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Abstract

We present two algorithms for indoor positioning estimation in peer-to-peer net-
works. The setup is a network of two types of devices: reference devices with a known
location and blindfolded devices that can determine distances to reference devices and
each other. From this information the blindfolded devices try to estimate their po-
sitions. A typical scenario is navigation inside a shopping mall where devices in the
parking lot can make contact with GPS satellites, whereas devices inside the building
make contact with each other, devices on the parking lot, and devices fixed to the
building. The devices can measure their in-between distances, with some measurement
error, and exchange positioning information. However, other devices might only know
their position with some error.

We present two algorithms for positioning estimation in such a peer-to-peer net-
work. The first one is purely geometric and is based on Euclidean geometry and
intersecting spheres. We rewrite the information to a linear system, which is typically
overdetermined. We use least squares to find the best estimate for a device its posi-
tion. The second approach can be considered as a probabilistic version of the geometric
approach. We estimate the probability density function that a device is located at a
position given a probability density function for the positions of the other devices in the
network, and a probability density function of the measured distances. First we study
the case with a distance measurement to a single other user, then we focus on multiple
other users. We give an approximation algorithm that is the probabilistic analogue of
the intersecting spheres method. We show some simulated results where ambiguous
data lead to well defined probability distributions for the position of a device. We
conclude with some open questions.

1.1 Introduction

There are many wireless network applications for which knowing the location of the
devices within the network is necessary. Think, for example, of a military or police
operation using a radio network. Other examples are locating a specific car in a
parking garage, or finding your seat in a large stadium.
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For outdoor situations GPS is widely used, and location estimates using GPS are
in general very accurate [1]. However, for indoor use it is not possible to use GPS as
the signal is quickly absorbed or blocked by walls. A number of indoor positioning
technologies exist, see Zeimpekis et al. [2] for an overview.

In this paper we consider a network situation in which a small number of devices
have knowledge of their locations, for example from using GPS or because their
location is fixed. We call these devices reference devices. Most of the devices however,
the so-called blindfolded devices, do not have this knowledge, but they wish to estimate
their own location on the basis of location and distance information they exchange
with other uses in the network. Such a network is known as a peer-to-peer network.
We develop two algorithms for position estimation in these kind of networks. One is
based on least squares methods and triangulation, and the other involves convolutions
of probability density functions of the device locations.

The rest of the paper focuses on the two algorithms. Firstly, we explain the
problem setting in more detail, and discuss the assumptions made in Section 2. In
Section 1.3 we present the algorithm using the least squares methods. In Section 1.4
we give the algorithm based on probability density functions. Finally, in Section 1.5
we give our conclusions and suggestions for future research.

1.2 Problem description

We consider the following indoor peer-to-peer positioning problem. A number of
customers inside a shopping mall want to know their positions inside the building.
In order to estimate its position, each customer has a GPS device which measures
the distances to and can exchange positioning information with other customers’
devices. These customers can either be inside the building as well, or outside, e.g.
on the parking lot. Customers inside the building might have connection to one or
a few satellites, and hence might have some partial information about their exact
positions. The customers outside have full satellite connection, and hence know their
positions. We refer to these devices with known position as reference devices. This
also includes fixed devices, such as routers, of which the position is known. The
so-called blindfolded devices do not have exact position knowledge. They can try to
estimate their own location based on location and distance information they exchange
with other devices in the network. However, the distance measurements contain some
error, and other (blindfolded) devices might be insecure about their positions as well.

We assume that the reference devices have exact or close to exact position esti-
mates. This is because satellite connections give a location estimate with an error
that is negligible compared to the error in location estimates made by blindfolded
devices. The customers inside the mall are blindfolded devices, and we study the
problem of how they can compute their locations, given that some of them have a
connection with reference devices. We want to find an estimate for the location of
each customer inside the mall.

