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Abstract

Flash tank evaporation combined with a condensing heat exchanger can be used when heat
exchange is required between two streams and where at least one of these streams is difficult
to handle (in terms of solid particles content, viscosity, pH, consistency etc.). To increase
the efficiency of heat exchange, a cascade of these units in series can be used. Heat transfer
relationships in such a cascade are very complex due to their interconnectivity, thus the impact
of any changes proposed is difficult to predict. In this report, a mathematical model of a single
unit flash tank evaporator combined with a condensing heat exchanger unit is proposed. This
model is then developed for a chain of the units. The purpose of this model is to allow an
accurate evaluation of the effect and result of an alteration to the system. The resulting model
is applied to the RUSAL Aughinish Alumina digester area.
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List of notations

A Heat exchanger area, m2;

T Slurry (hot stream) temperature, ◦C;

t Spent liquor temperature, ◦C;

tC Condensation temperature, ◦C;

F Hot stream mass flow rate, kg/s;

S Cold stream (spent liquor) flow rate, kg/s;

G Steam flow rate, kg/s;

L Output hot stream mass flow rate, kg/s;

N Number of flash tank stages;

h Specific enthalpy, J/kg;

hfg Latent heat, J/kg;

U Heat transfer coefficient, W/(m2K);

Q Power, W;

P Pressure, Pa;

cp Specific heat capacity, J/(kgK);

φ Temperature change due to non condensable gases, K;

ψ Temperature change due to superheating, K;

S Cold stream;

F Input hot stream;

G Steam flow;

L Output hot stream;

W Water;

in Input;

out Output;

∗ Equilibrium value.
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1 Introduction

Effective heat exchange between hot and cold streams is an important part of energy efficiency
in process operations. Where heat exchange is required between two streams and where at
least one of these streams is difficult to handle (in terms of solid particles content, viscosity,
pH, consistency, etc.) in a standard counter-flow type heat exchanger, flash tank evaporation
combined with a condensing heat exchanger can be used. Often to ensure maximum heat
exchange, a series of these units in a chain is used, with the hot stream flowing through the flash
tanks and the cold stream flowing in a counter current direction through the heat exchanger.
Steam is generated through pressure drop in the flash tank from the hot stream and then
condenses in the heat exchanger, transferring the latent heat to the cold stream. The interlinked
nature of the flash tanks and the condensing heat exchangers in series makes analysis of the heat
exchange process rather difficult, as any change in the operating parameters at any point in
the chain impacts the other components of the chain, and therefore once a system is operating,
any alteration of the system parameters could have an unknown impact on the process and the
overall balance of the heat exchange throughout the chain. While flash tank heat exchange,
as described above, is in use in many applications, the particular case study for this project
is the system that is currently in use in the digestion area of RUSAL Aughinish Alumina, Co.
Limerick, Ireland.

RUSAL Aughinish Alumina produces alumina from bauxite through the so-called Bayer process
[1, 2, 3, 4], which consists of four main steps (see Fig. 1):

1. Dissolution of bauxite in an aqueous Sodium hydroxide (NaOH) solution (Digestion);

2. Removal of the insoluble materials (Clarification);

3. Precipitation of gibbsite from the liquor (Precipitation);

4. Removal of chemically bound water (Calcination).

In the digestion area the bauxite ore is mixed with caustic soda and the reheated spent liquor.
High pressure steam is added to heat the mixture to a required temperature of 250 ◦C. The
resulting hot slurry then passes through a chain of flash tanks, where the mix is cooled through
indirect heat exchange with a cold liquid stream of the spent liquor. Cooling the slurry to
a temperature of 40 ◦Cis essential for the next stages in the alumina production process. By
increasing the amount of heat transferred in the flash tank heat exchange chain from the hot
bauxite slurry to the cold spent liquor, the amount of high pressure steam required in the
digester can be reduced, resulting in an increase in the efficiency of the process.

