms come in
lengths of 40, 48, 60 or 80 feet.
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e Weight Restriction: The maximum weight that each bogie (set of wheels)
can carry is limited. In practice this restriction causes a problem for only a
small number of very heavy containers which can only be placed efficiently
in a small number of places.

o Height Restriction: The total height of any wagon in the train needs to be
restricted to ensure that the train fits under all bridges it encounters. This
limits the amount of double stacking that can be done. ‘Well wagons’ are
special kinds of wagons that have lowered platforms to make it easier to
stack two containers.

e Aerodynamics: Fuel cost for long journeys is considerable, but can be
reduced by ensuring that the train has a ‘nice’ shape. The ideal shape
starts relatively low, increases in height (double stacked wagons), then is
followed by more single stacked wagons. Gaps must be avoided since they
create more turbulence.

e Weight Distribution: The overall distribution of weight must be biased
towards the front of the train for safety reasons.

e The total number of wagons on the train should be minimised.

Given a configuration of wagons for the train (that is, the types of wagons
used in the train and the order in which they are strung together) as well as the
anticipated set of containers to be loaded, the load planning problem tries to
create an optimal plan based on the above considerations.

It is useful to split the containers into a number of categories, so that rather
than assigning a unique identifier to each container, only its general character-
istics, such as length, approximate weight and height, are considered. It may
suffice to split the containers into 12 categories: three lengths (20, 40 or 48
foot) and four weight types (light, medium, heavy and very heavy). We will
" assume that all containers are approximately the same height. If necessary the
containers could be split into two or three categories based on height as well.

The container data for this problem can be taken from the bookings available
prior to the arrival of the train. This can be augmented by some additional
generic containers of various types to ensure that the ideal plan reserves some
spots for last minute additions to the train that were not booked beforehand.

One way to solve this problem is as an integer programming problem. In
the formulation below we will assume that all possible configurations of loading
different types of containers onto a given platform type have been enumerated.
For example, consider a 60 foot platform. Assuming that it cannot be double
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stacked, there are about 100 different feasible combinations (three 20 foot con-
tainers each with one of four different weights gives 64 combinations, some of
which may exceed the weight limit, two 20 foot containers each with four possible
weight classes, one 20 and one 40 foot container etc).

Let z,,; be the number of wagon platforms of type w that use the ith possible
configuration of containers. Then the load planning problem can be formulated
as:

min 3 Coitas )

Subject to wai < My, Vw (2)
N3 Limwi = ne Ve (3)

w g
Tyi > 0 and integer V w,i. (4)

Here constraint (2) ensures that only as many platforms are used of each
type as are actually available. LS ; represents the number of containers of type
¢ that are to be loaded onto platform of type w according to the it* possible
packing. Hence constraint (3) ensures that there are enough spaces to load each
container exactly once. The length, height and weight restrictions for each plat-
form are considered in defining the set of possible configurations. The objectives
of ensuring a nice weight distribution and an aerodynamic profile for the train
can be taken care of in two ways:

1. The cost coefficients C,; can be used to appropriately penalise undesirable
patterns, such an 80 foot platform containing only one 48 foot container.
Also, because the approximate position within the train can be deduced
from the wagon type, it is possible to include in C,; some penalty fac-
tors to discourage heavy wagons at the rear of the train or having tall
arrangements at the front or rear of the train.

2. Any solution to the above integer program still allows some freedom in
choosing how to arrange the train, as there is a significant number of
platforms of the same type. The choice of configuration from the solution
of the integer program to specific wagons can be made in a greedy heuristic
fashion or by solving a matching problem in which possible assignments of
configurations to individual wagons are weighted based on the height and
weight of the configuration and the position of the wagon in the train.

Note, however, that the ideal load plan may not be followed exactly dur-
ing the truck dispatch phase, and so it may be better not to spend too
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much effort on the assignment of configurations to specific wagons. Con-
figurations can be swapped between equivalent platforms during the truck
dispatch phase. This may be necessary if a container arrives for a platform
that has not yet been unloaded.

