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Abstract

Positioning a vessel at a fixed position in deep water is of great importance when
working offshore. In recent years a Dynamical Positioning (DP) system was developed
at Marin [2]. After the measurement of the current position and external forces (like
waves, wind etc.), each thruster of the vessel is actively controlled to hold the desired
location.

In this paper we focus on the allocation process to determine the settings for each
thruster that results in the minimal total power and thus fuel consumption. The
mathematical formulation of this situation leads to a nonlinear optimization problem
with equality and inequality constraints, which can be solved by applying Lagrange
multipliers.

We give three approaches: first of all, the full problem was solved using the MAT-
LAB fmincon routine with the solution from the linearised problem as a starting point.
This implementation, with robust handling of the situations where the thrusters are
overloaded, lead to promising results: an average reduction in fuel consumption of ap-
proximately two percent. However, further analysis proved useful. A second approach
changes the set of variables and so reduces the number of equations. The third and
last approach solves the Lagrange equations with an iterative method on the linearized
Lagrange problem.

3.1 Introduction

In this report, we focus on the allocation part of the full closed loop control system,
depicted in Figure 3.1, which is used to keep the vessel in a stationary position.
This allocation unit receives the required total force and momentum from the PID-
controller and will try to generate these by sending the appropriate control signals to
the available actuators of the vessel.

Note that the problem is considered to be 2-dimensional. In fact, any movement
in the z-direction (up/down) is ignored due to its periodic behavior. Also, most
common actuators do not have the ability to produce trust in the z-direction. This
clearly reduces the complexity of the problem.
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Figure 3.1: The closed loop control system. Measurements of the position of the
vessel are compared with the required position. The difference is fed into a Extended
Kalman Filter and PID-controller to convert this to the force and momentum re-
quired to correct the position. The allocation unit controls the thrusters, which must
generate the required force and momentum.

Semi-submersible setup

Several types of actuators exist, but we limit ourselves to the azimuth thruster, shown
in Figure 3.2(a). These are able to direct their thrust in 360 degrees around the
z-axis. They are frequently used in the semi-submersible configuration shown in
Figure 3.2(b). This kind of vessel consists of two pontoons which remain under water
and eight poles that connect the pontoons with a large rectangular platform above
the waters surface, a setup that is often used for offshore drilling in deep water, where
anchors cannot be used.

It is necessary to introduce some notations. First of all, the coordinate system is
installed in the center of gravity and the x-axis is pointing in the forward direction.
The z-axis is the upwards direction and so the y axis points towards starboard. Let us
denote the total required forces, given in x- and y-direction, by Fx and Fy respectively,
and Mz, the required momentum in z-direction. These must be generated by the
N thrusters that are positioned on the bottom of the ship. We denote the force
per thruster by its components (fx,i,fy,i)∈R2 for i= 1,...,N . An alternative polar
notation using Ti=

√
fx,i2 +fy,i2 for the thrust and αi∈ [−π,π) for the orientation

relative to the x-axis, is shown in Figure 3.2(a). Furthermore, we use P for the total
power used in a given time step and T i and P i respectively for the maximal thrust
and maximal power for thruster i.

Some dimensions and the coordinates (xi,yi), indicating the positions of the
thrusters on the semi-submersible, are summarized in Figure 3.2(b).

3.2 General problem statement

The allocation problem can be translated to a constrained optimization problem. We
introduce the objective function and the constraints of this minimization problem in
the following paragraphs.
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Figure 3.2: Detail of an azimuth thruster with its associated variables in 3.2(a) and
a top-view of the actual semi-submersible that was used in the simulations. The
azimuth thrusters are located on diamonds in 3.2(b).

Objective function

Cost-efficiency is important when considering the dynamical positioning. Therefore,
we try to satisfy the requirements with the least energy possible

P ν =

N∑
i=1

Ti
2ν =

N∑
i=1

(
fx,i

2 +fy,i
2
)ν
. (3.1)

Here we assume that each thruster has the same specifications. If not, each term in
the sum (3.1) must be scaled with a thruster specific constant P i/T i

2ν .
In this report we use the realistic setting of the power ν= 3

4 . Previously at MARIN,
this optimization problem was only considered for ν= 1, because it leads to linear
derivatives of (3.1). Simulations have shown that the energy consumption may be
lower by about 2% when using the realistic ν= 3

4 .