The purpose of this report is to create a model of a cascade of heat exchange units composed
of a flash tank and a condenser that would allow accurate evaluation of the effect and result of
alterations to the system. The resulting model is applied to the RUSAL Aughinish Alumina
digester area.
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Figure 1: Basic thermal flow chart of the digester area

2 A model of flash tank - condenser system

In a unite that is composed of a flash tank and a condenser, as shown in Fig. 2, the liquid slurry
is coming in with flow rate F, specific heat cpF, pressure P0, temperature TF, and enthalpy hF

into the flash tank. Steam is evaporating in the flash tank and flows to the heat exchanger with
flow rate G, specific heat cpG, pressure P1, and temperature tG. The liquid is leaving the flash
tank at flow rate L, pressure P1, temperature TL, and enthalpy hL. In the condenser the steam
condenses at temperature tc and pressure P1, and exchanges heat Q with the liquid (the spent
liquor) entering the exchanger at temperature tin, flow rate S and specific heat cps. The liquid
leaves the heat exchanger at temperature tout. The mass and enthalpy balances are expressed
by the following equations:

F = L+G, (2.1)

FhF = LhL +GhG, (2.2)

hG = hL + hfg, (2.3)

Q = Ghfg = F(hF − hL) = FcpF(TF − TL). (2.4)
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The description of heat exchange includes the equation for generated and consumed heat ac-
counting for the change of temperature and pressures (see Fig. 3). The heat that is generated

Figure 2: A schematic representation of a flash tank - condenser unit

Figure 3: Heat exchange in the unit
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at the source (in the flush tank) is

Q = FcpF(TF − TL), (2.5)

where tG = TL = tc + φ + ψ. Here ψ expresses the superheated state of the vapours, since
the evaporated liquid in the flash tank is not pure water and contains dissolved non-organic
components; φ is the temperature correction that is due to the presence of non-condensable
gases in the vapour phase. Hence, the generated heat is

Q = FcpF(TF − tc − φ− ψ). (2.6)

The consumed heat at the sink is

Q = UA∆tlog, (2.7)

where U is overall heat transfer coefficient, A is the heat exchanger area and

∆tlog =
(tc − tin) − (tc − tout)

ln tc−tin

tc−tout

=
tout − tin

ln tc−tin

tc−tout

. (2.8)

Besides,

Q = ScpS(tout − tin). (2.9)

Now, excluding tout from eqs.(2.7–2.9), we receive

Q = KS

exp(UA/KS) − 1

exp(UA/KS)
(tc − tin), (2.10)

where KS = ScpS. Excluding tc from eqs. (2.6) and (2.10), we receive

Q =
KS

C−1
C

1+
KS(C−1)

KFC

(TF − tin −ψ −φ), (2.11)

where KF = FcpF and C = exp(UA/KS).

3 Cascade of the units

In order to increase the efficiency of heat exchange, the flush tank - condenser units are often
assembled in chain. The schematic representation of a series of flash tanks and heat exchangers
are shown in Fig. 4. In Fig. 4, the top line represents the flow of hot slurry from the digester D.
It starts at a temperature T1, and goes through a series of N flush tanks. At the ith flush tank,
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the slurry’s temperature decreases from Ti at the input to Ti+1 at output (which is the input
temperature for the (i+1)th flush tank), and the slurry finally exits the cascade at temperature
TN+1 = Tout. The bottom line represents the flow of spent liquor into the digester. The flow
starts at temperature tN+1 = tin, and as it passes through the ith condenser, its temperature
increases from ti+1 to ti. The spent liquor enters the digester at temperature t1. The closer
this temperature is to the temperature at which the digester operates (255◦C) the less energy
is needed to heat it up.

Figure 4: A cascade of the flash tank - condenser units

The analysis of a single condenser in Section 2 shows that the four quantities, Ti, Ti+1, ti and
ti+1, are related by two (approximately) linear equations. In this paper, we assume that these
equations are precisely linear. Then for the 2N + 2 variables T1, . . . , TN+1 and t1, . . . , tN+1 we
have 2N linear equations. In addition, we have a fixed boundary values, namely T1 = 255◦C,
which is the temperature at which the digester operates. This leaves one free variable, which
we shall choose to be tN+1 = tin. It follows from the general theory of linear systems that all
the other variables are then linearly functions of tin and T1. Thus, we have

t1 = a tin + b (3.1)

where a is a real number, which from physical principles must be between 0 and 1.