The only thing not considered in the above model is the case where the
loading of adjacent platforms cannot be done independently. This is the case
for ‘skel’ wagons, where adjacent platforms have a shared bogie and hence a
shared weight restriction. If the shared weight restriction cannot be satisfied
as a post processing step when assigning configurations to individual platforms
then the integer program could be modified to include all configurations for the
whole wagon, rather than for just an individual platform. Such a modification
would significantly increase the number of variables and probably require some
form of column generation to deal with the increased problem size. Nevertheless,
the problem given in (1)-(3) is likely to remain manageable as the number of
constraints is small (< 100).

An entirely different approach is to use the QOASIS software already owned
by National Rail Corporation. The main problem with this software is that it
does not deal with the operational constraints of loading and unloading the train
simultaneously, but simply assumes that all containers are available to be picked
up from a trailer pool in whatever sequence it determines. Since our loading
problem also ignores the operational constraints, it would seem easiest as a first
step to use OASIS to create the ideal plan. While OASIS creates a schedule and
loading plan for individual containers, the container identifiers can be ignored
to give a plan by container category.

The recommendation of the MISG working group on this problem is that
OASIS should be tried for this problem before custom software based on the
above integer programming formulation or heuristics is developed.

4. Truck dispatcher

Each time a truck arrives at the entrance to the terminal, the exact type
of containers it is delivering (including their weights) and the containers that
the truck is supposed to collect are recorded. At this point in time the truck
needs to be assigned specific positions on the train where it is to deliver and
collect each container. For collection there is often no choice as the trucks are
generally sent to collect a specific container which has a known position on the
train. For containers delivered to the terminal, however, a choice needs to be
made. This choice should allow efficient loading of the train while ensuring that
a good loading plan is maintained.
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The truck dispatcher module ties together the other two components of the
overall system. It takes the ideal plan produced by the load planner to determine
where to send the trucks while allowing for efficient movement of the stackers.
So the truck dispatcher module simply follows the following generic algorithm

Truck Dispatcher
Wait for next truck to arrive
For each container on the truck
Assign a position on the train where it is to be loaded
For each container to be collected
Determine position on the train

As mentioned previously, the position of containers to be collected is often
fixed, and so the main decision to be made is the position at which the incoming
containers are to be dropped off. Most trucks only deliver or collect a single
container, but in some cases two containers can be carried on a single truck,
in which case the order in which to process the containers also needs to be
determined.

A number of ways to determine a good assignment of the containers to
positions on the train have been suggested:

1. Consider the ideal loading plan produced earlier and restrict the possible
positions for each incoming container to those that have a container of
matching type earmarked in the ideal loading plan and for which the space
already exists on the train.

For example, suppose a truck arrives with a medium weight, 40 foot con-
tainer. The ideal load plan may have several possible positions for such
a container. However, some of these options may not be feasible at the
current time as the positions are blocked by containers that are yet to be
unloaded. After eliminating such infeasible positions there are two cases:

o If there are multiple options left, one of them can be chosen arbitrarily
or else the dispatcher heuristic could be run for each possible position
to see which choice would impact most favourably on the stacking
problem.

e If no feasible positions remain then a local search could be used to
modify the ideal plan. As mentioned in point 2 on page 129, the as-
signment of platform configurations to specific wagons can be inter-
changed without significantly affecting the ideal plan. Alternatively,
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one could look at simple modifications such as swapping two contain-
ers of the same size but different weight characteristics between two
platforms (provided the height and weight constraints are not vio-
lated). Finally, in the unlikely case that none of the above methods
arrives at a new ideal plan that can accommodate the container be-
ing considered, then one of the greedy heuristic rules described below
needs to be used.

2. Make use of appropriate functionality in OASIS. This strategy would re-

quire co-operation from the company that produces the OASIS software.
However, as part of the GRASP heuristic [4] used in OASIS there should
already be functionality that evaluates the feasibility and fitness for plac-
ing a container in any possible position. All that is required is to make
this functionality available directly to the user on a truck by truck basis.

. A greedy heuristic could be used to assign each container to a position.