Equality constraints

The first set of constraints follows from the need to generate the required force and
momentum. If these would not be satisfied, the vessel can start to drift. To avoid
this, the following equality constraints must be satisfied:

Fx =

N∑
i=1

fx,i , (3.2)

Fy =

N∑
i=1

fy,i , (3.3)

Mz =

N∑
i=1

xify,i−yifx,i . (3.4)
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Figure 3.3: Two ways of dealing with disallowed angles. In 3.3(a), certain angles are
forbidden, whilst in 3.3(b), the maximal thrust is variable (depending on α), and the
intensity of the gray that indicates the available amount of of available thrust for each
angle α.

Note that these conditions assume that the total installed thruster capacity is suffi-
cient. A more elaborate discussion on this is deferred to Section 3.3.

Inequality constraints

The second set of constraints originates from physical limitations. First of all, the
thrusters have a limited capacity8 T i. Secondly, thrusters that are close together have
an influence on each other: if one is in the stream of the other, its efficiency drops
significantly. In order to avoid this, certain angles are prohibited. This results in the
following constraints, for i= 1,. ..,N :

T i ≥ Ti=
√
fx,i2 +fy,i2 , (3.5)

|αi−αF,i| ≥ αC,i . (3.6)

In this, cf. Figure 3.3(a), αF,i is the center of thruster i’s forbidden zone, the angle
that is oriented away9 from the neighboring thruster. The constant αC,i gives the
minimal angular distance from αF,i needed to avoid influence on the other thrusters.
A typical value used for αC,i is about 10 degrees.

An alternative way to describe the inequalities is by using an angular dependent
maximal thrust. In this, the maximum thrust in the forbidden regions can be limited
to zero. Constraint (3.5) and (3.6) are combined into

T i(αi) ≥ Ti. (3.7)

This way of describing forbidden angles provides much more freedom and is easy to
adapt for the influence of several near by thrusters. A rough example of such an

8This is also an approximation because this is the open water thrust capacity. Because of currents
and interaction with the hull of the boat, the actual thrust might be far less.

9We use a thrust notation that shows the direction of the resulting force, while the water is pushed
in the opposite direction. Hence the forbidden angles are opposite to the neighboring thruster.
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angular dependent maximum thrust T i(αi) for two neighboring thrusters is given
in Figure 3.3(b). Note that it might be convenient to use a smooth continuous
differentiable function for this angular dependence.

Full problem statement

The full allocation problem can be summarized as follows:

minimize (3.1)
subject to (3.2), (3.3), (3.4) and

(3.5), (3.6) for i= 1,. ..,N .
(3.8)

3.3 Approaches

We are looking for a numerical method to solve the optimization problem described
by (3.8) in real time: the computation should be instantaneous compared to the
timescales of the vessels actions. Currently, the closed loop control system from
Figure 3.1 runs at 4Hz. The method is thus required to take far less than 0.25s,
because the allocation is only part of the calculations.

Idea I: Direct nonlinear optimization

With the vast amount of tools available, solving a nonlinear optimization problem is
not that difficult. Without considering the efficiency or the computation time, the
problem (3.8) can be solved by the MATLAB optimization toolbox. More specifically,
fmincon was used to gain insight into the behavior of the problem. For this specific
setting, the fmincon routine used a Sequential Quadratic Programming (SQP) ap-
proach for the inner, and line search for the outer loop. The Hessian is updated using
a quasi-Newton scheme (more details are available in the MATLAB documentation).

In order to provide a reasonable starting point, the solution of the linearized
problem was considered at t= 0. When ignoring the inequality constraints, problem
(3.8) with ν= 1 has a quadratic Lagrange function. This leads to a much easier linear
problem that can be solved directly.

For subsequent time steps, the result of the previous step were taken as initial
value. This is reasonable because of the rather large timescales that are involved
with the actual movement of the vessel and external influences like wind and water
currents.