From Section 2, we get that the heat exchanged in the ith unit is given by

Qi = Di(Ti − ti+1 − πi), (3.2)
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where Di is a constant depending on the physical properties of the unit,

Di =

(

KS
C−1
C

1+
KS(C−1)

KFC

)

i

, (3.3)

and πi = ψi +φi is a loss in potential caused by superheating (the ψi term) and the presence
of non-condensable gases (the φi term). Let the flow rate of the spent liquor be ri and its
specific heat be si (these may change from stage to stage as the amount of water in the spent
liquor changes). Let the flow rate of the slurry be Ri and its specific heat Si (again, changing
quantities of water in the stream can lead these quantities to vary from stage to stage). Then
we have

(Ti − Ti+1)RiSi = Qi,

(ti − ti+1)risi = Qi.

Let

Ki = Di/RiSi,

ki = Di/risi.

Using 3.2, we get the equations

Ti − Ti+1 = Ki(Ti − ti+1 − πi), (3.4)

ti − ti+1 = ki(Ti − ti+1 − πi). (3.5)

As i ranges from 1 to N, equations (3.4) and (3.5) give 2N linear equations. If we augment
them with the two equations

T1 = 255, (3.6)

tN+1 = tin, (3.7)

we get a system of 2N+2 linear equations in the 2N+2 variables T1, . . . , TN+1 and t1, . . . , tN+1.
They can be written in matrix form as At = b, where, using a superscript t to denote the
transpose,

t = (t1, T1, t2, T2, . . . , tN+1, TN+1)
t,

b = (−k1π1,−K1π1,−k2π2,−K2π2, . . . ,−kNπN,−KNπN, 255, tin)
t

and A is the coefficient matrix






















1 −k1 k1 − 1 0 0 0 . . .

0 1− K1 K1 −1 0 0 . . .

0 0 1 −k2 k2 − 1 0 . . .

0 0 0 1− K2 K2 −1 . . .
...
0 1 0 0 . . .

0 0 . . . 0 0 1























.
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The current plant has an assembly of 10 heat exchangers in a row, so there are 30 physical
parameters that we need to know: K1, . . . , K10, k1, . . . , k10 and π1, . . . , π10. If πi is known, we
could use equations (3.4) and (3.5) to calculate Ki and ki.

The following Theorem holds for this model:

Theorem 1. An assembly of N heat conversion units, where heat exchange in every unit
described by the system

Ti+1 = Ti −Qi/RiSi,

ti = ti+1 +Qi/risi,

Qi = Di(Ti − ti+1 − πi),

can be described by a model

TN+1 = (1− K)T1 − KtN+1 + K δ,

t1 = (1− k)tN+1 + kT1 − k ∆.

Proof. At every stage,

Ti+1 = (1− Ki)Ti + Kiti + Kiπi,

ti = (1− ki)ti+1 + kiTi − kiπi,

where ki = Di/risi and Ki = Di/RiSi, hold. The boundary conditions T1 and tN+1 are assumed
to be given. Hence we have N+ 1 linear algebraic equations for N+ 1 unknown variables, and
the system is well defined.

The hypothesis of Theorem definitely holds for N = 1. Assume that is holds for an assembly
of i − 1 heat exchangers, from the fist to the (i − 1)st. That is, we assume that the following
equations hold:

Ti = (1− K1,i−1)T1 + K1,i−1ti + K1,i−1δ1,i−1, (3.8)

t1 = (1− k1,i−1)ti + k1,i−1T1 − k1,i−1∆1,i−1. (3.9)

We now have to prove that then it also hold for an assembly of i heat exchangers.