There are a number of ways of implementing a greedy heuristic, but they all
share the following basic behaviour in common. For each possible position
to which a container can be assigned, a score is evaluated. The container is
then assigned to the position with the best score. The method is myopic in
that it does not consider possible future arrivals directly. Hence the scoring
system needs to be designed in such a way that the current assignment will
not prevent containers arriving in future from being loaded.

The following scoring methods have been suggested. Note that each of
these could be used alone or a combination of scores could be used in
order to allow a trade off between different factors. Consider the potential
assignment of container ¢ to platform w:

(a) Maximise the length of remaining gaps: This measure is designed to
allow for the greatest flexibility in loading containers still to arrive by
assigning (¢, w) a score equal to the longest gap remaining on platform
w after c is loaded on it, with a very large score if the remaining gap
is exactly zero.

(b) A slightly more sophisticated variation of the above performance mea-
sure is to define the following function for a partially loaded train:

f= z (value of gap type g) * (# gaps of type g remaining)
gaps g

This function can then be evaluated before and after the assignment
of ¢ to w and the difference in f values is the score of the assignment,
with lower value being better. The advantage of this system is that
it can be better tuned to the different container types. For example,
any gap of less than 20 feet cannot be filled by any containers and
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so should receive a score of zero. Also, a 40 foot gap is much more
versatile than two gaps of 20 feet, and so the longer gap should receive
more than twice the score of the shorter one.

A further refinement of this scoring function would be to base the
weights of gaps at least in part on the expected distribution of con-
tainers yet to come. For example, if there is a very low probability of
any more 48 foot containers being delivered for the given train then
the score of a 48 foot gap should be no higher than that of a 40 foot
gap (if anything it should be lower, as it is likely to lead to a gap in
the final train which is undesirable from the aerodynamic viewpoint).

(c) None of the above measures take into account the difficulty of having
to simultaneously load and unload containers from the same set of
platforms. Consider assigning a score to the assignment (¢, w) equal
to the total length of the sequence of containers on either side of ¢
that have already been loaded. Maximising this measure means that
containers are, whenever possible, placed next to others that have
already been loaded. Hence this heuristic tries to keep gaps next
to containers that have yet to be unloaded. Apart from making it
easier to load the remaining containers, it should also improve the
efficiency of the stacker scheduling as this method will try to build
up long stretches of platforms that have been finalised with no need
for a stacker to return to them.

(d) One way to directly minimise the impact of the container assign-
ment on the stacking problem is to run the stacker dispatcher module
for each possible assignment of container to a platform. By com-
paring the time required to load waiting trucks before and after the
assignment one can use the greedy heuristic to minimise the expected
waiting time of the trucks.

While it is not expected that this measure will produce particularly
good train loading patterns by itself, it could be used in two ways.
First, it can be used as an additional term or tie-breaker for one
of the other scoring methods, to bias the greedy heuristic towards
assignments that are easier to schedule. Second, this method provides
a way of determining the preferable order of delivery or collection
when there are more than two containers are on the truck.

Which of these methods is best suited to producing a good solution for the
container loading problem of National Rail Corporation cannot be ascertained
without performing some empirical testing with real data. Since no such data
was available, the study group did not come to any definite conclusions.
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It should be noted that the general framework for the truck dispatcher could
be implemented to be performed manually with only minimal decision support
software. For example, provided the ideal plan was available in some form, it
could easily be used as a guide to assigning containers to platforms.

5. Stacker dispatcher

5.1 The stacker dispatch problem

Trains are loaded and unloaded using stackers, which are either overhead
gantry cranes or mobile cranes fitted with container lifting frames. At any
instant there could be several trains in the terminal, each being simultaneously
unloaded and loaded. Trucks arrive at random times, bringing new containers
to be loaded onto a train, collecting containers from a train, or both. When a
truck arrives at the terminal the truck dispatcher sends the truck to a position
alongside a train, where it waits for a stacker to serve it. The stacker dispatch
problem is to determine the order the stackers will visit the waiting trucks in a
way that minimises truck waiting time and the cost of operating the stackers.

5.2 A single stacker dispatch problem

The stacker dispatch problem is easier to analyse if there is only one stacker.

When a truck arrives at the terminal the truck dispatcher sends it to a
location adjacent to a wagon, where it waits for the stacker to load or unload a
container. If the truck has more transactions it then moves to the next location,
otherwise it leaves the terminal.