Alternative penalty approach for overloaded situations

As mentioned before, there may be times where the thrusters can not produce the
requested forces. It is necessary to be aware of this situation and to prioritize the re-
quirements. What is most important the drift avoidance or the energy consumption?
In practice, the former is considered to be crucial.

No value can be attributed to the output of fmincon when the force and momen-
tum constraints (3.2), (3.3) and (3.4) cannot be met within the thruster capacity
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(i.e. (3.5)). It is thus necessary to consider this, undesirable but sometimes unavoid-
able, case separately. The approach used here is to loosen the constraints on the
required forces if the capacity of the thrusters is insufficient. The force/momentum
constraints (3.2), (3.3), (3.4) are then dropped, but they are reflected by an additional
penalization term in the modified objective function. In particular, we penalize dif-
ferences between required and provided forces and momentum. Together with the
power consumption of the thrusters, this leads to the following modified objective
function:

P̃ν =w1P ν +w2

(
∆Fx

2 +∆Fy

2
)

+w3 ∆Mz

2 , (3.9)

where w1, w2 and w3 are weights (to be chosen appropriately), and

∆Fx
= Fx−

N∑
i=1

fx,i ,

∆Fy
= Fy−

N∑
i=1

fy,i ,

∆Mz
= Mz−

N∑
i=1

(xify,i−yifx,i).

(3.10)

The associated alternative minimization problem, that is used only when the thrusters
have insufficient capacity, can be written as

minimize (3.9)
subject to (3.5), (3.6) for i= 1,. ..,N .

(3.11)

The weights in (3.9) need to be chosen so that the right balance is reached between
the energy consumption, drift and orientation changes. Consulting the experts from
MARIN led to the use of w1 = 0: there is no intention of minimizing the power in
extreme weather conditions. The other weights were chosen relative to the maximal
required thrust and moment for a given time series. This somehow equally treats
both position and orientation errors.

Idea II: Reduction to a 3×3 nonlinear system

We will show that, even for the more realistic case where ν= 3
4 , the 3N+3 La-

grange equations can be reduced to only 3 equations and the 3 unknown multi-
pliers. The equations obtained from the multipliers technique can be simplified
using Ti and αi, the thrust and azimuth angle of thruster i, as main variables.
The associated feasible region then reduces to the product of intervals Ti /∈

[
0,T i

]
and αi∈ [αF,i−αC,i,αF,i+αC,i]. Solutions will be either inside this domain, as sta-
tionary points of the Lagrange function Λ(T,A,L) (where we collect the thrusts

T= [T1,. ..,TN ]
T

, angles A= [α1,. ..,αN ]
T

and Lagrange multipliers L= [λ1,λ2,λ3]
T

in column vectors) or on the boundary of the domain. These cases are discussed
separately.
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Solutions in the inside of the feasible region

Using the notation (3.10), the Lagrange function for problem (3.8), assuming that
the inequality constraints are inactive, can be written as

Λν= 3
4
(T,A,L) =

N∑
i=1

Ti
3
2 −λ1 ∆Fx−λ2 ∆Fy−λ3 ∆Mz . (3.12)

For a given thruster i, collecting terms linear in fx,i and fy,i gives uifx,i+vify,i
where ui=λ1−yiλ3 and vi=λ2 +xiλ3. Using the relations fx,i=Ticos(αi) and fy,i=
Ti sin(αi), the collected terms are written as Ti (uicos(αi)+vi sin(αi)) and further
summarized to Tihi using hi=uicos(αi)+vi sin(αi). This gives

Λν= 3
4
(T,A,L) =

N∑
i=1

(
Ti

3
2 +Tihi

)
−λ1Fx−λ2Fy−λ3Mz . (3.13)

In stationary points, the partial derivatives of the Lagrange function Λν= 3
4
, with

respect to Ti and αi for each thruster i, must be zero and can be solved:

0 =
∂Λν= 3

4

∂Ti
=

3

2

√
Ti+hi ⇒ Ti=

4

9
hi

2 , (3.14)

0 =
∂Λν= 3

4

∂αi
=−Tiui sin(αi)+Tivicos(αi)

Ti 6=0
=⇒ tan(αi) =

vi
ui

. (3.15)

If Ti= 0, the thruster i is switched off and any value of αi is a solution.