We make the following simplifying assumptions. Firstly, we assume that there is
no reflection of signal from the walls, or obstruction of the distance measurement is
some way. Also, we assume the errors in the distance measurements between two
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devices, to be Gaussian distributed with zero mean. The variance in the error is the
same for all devices. However, we do include the fact that signals die out over a
distance. For this, we assume that two devices can exchange information only if they
are closer to each other than some maximum distance, which is assumed equal for
all device pairs. All devices within reach are referred to as the neighbours of a given
device.

We focus on a two dimensional, static problem. So, we do not allow devices to
change position. In consecutive time steps, each of the devices performs distance
measurements to other devices within its range, and exchanges position information.
From this information, the devices estimate their positions. The question is, how
a device should best process the information. We want to find an estimate for the
position, as well as the accuracy (error) of this estimate. For this, two algorithms
are given in the next two sections. Firstly, we consider the problem after a single
time step and give an algorithm using least squares estimates. Secondly, we give
an algorithm based on probability density functions, focusing also on multiple time
steps.

1.3 Least squares algorithm

In this section, we give a method for estimating a given device its position after a single
time step. Let X, with coordinates (x, y), be the unknown position of the blindfolded
device under consideration. Suppose it is within range of n neighbours, say Ai for
i = 1, . . . , n, with (estimated) coordinates (xi, yi). This estimate is the actual location
plus some error δi. Also, the outcome of a single distance measurement between X
and Ai is known, for all i. These measurements consists of the actual distance plus
some error εi, which we assume to have a Gaussian distribution with zero mean and
standard deviation σ. From this information, we want to estimate the position X of
the device.

We start by abstracting the problem in geometrical terms in the following way.
From the coordinates (xi, yi) and the error δi, it follows that the exact position of Ai
should be contained in a disc with radius δi around (xi, yi). That is, the exact position
of Ai is contained in the following domain:

{(ai x, ai y)|(ai x − xi)2 + (ai y − yi)2 ≤ δ2
i }, ∀i = 1, . . . , n. (1.1)

The exact position of X is contained in the domain:

{(x, y)|(di − |εi|)2 ≤ (x− ai x)2 + (y − ai y)2 ≤ (di + |εi|)2}, (1.2)

which is a ring centered at (ai x, ai y), with inner radius di − |εi| and outer radius
di + |εi|. From (1.1) and (1.2), we have that X is in:

{(x, y)|(di−δi−|εi|)2 ≤ (x−xi)2 +(y−yi)2 ≤ (di+δi+|εi|)2}, ∀i = 1, . . . , n. (1.3)

This is again a ring, now centered at (xi, yi) with radii di±(δi+|εi|). The probabilities
of εi ∈ (−σ, σ), (−2σ, 2σ), respectively (−3σ, 3σ) are about 68.2%, 95.4%, respectively
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99.6%. Now based on geometrical considerations, X should be inside the intersection
of the n domains given by (1.3):

n⋂
i=1

{(x, y)|(di − δi − |εi|)2 ≤ (x− xi)2 + (y − yi)2 ≤ (di + δi + |εi|)2}. (1.4)

Example 1.3.1. Consider the following example for n = 4, where

{(xi, yi, δi, di) | i = 1, . . . , 4} = {(1, 1, 0.2,
√

2), (3, 1, 0.01,
√

10),

(−2, 0, 0.08, 2), (3,−3, 0.1, 3
√

2)},

σ = 10−2 and εi ∈ (−3σ, 3σ) randomly chosen. Figure 1.1 shows the four rings spec-
ified by (1.3). The position of X should be inside the intersection of these four rings.
When zooming in, Figure 1.2 gives a closer look of the intersection (the shadowed
part), i.e. the domain that X belongs to, which is (1.4).

Remark 1.3.2. When there are no errors in the distance measurements and the
positions (xi, yi), i.e. when all δi, εi = 0, then domain (1.4) reduces to a single point.

Remark 1.3.3. The more information available (i.e. the larger n), the smaller the
domain (1.4) is, i.e. the more accurately X’s position is estimated.