From the stacker’s point of view, it must service a sequence of requests
T,,T,...,T,. Each request T; is defined by the tuple T; = (a;, z;,d;) where a;
is the arrival time of a truck at location z;, and d; > a; is the time at which the
"loading or unloading is completed and the truck departs.

At time t the set of waiting requests is W (t) = {T; | a; < t < d;}. Future
arrival times are not known in advance, and so cannot be used to plan stacker
movements.

If the stacker is at location = at time ¢ and choses to service waltmg request
T; € W(t) then the departure time d; will be

di=t+7(z,z;) +1

where 7(z,z;) is the time taken for the stacker to travel from location z to
location z; and [ is the time required to load or unload the truck.
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The waiting time for each request is w; = d;—a;. The objective is to minimise
some function of the waiting times, such as:

e mean waiting time
e RMS waiting time

e maximum waiting time

5.3 Dispatch policies

A policy is a function that is used to decide which request should be serviced
next. It depends on the current time, the location of the stacker, and the set of
waiting requests. It may also depend on an internal stacker ‘state’ that depends
on the history of the stacker. For example, stacker state may be used to encode
the direction the stacker is travelling.

We developed five different policies during the MISG workshop.

e The FIFO (First In, First Out) policy services requests in order of arrival
time, a;.

e The nearest policy selects the waiting request 7 that minimises the trav-
elling time 7(z,z;) from the stacker’s current location z.

o The loopy policy serves the next truck to the right or, if there are none, the
leftmost truck. That is, the stacker moves right along the train servicing
trucks until there are no more trucks to the right, then jumps back to the
leftmost truck.

e The nearest-longest policy serves the nearest truck next unless a truck
has been waiting longer than time ¢max, in which case the truck that has
been waiting longest is served next.

e The mirage policy makes trucks that have been waiting a long time appear

closer than they really are, then serves the truck that appears closest.

None of these policies require the stacker to have an internal state. Following
the MISG workshop, Alan Brown and Patrick Tobin suggested another strategy:

e The sweep policy selects the next truck in the current direction, or, if
there are none, changes direction.
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For each of these policies we must also specify what the stacker should do if
there are no pending requests. We chose to leave the stacker at its last location
until another request was received.

5.4 Loopy and sweep analysis

Alan Brown analysed the loopy and sweep policies for a terminal with
overhead cranes straddling several sidings, as shown in Figure 1.

Figure 1: Three sidings, two overhead cranes.

Estimates for the mean and maximum waiting times can be derived by con-
sidering a deterministic model. Suppose each stacker services a segment of length
L/np, where L is the total train length, p is the number of parallel tracks and
n is the number of stackers. The time required for each stacker to complete a
loop without stopping to load or unload containers is ¢ = 2L/vnp, where v is
the travel speed of the stackers.

The average loop time for a stacker is the travel time plus the loading time
for the expected arrivals. If trucks arrive at a rate A and are loaded at a rate p
then the traffic intensity is ¢y = A/p and the average loop time is given by

7=2L i1y
wnp
which can be solved to give
2L
' —— .
vnp(1 - 9)

In the deterministic case, the maximum waiting time will be T" and the mean
waiting time will be T°/2.

With stochastic arrivals, the mean waiting time is likely to be less than 7'/2
because the stackers do not have to travel a complete loop; they can turn when
there are no more trucks waiting in the current direction. On the other hand, the
maximum waiting time is likely to be greater than T because of the stochastic
variation in arrivals.
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The loopy policy controls the maximum expected waiting time by providing
the same level of service to all trucks. The sweep policy provides a better level
of service to those trucks near the middle of a loop, but provides two chances
of serving those trucks near the ends of a loop, which in turn increases the
possibility of reducing the size of the next loop. Simulation results show that
the sweep policy is usually better than the loopy policy.

5.5 Choosing the cut-off time for the nearest-longest policy

The nearest-longest policy serves the closest truck next unless there is a
truck that has been waiting longer than time tmax. What should tmax be?
Alan Brown suggested that special action is required whenever a waiting time
exceeds the mean waiting time by one standard deviation.