With the above, thrust Ti can be rewritten as a function of ui and vi:

hi=±ui
(

ui√
ui2 +vi2

)
︸ ︷︷ ︸

cos(αi)

±vi
(

vi√
ui2 +vi2

)
︸ ︷︷ ︸

sin(αi)

=±
√
ui2 +vi2. (3.16)

Both Ti and αi depend only on the Lagrange multipliers λ1,λ2 and λ3. The stationary
points are thus characterized by the multipliers, that can be found by substitution Ti
and αi into the equality constraints (3.2),(3.3) and (3.4):

Fx=
∑N
i=1Ticos(αi) = 4

9

∑N
i=1hiui ,

Fy=
∑N
i=1Ti sin(αi) = 4

9

∑N
i=1hivi ,

Mz=
∑N
i=1Ti(xi sin(αi)−yicos(αi))= 4

9

∑N
i=1hi (xivi−yiui) .

(3.17)

These are thus three equations for the three unknown multipliers λ1,λ2 and λ3. When
such a stationary point exists inside the domain, the optimal value of the power P is
then equal to

∑N
i=1Ti

3
2 = 8

27

∑N
i=1hi

3.
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Solutions on the boundary: saturation and forbidden angles

With the Lagrange multipliers technique, it is possible to take inequalities into ac-
count, introducing a new multiplier µj for each inequality. Derivations lead to the
following conclusion: either inequality j becomes an equality (border of the domain)
or µj = 0. Hence, inside the domain all µj vanish and the extended Lagrange function
is equal to the previous Λ =Λν= 3

4
.

On a border, optimizing the total power can also be done by the multiplier tech-
nique using the restriction of Lagrange function Λ to this border of the domain. As
the domain is expressed as boundary values for Ti and αi, the restriction of Λ to a
border amounts to fixing the value of Ti (resp. αi) in Λ. Hence all previous deriva-
tions remain valid excepted ∂Λ

∂Ti
(resp. ∂Λ

∂αi
) that is no longer needed to determine

Ti (resp. αi) as a function of the λ’s. Observe that when Ti is saturated, equation
∂Λ
∂αi

= 0 still allows to determine αi= arctan
(
vi
ui

)
and conversely, if αi is a forbidden

angle, equation ∂Λ
∂Ti

= 0 still allows to determine Ti(λ1,λ2,λ3). Finally, if for some i,
both Ti and αi reach boundary values, then the allocation problem is reduced to a
problem with N−1 thrusters and new known constraints (Fx :=Fx−fx,i, and similar
for Fy and Mz) and it reduces to the same system of 3 equations for a subset of
indices in the summations.

Idea III: Iteration on a linearized Lagrange problem

For this strategy, we distinguish a simplified version of the problem and the full
problem. By first solving a simplified version, an initial estimate of the solution is
obtained. This can be used in an iterative algorithm which adapts the simple version
to obtain improved versions. A few of these defect correction type iterations yield
the final solution.

The simplified problem (ν= 1)

We simplify the optimization problem (3.8) by taking ν= 1 and the angular dependent
maximal thrust constraint (3.7) instead of constraints (3.5) and (3.6):

minimize (3.1) for ν= 1
subject to (3.2), (3.3), (3.4) and

(3.7) for i= 1,. ..,N .
(3.18)

Denoting J as the set of indices j for which thruster j is saturated, e.g. inequality
(3.7) becomes an equality, using vectors F= [fx,1,fy,1,. ..,fx,N ,fy,N ]

T
M={µj}j∈J

and L= [λ1,λ2,λ3]
T

, the Lagrange function becomes

Λν=1(F,L,M) = P ν=1−λ1 ∆Fx−λ2 ∆Fy−λ3 ∆Mz

−∑j∈J µj

(
T j(αj)

2−fx,j2−fy,j2
)
.