Now we know that X should be inside a given domain, the question is which point
inside this domain should be chosen as a best estimate for X. In the following, let
us consider the problem in a different way. Knowing the outcomes of the n distance
measurements to its neighbours, we have the following system of equations for (x, y):

(x− x1)2 + (y − y1)2 = d2
1

(x− x2)2 + (y − y2)2 = d2
2

...

(x− xn)2 + (y − yn)2 = d2
n

(1.5)

Since the system is quadratic, and therefore hard to solve, we use the following
procedure to reduce it to a linear system. Let

x =
1

n

n∑
k=1

xi, y =
1

n

n∑
k=1

yi, d
2

=
1

n

n∑
k=1

d2
i . (1.6)

Then, for i = 1, . . . , n:

(x− xi)2 = (x− x)2 + (x− xi)2 + 2(x− x)(x− xi), (1.7)

(y − yi)2 = (y − y)2 + (y − yi)2 + 2(y − y)(y − yi). (1.8)

Summing (1.7) and (1.8) over all i = 1, . . . , n, and using the notation of (1.6), we
have

(x− x)2 + (y − y)2 =
1

n

n∑
k=1

d2
i = d

2
. (1.9)
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Figure 1.1: Figure of Example 1, for four neighbours.
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Figure 1.2: Again Figure 1.1, now zoomed in at the intersection.
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Substituting (1.7) and (1.8) in (1.5), and using (1.9), we obtain the linear system

(x1 − x)x+ (y1 − y)y =
1

2

(
d2

1 − d2 + (x2 + y2)− (x2
1 + y2

1)
)

(x2 − x)x+ (y1 − y)y =
1

2

(
d2

2 − d2 + (x2 + y2)− (x2
2 + y2

2)
)

...

(xn − x)x+ (y1 − y)y =
1

2

(
d2
n − d2 + (x2 + y2)− (x2

n + y2
n)
)

(1.10)

This system is generally over-determined, therefore we use the least squares method
to determine the best estimate for (x, y). That is, when writing (1.10) as AX = b,
we find X = (x, y) such that

||AX − b||2
is minimized. Here || · ||2 denotes the Euclidean norm, defined by ||z||2 =

(∑n
i=1 z

2
i

)1/2
,

for some real-valued vector z = (z1, . . . , zn). Hence, the best position estimate for X
is the least square solution of the system (1.10).

1.4 Probability density functions algorithm

In this section we present a holistic approach to the uncertainty of localization of
clients. The idea is that at each moment, client k’s notion of its absolute position
is described by a random variable Xk and an associated probability density func-
tion (pdf) ρXk

. This concept captures other more specific approaches, such as the
one described in Section 1.3, which can be embedded into the present approach by
associating each client k with pdf

ρk(x) =

{
(πr2)−1 if ‖x− xk‖2 ≤ r,
0 otherwise,

where xk is the true position of client k, and r is the range of the distance measure-
ment. In this sense, the present methodology aims to provide a general framework
with the help of which it can be inferred what localization information generally can
and cannot be deducted from a given client configuration. In this sense, all more
simplistic approaches could use this approach as a reference framework.

The general idea is that in each (time) step, a client’s pdf is updated based upon
all available information, that is, measurements of its distance to neighbouring clients
and their respective pdfs. In this way, within a group of clients, every individual client
can alter and hopefully improve its localization pdf over time.

We try to outline in how far one can defer properties of the clients pdf by distance
measurements to other clients and their pdfs. We focus on the two-dimensional case,
although all presented ideas can be formulated effortlessly in any spatial dimension.

In Subsection 4.1 some required notation is introduced and the model is laid out
in greater detail. Then, in Subsection 4.2, the focus is on the mathematical steps that
a client has to perform to build its own pdf. This is done based upon measurements
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with respect to other clients. Subsection 4.3 contains numerical experiments with
simple client setups from which suggestions are derived about the characteristics of
possible scenarios. Finally, the results are discussed in Subsection 4.4.