Many of the stacker policies we tested result in unimodal distributions of
truck waiting time. These distributions are often skewed heavily to the right,
and so maximum waiting times become high. (An exception is the loopy policy,
which is designed to control the upper bound on the waiting time.) Policies
which lead to skewed distributions of waiting time need to be modified to avoid
extreme waiting times.

We want to select a cut-off time tyax that defines the start of the distribution
tail. We will then modify the policy for waiting times within the tail. A sensible
choice of cut-off time is tmax = p+ 0, where p and o are the mean and standard
deviation of the waiting times for the unmodified policy. The Normal Power
approximation to the waiting time distribution is

Fidy=pie (y+ T -1)+ O(l/n))

where 7 is the skewness of the distribution and ®(y) = 1 — € is the standard
normal distribution [1, 2]. When y = 1 the skewness term vanishes for all waiting
time distributions. Furthermore, this is the point of inflection for the standard
normal distribution, and so seems to be a reasonable point to define the start
of the tail. The probability of a waiting time in the tail of the distribution is
€ = 0.17, which means we will be intervening for about 17% of the trucks.

The moments of the waiting time distribution for a loopy policy provide
useful measures for the mean and standard deviation when small samples are
available, as the higher moments are quite small under this policy.

The simulation results in Section 5.8 show that intervention at about one
standard deviation from the mean does indeed minimise the maximum waiting
time.
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5.6 Designing the mirage function

The mirage policy uses a ‘mirage function’ to make trucks that have been
waiting a long time appear closer than they really are, then chooses the truck
that appears to be closest. The apparent time required to travel to a request T;
is

(¢, a;) = m(t, a;)7(t,a;)

where m is the mirage function. The mirage function should have the following
characteristics:
e m =1 for trucks that have not been waiting too long;
e m decreases to a small value € > 0 as the waiting time approaches tmax;
o m > 0 for t — a; > tmax so that requests that have been waiting longer

than time tmax are served in (approximate) order of arrival.

The mirage function used to test the mirage policy was

t—a
tmax

m(t,a) = \/ min {1, L {0.0001,1 — 1}

3

which has m =1 for ¢ — a; > 0.7 t;max, then follows the square-root curve down
to m = 0.0001 for ¢t — a; > tmax-

As with the nearest-longest policy, the maximum waiting time can be min-
imised by setting tmax =~ p + o.

5.7 Test problem
The stacker dispatch policies were evaluated using the following problem:

e 100 requests;

e random arrival times a; distributed uniformly over the interval [0, 14400]
seconds (4 hours);

e locations selected randomly without replacement from {10, 20,...,1400}
metres;

e stacker travel speed of 5ms~!, giving travel times 7(z, ;) = |z — z;|/5;

e loading time [ = 120 seconds.



Efficient loading of intermodal container trains 139

The sequence of locations was found by forming the sequence of pairs
(rla 10)7 (1"2, 20)v veey (rl40a 1400)

where r; were random numbers distributed uniformly on the interval [0, 1], and
then sorting these pairs by the first element. The locations from the first 100
pairs of the sorted list were assigned to the request locations z;.

We also used a sequence of autocorrelated locations, to simulate the effect of
a truck dispatcher that tries to put each truck close to the previous truck. Given
a sequence of uniformly distributed random numbers s;, the autocorrelated se-
quence was given by r; = ar;_; + (1 — @)s; with rp = 0. The autocorrelated
sequence r; was used as before to generate a sequence of request locations. For
the test problems we used o = 0.8.

5.8 Results

Figures 2-7 show results of each of the policies. The horizontal axis is time
and the vertical axis is location. The horizontal lines show the waiting time for
each request; the lighter line shows the movement of the stacker. The request
locations are not autocorrelated.
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Figure 2: Stacker movement and waiting times for the FIFO policy.
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Figure 3: Stacker movement and waiting times for the nearest policy.
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Figure 4: Stacker movement and waiting times for the loopy policy.

Figure 5: Stacker movement and waiting times for the nearest-longest policy,

Figure 6: Stacker movement and waiting times for the mirage policy, tmax =
-2400.