For the ith unite the following equations hold:

Ti+1 = (1− Ki)Ti + Kiti+1 + Kiπi, (3.10)

ti = (1− ki)ti+1 + kiTi − kiπi. (3.11)

Substituting (3.11) into (3.8), and (3.8) into (3.11), we obtain

Ti = (1− K1,i−1)T1 + K1,i−1[(1− ki)ti+1 + kiTi − kiπi]ti + K1,i−1δ1,i−1,

ti = (1− ki)ti+1 + ki[(1− K1,i−1)T1 + K1,i−1ti + K1,i−1δ1,i−1] − kiπi,
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and hence

(1− kiK1,i−1)Ti = (1− K1,i−1)T1 + K1,i−1(1− ki)ti+1 − K1,i−1kiπi + K1,i−1δ1,i−1,

(1− kiK1,i−1)ti = (1− ki)ti+1 + ki(1− K1,i−1)T1 + kiK1,i−1δ1,i−1 − kiπi.

Substituting these equalities into (3.10) and (3.9), we finally get

Ti+1 =
(1− Ki)

(1− kiK1,i−1)
((1− K1,i−1)T1 + K1,i−1(1− ki)ti+1 − K1,i−1kiπi + K1,i−1δ1,i−1)

+Kiti+1 + Kiπi ,

t1 =
(1− k1,i−1)

(1− kiK1,i−1)
((1− ki)ti+1 + ki(1− K1,i−1)T1 + kiK1,i−1δ1,i−1 − kiπi)

+k1,i1T1 − k1,i−1∆1,i−1.

That is,

Ti+1 = (1− K1,i)T1 + K1,iti+1 + K1,iδ1,i, (3.12)

t1 = (1− k1,i)ti+1 + k1,iT1 − k1,i∆1,i, (3.13)

where the coefficients K1,i, k1,i, ∆1,i, δ1,i are defined by recurrent formulae

k1,i =
k1,i−1 + ki − kik1,i−1 − kiK1,i−1

1− kiK1,i−1

= 1−
(1− ki)(1− k1,i−1)

1− kiK1,i−1

, (3.14)

K1,i =
K1,i−1 + Ki − KiK1,i−1 − kiK1,i−1

1− kiK1,i−1

= 1−
(1− Ki)(1− K1,i−1)

1− kiK1,i−1

, (3.15)

k1,i · ∆1,i = k1,i−1∆1,i−1 − (1− k1,i−1)
kiK1,i−1δ1,i−1 − kiπi

1− kiK1,i−1

, (3.16)

K1,i · δ1,i = Kiπi + (1− Ki)
K1,i−1δ1,i−1 − kiK1,i−1πi

1− kiK1,i−1

. (3.17)

Equations (3.12–3.17) enable us to find explicitly the temperatures at the ends of a given cascade
of heat converters. We have to stress that these equations also hold for any ordered sub-chain
composed of any number of units. Furthermore, for many practically relevant heat exchanges
assemblies equations (3.12, 3.13) can be further simplified. To show this we have to recollect
firstly that parameter πi is depends exclusively on the chemical properties of the hot flow,
and in many practically relevant cases these properties can be assumed constant throughout
all units of an assembly. Indeed, by definition, term πi is the sum of two parts, ψi and φi,
and it reflects a loss in potential caused by superheating (the ψi term) and the presence of
non-condensable gases (the φi term) in the hot flow. Superheating occurs because the liquid
is a mixture of chemicals, and hence vaporization stars at a temperature higher that this for
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pure water. We estimate that ψi is approximately 6.5 K. The term φi is trickier to estimate,
but should be less than 1 K. We assume that

πi ≈ 7.5. (3.18)

It is apparent, however, that the value of π does not change significantly from unit to unit and
is near constant throughout the chain. For such a case, that is if πi = π for all i,

∆1,i = δ1,i = π (3.19)

hold, and the equations (3.12, 3.13) take the form

Ti+1 = (1− K1,i)T1 + K1,iti+1 + K1,iπ, (3.20)

t1 = (1− k1,i)ti+1 + k1,iT1 − k1,iπ. (3.21)

It is obvious that (3.19) hold for a single unit. For two units such that π1 = π2 = π hold,
equations (3.14–3.17) give

k1,2 · ∆1,2 =

(

k1 − (1− k1)
k2K1 − k2

1− k2K1

)

π = k1,2π,

K1,2 · δ1,2 =

(

K2 + (1− K2)
K1 − k2K1

1− k2K1

)

π = K1,2π.

This recurrent process can be carried further on.
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