Model and notation

When a client tries to determine its position based on measurements to other clients,
there are two kinds of uncertainties involved: the distance measurement itself and
other clients’ pdfs. We capture these uncertainties in two random variables, which
are both introduced below.

Position. Let the generally unknown true position of client k be denoted by xk ∈
R2, and let the random variable Xk describe the assumed position of client k. Let ρk
denote the corresponding probability density function. Hence, the probability that
client k is located in Ω ⊆ R2 is given by P (xk ∈ Ω) =

∫
Ω
ρk(x) dx. The random

variable Xk may typically be normally distributed with mean xk, but in general, ρk
can be every normalized integrable function.

Distance measurement. Let D1D
k0,k1

be the random variable giving the distance

measurement of one client k0 to another client k1 6= k0. It is assumed that D1D
k0,k1

is
normally (i.e. Gaussian) distributed with (unknown) mean dk0,k1 := ‖xk0 − xk1‖2 and
a given standard deviation σ > 0. This standard deviation could e.g. be a property
of the devices in use. So,

D1D
k0,k1 ∼ N (dk0,k1 , σ

2),

ρD1D
k0,k1

(x) = ρN (x; dk0,k1 , σ) :=
1√
2πσ

exp

{
−1

2

(
x− dk0,k1

σ

)2
}
, (1.11)

see Figure 1.3(a).
Based upon n statistically independent samples {Di}ni=1 of D1D

k0,k1
, it is the goal

to estimate (1.11), that is, to estimate dk0,k1. The most natural approach is here to
use the maximum likelihood estimator

D̂ :=
1

n

n∑
i=1

Di

which is well known to be normally distributed as well, with standard deviation σ/
√
n:

D̂ ∼ N (dk0,k1, σ
2/n). (1.12)

Based upon this, it is possible to determine the probability density function of the
random variable D2D

k0,k1
which describes the location d := x − x0 relative to a fixed

spot x0 to which a distance measurement according to (1.11) was done. As there is
no preference in a particular spatial direction, the pdf associated with D2D

k0,k1
is given

by

ρD2D
k0,k1

(d; d̂, σ) =
1

2

(
1

2π
ρD1D

k0,k1

(
‖d‖2 ; D̂, σ

)
+

1

2π
ρD1D

k0,k1

(
‖d‖2 ;−D̂, σ

))
; (1.13)
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(a) Normal distribuion of D1D
k0,k1

with

dk0,k1
= 3 and σ = 1.

(b) Ring distribution of D2D
k0,k1

with dk0,k1
=

5.

Figure 1.3: Assumed normal distribution of D1D
k0,k1

as defined in (1.11), along with

the corresponding two-dimensional ring distribution of D2D
k0,k1

as defined in (1.13).

see Figure 1.3(b).

Note 1.4.1. It would also be possible to generically discard negative distance mea-
surements, and instead of (1.11) assume a cut-off normal distribution

ρ̃D1D
k0,k1

(x) =

{
I−1ρN (x; dk0,k1, σ) for x > 0,

0 otherwise

for D2D
k0,k1

. The normalization factor I :=
∫
x>0

ρN (x; dk0,k1, σ) is well-known not to
have an analytic representation. However, this would lead to the simpler expression

ρ̃D2D
k0,k1

(d; d̂, σ) =
1

2πI
ρD1D

k0,k1

(
‖d‖2 ; d̂, σ

)
.

Note that ρ̃ is non-smooth at x0, which is in the context of pdfs not a restriction.

Deferring information on the location from other clients

We now make use of the knowledge gained by distance measurements to several
neighbouring clients, and combine the uncertainties given by (1.13) with the pdfs of
the respective neighbouring clients to get an estimate for the user’s own pdf.