Figure 7: Stacker movement and waiting times for the sweep policy.
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Tables 1 and 2 show the means of the mean waiting time, RMS waiting time
and maximum waiting time, in minutes, from ten runs with each of the policies.
In the first table the request locations were uncorrelated; in the second table the
request locations are autocorrelated with o = 0.8. The parameter for each of
the nearest-longest and mirage policies is the cut-off time, tmax, in minutes.

Table 1: Waiting times, in minutes, for the various stacker policies, a = 0.

policy mean RMS maximum
FIFO 68.19 77.45 128.44
nearest 18.06 23.45 69.53
loopy 22.31 26.26 56.06
nearest-longest 40 24.84 30.45 58.48
nearest-longest 45 21.05 26.40 55.52
nearest-longest 50 19.61 24.82 55.61
nearest-longest 55 18.75 24.12 58.67
nearest-longest 60 18.46 23.79 61.71
mirage 40 21.27 25.92 51.78
mirage 45 19.82  24.70 51.75
mirage 50 18.93 23.93 54.09
mirage 55 18.78 24.09 57.83
mirage 60 18.57 23.90 61.69
sweep 1792 22.04 56.31

5.9 Mathematical programming

In order to obtain ‘optimal’ solutions to the stacker dispatch problem a
MILP approach can be used. In this section we describe one such formulation
that captures much of the complexity of the stacker dispatch problem. For the
purpose of this section a job is the task of either loading or unloading a container
at a certain position on the train. Since the position on the train is known, the
travel time between jobs is also known.

One formulation for this problem is described below:

Sets
T = Set of trucks
= Set of jobs
JO = Jobs already commenced
J; = Jobs required by truck ¢
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Table 2: Waiting times, in minutes, for the various stacker policies, a = 0.8.

policy mean RMS maximum
FIFO 64.81 73.26 119.55
nearest 17.07 22.54 65.66
loopy 21.03 25.10 56.78
nearest-longest 40 21.16 26.43 54.08
nearest-longest 45 18.85 23.81 51.54
nearest-longest 50 18.08 23.25 54.75
nearest-longest 55 17.66 23.00 58.00
nearest-longest 60 17.42 22.83 60.59
mirage 30 23.46 27.38 54.05
mirage 35 20.59 24.71 48.79
mirage 40 19.31 23.85 51.58
mirage 45 18.47 23.15 51.74
mirage 50 1776  22.79 54.66
sweep 17.08 21.13 56.06

Variables

zi; = 1 if jobs 7 and j are performed by the same stacker, 0 otherwise

y; = start time of job j
wy = total time spent by truck ¢ in the system
v; = penalty for truck ¢t = max{0,w; — D}

z = maximum time required to service any truck

Parameters

a¢ = arrival time of truck ¢

D = service standard: maximum duration for servicing a truck

d; = deadline for job j (= r; + D)

pj = processing time for job j

m;; = movement time for relocating the truck between jobs i and j
M = a big constant

rj = release time of job j (earliest time it can be done)

s; = start time of job j € JO

7i; = time for stacker to travel between jobs ¢ and j

min Z Wi

teT
or min th

teT
or min =z
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Subject to wy < D+ VteT (8)
z > wy VteT 9)
yomm = 1 vieJ\J° (10)
i#]
Y @ £ 1 VieJ (11)
JEJ\JO,j#i
Y = 8 vielJ° (12)
Yi+pitTi—M(l—-gz5) < y; Vied jeJ\J i#j (13)
vyi+pi+miy <y Y i, on same truck, i before ;  (14)
vitpi—aa < wy VteT, i€l (15)
zi; € {0,1} VijeJd (16)
v, we, Yy, 2 > 0. (17)

Here objective (5) minimises the total time required to process all of the
trucks. Alternatively objective (6) could be used in order to minimise the amount
of time by which the service standard is violated. Finally objective (7) minimises
the maximum time spent waiting by an individual truck. This last objective
serves mainly to maximise throughput. Constraints (8) and (9) only serve to
define the v and z variables for the second and third objective respectively.
Equations (10) and (11) are used to ensure that each job is placed somewhere
into the sequence of jobs to be completed by one of the stackers. We assume
here that each stacker is assigned some job in J? that defines its current position
— if this is not the case a dummy job of zero duration could easily be added to
satisfy this assumption. The start time of each job j, y;, is given by equations
(12)—(14). Finally constraint (15) ensures that each w; variable takes on an
appropriate value.