(3.19)

Now we can find F, L, and M such that (F,L,M) is a stationary point for the
Lagrange function (3.19), by solving the following system (for notational convenience,



47

we write the system only for N = 4 thrusters):

2 2fx,1 1 −y1
2 2fy,1 1 x1

2 2fx,2 1 −y2
2 2fy,2 1 x2

2 2fx,3 1 −y3
2 2fy,3 1 x3

2 2fx,4 1 −y4
2 2fy,4 1 x4

2fx,1 2fy,1

2fx,2 2fy,2

2fx,3 2fy,3

2fx,4 2fy,4

1 1 1 1

1 1 1 1

−y1 x1 −y2 x2 −y3 x3 −y4 x4





fx,1

fy,1

fx,2

fy,2

fx,3

fy,3

fx,4

fy,4

µ1

µ2

µ3

µ4

λ1

λ2

λ3



=



0

0

0

0

0

0

0

0

T 1(α1)2 +fx,12 +fy,12

T 2(α2)2 +fx,22 +fy,22

T 3(α3)2 +fx,32 +fy,32

T 4(α4)2 +fx,42 +fy,42

Fx

Fy

Mz



. (3.20)

For each non-saturated thruster j, the corresponding µj , row and column should
be omitted from the system. Notice that the system is symmetric in any case.

Using R= [Fx,Fy,Mz]
T

for the requirements and T̂2 for part of the right hand side,

i.e. T̂2 =
[
T 1

2 +fx,1
2 +fy,1

2,. ..,TN
2 +fx,N

2 +fy,N
2
]T

, we can write this system as

C BT ET

B 0 0
E 0 0

 F
M
L

=

 0

T̂2

R

, (3.21)
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where C is an diagonal matrix of dimension 2N×2N ; the matrix E is 3×2N and
the matrix B is k×2N , where k is the number of indices in J , that is the number of
inequalities (3.7) that is reduced to equalities (i.e. the number of saturated thrusters).

In the initial step we assume none of the constraints (3.7) is active, i.e. J =∅. This

implies that in the initial step the rows and columns with B, L and T̂ are absent
from (3.21). So we solve the system (3.21) for F and L to find the estimate F[0].

As soon as an estimate F[m] is available we can compute the thrusts Ti

Ti=T i

(
arctan

(
(fy,i)

[m]

(fx,i)[m]

))
for i= 1, ·· · ,N (3.22)

and find J , the set of indices j for which the constraints (3.7) is violated. For those
indices, we scale that vector so that the trust is equal to the maximum:

fx,j :=
T j(αi)

Tj
fx,j and fy,j :=

T j(αi)

Tj
fy,j . (3.23)

If J 6=∅ we compute B, T i and T̂, using F[m], and solve the system (3.21) again. The
iterative process ends when the set J does not change any more10.

After the first iteration, instead of system (3.21) with the artificial ν= 1, it is more
realistic to solve the system that will be described in the following.

The true, non-simplified problem (ν= 3
4)

In order to remove the simplification made in Section 3.3 by setting ν= 1 instead
of ν= 3

4 in the expression P ν , we have to correct for it. The function P ν was the
original object function for optimization, and the value of ν is reflected in the system
(3.21) only in the C. In fact C is the Hessian of P , which is constructed to make the
gradient of P vanish.

Namely, for ν= 1 the gradient of P ν=1 reads

∇P ν=1(F) =
∂P ν=1

∂F
= 2(fx,1,fy,1,fx,2,fy,2, ·· · ,fx,N ,fy,N )

T
(3.24)

and the equations CF= 0 make the gradient vanish.
If ν= 3

4 the gradient can be written with ‘÷’, an element-wise division

∇P ν=3/4(F) =
∂P ν=3/4

∂F
=

3

2
F÷

[√
T1,
√
T1,
√
T2,
√
T2,. ..,

√
TN ,

√
TN

]T
.