Distance measurements to one other client

The first question to be answered is how the estimated ρD2D
k0,k1

of (1.13) and ρXk1
can

be cast into an approximation for ρXk0,k1
. As xk0 = xk1 + d, we set Xk0,k1 := Xk1 +

D2D
k0,k1

, where Xk0,k1 describes the position of client k0 with respect to communication

with client k1. Furthermore, the random variables Xk1 and D2D
k0,k1

are assumed to be
independent, which means that the distance measurement (error) does not depend
on the actual distribution of Xk1 . Hence,

ρXk0,k1
= ρXk1

+D2D
k0,k1

= ρXk1
∗ ρD2D

k0,k1

,
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(a) Normal distribution cen-
tered at the origin, with a
slightly larger deviation in
the y-direction than in the x-
direction.

0.0

1.5

(b) Ring distribution as de-
fined in (1.13) with deviation
significantly smaller than the
deviations of the normal distri-
bution of Figure 1.4(a).

0.0

0.4

(c) Result of the convolution
of the two distributions of Fig-
ures 1.4(a) and 1.4(b).

Figure 1.4: Illustration of the convolution process of (1.14). Figure 1.4(a) shows
the convolution data, Figure 1.4(b) the convolution kernel, and Figure 1.4(c) the
actual convolution of the two. Note how the smaller deviation in the x-direction
of the bivariate Gaussian distribution increases the values of the convolution at the
x-extreme ends of the localization pdf in (c).

where the asterisk denotes convolution, i.e.,

ρXk0,k1
(x) =

∫∫
R2

ρXk1
(y)ρD2D

k0,k1

(x− y) dy, (1.14)

where ρXk1
is occasionally referred to as convolution data and ρD2D

k0,k1

as convolution

kernel. This expresses the notion that the ‘data’ distribution ρXk1
is acted upon and

blurred by convolution with the ‘kernel’ ρD2D
k0,k1

. Note, though, that mathematically

there is no distinction between data and kernel as the convolution is commutative.
The integral in (1.14) can be calculated numerically (e.g., using Fast Fourier Trans-

formation). Figure 1.4 shows an example.

Example 1.4.2. Suppose that client k1 knows its position exactly. So, its distribu-
tion is the Dirac-distribution centered at xk1, that is ρXk1

= δxk1
. Then

ρXk0,k1
(x) =

∫∫
R2

δxk1
(y)ρD2D

k0,k1

(x− y) dy = ρD2D
k0,k1

(x− xk1),

i.e., the ‘ring’ distribution centered at xk1. As expected, the only contribution to the
uncertainty of Xk0,k1 is the uncertainty rooted in the distance measurement itself.

Distance measurements to multiple other clients

Once all Xk0,k for all n neighbouring clients k ∈ {k1, . . . , kn} have been calculated,
the information contained in each of them is to be combined to a common pdf Xk0

that indicates the localization likelihood of client k0 based upon measurements to all
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reset own P to uniform distribution over Ω;
for all clients ki within reach do

measure the distance to ki;
create the corresponding ring distribution Rki using (1.13);
request the pdf Pki of client ki;
P ← P · (Pki ∗Rki);

end
normalize P ;

Algorithm 1: One update step for the pdf of a client. In this algorithm in-
formation about previous updates is discarded. However, a client could very
well store data of the previous measurements to decrease the uncertainty of its
neighbours’ positions. For the computations in the present paper, the mean of
all previous computations is stored in each step and updated accordingly for the
new measurement. This assumes that none of the clients changes its position
throughout the process.

its neighbours. Quite naturally one could ask for the probability that x0 is contained
in Ω ⊂ R2 according to Xk0,k1 and Xk0,k2. That is

P (Xk0,k1 ∈ Ω ∧Xk0,k2 ∈ Ω) = P (Xk0,k1 ∈ Ω) · P (Xk0,k2 ∈ Ω | Xk0,k1 ∈ Ω).