Some numerical experiments conducted using randomly generated data in-
dicate that it is difficult to produce good solutions with this approach. As the
LP relaxation is not very tight, the MILP solver spends a lot of time in the
branch and bound before finding a good solution. Given that the dispatch prob-
lem needs to be solved quickly, this approach is not recommended for use by
National Rail.

Another exact method proposed is based on an algorithm for optimally land-
ing aircraft on a single runway, see Ernst et al. [3]. The aircraft landing prob-
lem consists of landing a given set of aircraft, each with its own landing time
window. The landing times are constrained by minimum separation distances
between planes that depend on the aircraft involved, as the separation require-
ments are at least partly due to turbulence considerations that vary between
aircraft types. The aim of the aircraft landing problem is to assign to each plane
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a feasible landing time so that the deviation from the desired landing time of
the plane is minimised.

The stacker dispatch problem can be transformed into an aircraft landing
problem as follows. Each job that needs to be done corresponds to an aircraft
that needs to land. The arrival time of the truck next to the train corresponds
to the earliest possible landing time of the aircraft while the latest time is con-
strained to be within a fixed time D of the arrival time. The place of the
minimum inter-arrival time between aircraft is taken by the processing time of
the job plus the travel time of the stacker from one job to the next. Finally
in the aircraft landing problem the deviation from the desired landing time is
minimised. Here we simply take the desired time for starting the job to be the
arrival time and hence minimise the total waiting time by all of the jobs currently
being considered.

Numerical testing of this method shows that it works reasonably well. The
main difficulty is that as the number of jobs waiting gets large, the algorithm
often has difficulty proving optimality. This is because there are many nearly
equal solutions when there are several jobs close together. Furthermore the jobs
are not distinguished by different cost penalties. Thus there are many solutions
with very similar costs that need to be searched before the algorithm can declare
that it has found a provably optimal solution. Hence for problen:: of up to 10
jobs an optimal solution can be found in reasonable time (< 5 seconds on a
666MHz Alpha processor). For larger problems it is advisable to limit the CPU
time or use a heuristic to prevent unreasonable running times (for problems with
15 jobs, for example, the running time can easily be several hours for the exact
method).

6. Conclusions and recommendations

Train running costs can be reduced by improving the way containers are
placed onto trains. The costs associated with loading and unloading trains can
be reduced by improving the way containers are assigned positions on the train
and by improving the order in which waiting trucks are served.

We divided the problem into three tasks: load planning, truck dispatch and
stacker dispatch.

A load planning system determines the ideal placement of container types
onto a train for the expected mix of container types. The problem was formulated
as an integer programming problem. This problem can also be solved using the
OASIS software currently owned by National Rail Corporation.
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e Train load should be planned using OASIS, but using container classes
rather than specific container details so that containers can be more easily
rearranged during loading.

e If necessary, custom software could be developed based on the integer
programming model developed during the workshop.

When a truck delivers a container to the terminal, the truck dispatcher must
decide where the container should be placed on the train. The load plan will
provide guidance, but the ideal positions may still be occupied by containers
waiting to be unloaded. Several truck dispatch schemes were suggested, but we
did not have the data needed to determine the best scheme.

At any instant there could be several trucks waiting alongside trains to be
loaded or unloaded. The stacker dispatch problem is to assign stackers to wait-
ing trucks in an order that minimises truck waiting time. We developed and
evaluated several stacker dispatch policies for the case of a terminal served by
a single stacker. Further work is required to develope multi-stacker versions of
the best policies.

e A multi-stacker mirage policy should be developed, evaluated and tuned
using real truck arrival times and positions, and the results compared to
actual stacker operations. A multi-stacker sweep policy should also be
developed and evaluated using real data.

e These policies are designed to be easy to implement at the terminal, and
should be implemented if the evaluation indicates a potential for improving
terminal operations.
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