Assuming independence of Xk0,k1 and Xk0,k2, this yields

P (Xk0,k1 ∈ Ω ∧Xk0,k2 ∈ Ω) = P (Xk0,k1 ∈ Ω) · P (Xk0,k2 ∈ Ω),

and subsequently for all k ∈ {k1, . . . , kn}:

P

(
n∧
i=1

Xk0,ki ∈ Ω

)
=

n∏
i=1

P (Xk0,ki ∈ Ω).

This results in the pdf

ρXk0
(x) = I−1

n∏
i=1

ρXk0,ki
(x),

with the normalization constant I ∈ R.

Simulation

In this section, a few example constellations are set up and iterated over a number
of time steps, to see how the pdfs of the individual users evolve when more and more
accurate data of the other users becomes available. It is assumed that none of the
clients moves during the process.

Each of the following example setups consists of a number of free clients (⊗),
having blindfolded devices. These are located in a square-shaped domain Ω with edge
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(a) Step 1. (b) Step 10. (c) Step 100.

Figure 1.5: Experiment with one free client (⊗) and one satellite client ( s©) after
multiple executions of Algorithm 1. The exact positions of the clients are depicted,
as well as the pdf of the free client. After the first measurement, the free client can only
determine its position up to rotation around the satellite client. Over time, the width
of the rings becomes smaller as the deviation of the distance estimation diminished
(see (1.12)), but with only one reference client the position cannot be further localized.
The fuzziness of the ring distribution after 100 steps mainly depends on σsat rather
than the uncertainty about the distance measurements.

length normalized to 1.0. All values indicating lengths, including standard deviations
of distance measurements, hence are in units of the domain edge length.

Every client k starts off with an insignificant pdf corresponding to the random
variable Xk of its spatial position, i.e. the uniform distribution over the domain Ω.
Furthermore, there is at least one client who already has a significant pdf from the
start, which are modeled here by clients ( s©) who have a connection to a set of GPS
satellites and can thus determine their positions independently from other clients.
Hence, these are the reference devices. It is assumed that the pdf of client ksat is the
normal distribution centered at its true position xksat with σsat = 0.05 independently
for all satellite clients.

With this given setup, each of the free clients now iteratively executes Algorithm 1
to update its pdf given pdfs of its direct neighbours. The simulation is run for six
settings, see Figures 1.5 to 1.10, starting from a simple case with only one satellite
client and one free client, ending up with a network of multiple clients of both types.
We depict the pdfs of the indicated free client after 1, 10, and 100 steps. Typically,
the probability density becomes more concentrated about one location or possibly
multiple locations. In this way the most likely location(s) of the clients become
clearer and clearer. For each setting we discuss the setup and the results.

Discussion pdf algorithm

The presented approach gives in multiple settings reasonable outcomes, where the
peak of the pdf coincides with the true position of the client. For some setups it
was not possible to get any more specific information than a localization up to two
significant spots (see for example Figure 1.9), although all available information was
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(a) Step 1. (b) Step 10. (c) Step 100.

Figure 1.6: Experiment with one free client (⊗) and two satellite clients ( s©) after
multiple executions of Algorithm 1. After measurements to both of the satellite
clients, the free client can be determined to be more likely in those regions where the
two fuzzy rings overlap, i.e., where their product is locally maximal. The principal
fact that two spots are preferred cannot be overcome, although again the uncertainty
about the distance measurements is filtered out by sampling over 100 steps.

(a) Step 1. (b) Step 10. (c) Step 100.

Figure 1.7: Experiment with one free client (⊗) and three satellite clients ( s©) after
multiple executions of Algorithm 1. As opposed to Figures 1.5 and 1.6, after one
measurement already one fuzzy spot can be determined to likely contain the client’s
position. Again, certainty is increased as more samples in distance measurement are
taken, such that the uncertainty σsat ultimately dominates for the free client as well.
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(a) Step 1. (b) Step 10. (c) Step 100.

Figure 1.8: Experiment with two free clients (⊗) and one satellite client ( s©) after
multiple executions of Algorithm 1. This situation is not much different as compared
to the one in Figure 1.5, except for the fact that now two clients with (initially)
rather uncertain information about their position can try to improve their local-
izations by exchanging information about their position relative to each other. It
appears, though, that this extra information does not improve the position estimate
of the individuals. The determining factor remains that there is only one client with
absolute information about its position. This experiment suggests that adding clients
without information on their absolute positions does not alter the uncertainty of
localizations of present clients.

(a) Step 1. (b) Step 10. (c) Step 100.

Figure 1.9: Experiment with six free clients (⊗) and two satellite clients ( s©) after
multiple executions of Algorithm 1. No single free client has contact with both of the
satellite clients, but still the localization information propagates through the network
to each of the clients, such that they all have pdfs similar to the situation in Figure 1.6
rather than Figure 1.5.



23

(a) Step 1. (b) Step 10. (c) Step 100.

Figure 1.10: Experiment with six free clients (⊗) and three satellite clients ( s©) after
multiple executions of Algorithm 1. Quite curiously, the pdf of ⊗ has a curved shape
with a preferred direction in space after one step. This is likely related to the partic-
ular (not fully rotational symmetric) arrangement of the satellite clients within the
circle of the free clients. After a few steps, two spots of higher probability of localiza-
tion are formed which is rather similar to the much simpler situation of Figure 1.6.
One of the two preferred spots is indeed the true position of the client. After a few
more steps, this location is actually preferred over the other local maximum, such
that the client gets a good estimate about its position.

made use of. This means that, principally, no algorithm that uses less information
can localize the client any more precisely.

An option for improvement still might be taking into account previous measure-
ments by weighting them with the current one, and using this for the updating of the
pdf. Currently, only the most recent measurement is taken into account, which can,
by chance, have a large error. In an early stage of the updating process, this might
cause the pdf to concentrate about an erroneous location, far off the true location,
from which it needs many extra measurements to make it more accurate again. On
the other hand, putting too much weights on previous measurements makes it last
longer before the pdf concentrates around a location.

It must be noted that, for practical implementations, the given approach requires
relatively heavy inter-client communication between the devices. Also, numerical cal-
culation of the convolutions (1.14) is computationally expensive. This holds particu-
larly for very fine-grained discretizations of the client’s environment. An alternative
for communicating an entire pdf is approximating it by, e.g., a bivariate Gaussian
distribution. As only the few real-valued parameters have to be exchanged in this
case, this would dramatically reduce the amount of data to be transferred. On the
other hand, a bivariate Gaussian distribution might not always be suited for repre-
senting a client’s position, see for example Figure 1.5. It is left for further research
to investigate how much this decline in performance is, and what would be the best
choice for approximation of a client’s pdf.
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1.5 Conclusion and discussion

In this paper we presented two promising methods for solving the problem of comput-
ing device locations from information about neighbour locations. The first method
uses least square techniques, and is simple to implement and execute on a device. The
second method uses complete information in the form of probability density fuctions
and so gives more, and even more accurate, information than the first method. How-
ever, this comes at the cost of having to exchange more information between devices
and using a more computation-intensive algorithm.

There are many posibilities for further research. A first important point for both
methods is, if and how the algorithms converge. From our experiments we are confi-
dent that both methods converge to a location or probability distribution of a location
for every device in the network, but that does not necessarily mean that they converge
to the correct position. The conditions under which they actually do so, would be
interesting, as would be the rate of convergence.

For the method using least squares, the question also remains how accurate the
proposed method is, and how the error in the best estimated position can be de-
termined. For the second method, an important issue still open, is the question if
the amount of information transmitted and the computation to be done, can be re-
duced to make it more suitable for practical use. This reduction should be done with
minimal loss in performance.

Finally, another important point for consideration is how these algorithms can be
extended to include moving devices, that is, customers actually walking around in
a mall. This makes the questions on speed of convergence and ease of computation
even more relevant.
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