Applying the defect correction principle [1], we compute the true problem by
replacing the system (3.21) byC BT ET

B 0 0
E 0 0

 F
M
L

=

∇P ν=1(F)−∇P ν=3/4(F)

T̂2

R

, (3.25)

10Because of the weak non-linearity of the system, a nice convergence behavior of the iteration is
expected.
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so that the iterative improvement of the solution of the problem we are interested in,
is achieved by solving for F[m+1] from the system

 C B[m]T ET

B[m] 0 0
E 0 0


F[m+1]

M
L

=

∇P ν=1(F[m])−∇P ν=3/4(F[m])

T̂[m]2

R

, (3.26)

for m= 0,1,2,. ... Upon convergence, this leads to the stationary point of (3.19) with
ν= 3

4 , hence to the solution of the full optimization problem.

3.4 Results

The optimization using fmincon was used to solve the allocation problem for a se-
quence of Fx, Fy and Mz, provided by MARIN. The resulting thrusts Ti and orienta-
tions αi are plotted for the first 250 seconds in Figure 3.4-3.5, where the second figure
uses the modified algorithm with the robust handling of the overloaded situation (see
Section 3.3).

The baseline implementation took on average 0.15s per iteration for the given
sequence. This was reduced to about 0.03s by optimizing the code and by provid-
ing some of the derivatives analytically (profiling showed that the finite difference
approximations of this derivatives took most of the time).

We tried to mimic the approach that MARIN uses nowadays (with ν= 1). It is
unclear if this is exactly identical to their program (there is no way of verifying due
to confidentiality of their actual results). Our implementation, in which we use the
realistic value ν= 3

4 , proved to require about 2% less power on average than when
considering the previously used quadratic objective function (ν= 1). It is clearly
worth considering the realistic case with ν= 3

4 : in some time steps, the excess power
for ν= 1 reached up to 5% of our optima.

In order to facilitate the interpretation, a MATLAB visualization was written to
show the thrust together with their orientation (see Figure 3.6). By joining static
plots for the given sequence of required values, a movie was made. It allows for a very
natural way of inspecting the results because the human eye is able to see trends,
even for several thrusters simultaneously. Waves for example, can easily be spotted
in this manner because all thrusters re-orient in a similar fashion. This video also
shows the required and achieved forces and moments. Violations of the constraints
are indicated by the use of color, as explained in Figure 3.6. For the time being,
the visualization is specialized for the azimuthal thrusters, but it can be extended to
other type of actuators, as can the analysis in Section 3.3.

3.5 Recommendations

If the speed and quality of the straight forward MATLAB implementation is sufficient,
this optimization routine can be used in the software with minimal effort. If not, the
other approaches should be investigated further.
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Figure 3.4: Resulting thrust and orientation for the direct nonlinear optimization
(Section 3.3) for a given sequence of requested force and momentum. Each plot
represents one of the eight thrusters on starboard (SB) and port side (PS). The left
axis shows the thrust Ti with an indication of the maximum T i (at some points in
time, the thrusters are indeed overloaded), the right axis shows the azimuth angle αi
and the forbidden angle range [αF,i−αC,i,αF,i+αC,i] (only within visible range for
thruster ‘PS3’).
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Figure 3.5: Identical setup as in Figure 3.4, but with results for the approach in which
the penalty function formulation is used in case the thrusters are overloaded. This
avoids overloading, as can be seen in the graphs, by loosening the constraint on the
required force and momentum (see Section 3.3).

The use of the thrust/angle notation proved to reduce the complexity of the
problem quite dramatically to only 3 equations with as many unknowns. Using this
in the software could result in another significant speedup.

The iterative method with linearized Lagrange problem seems a promising algo-
rithm. It should only require about 4 or 5 iterations to find a sufficiently accurate
solution. However, during the workshop, we had no time to make an implementation
and thus have no results at the time of writing.

It should be noted that optimizing only the allocation block in Figure 3.1 might not
be ideal. A model-predictive approach, that combines the EKF, PID and allocation
units might lead to even better results. Another important aspect of this approach
would be the concept of time horizon: the power can be minimized over a given
period, the next two hours for example. However, this would require a full model
of the vessel, together with models for the wind and the waves. This is not that
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(a) Still image from the visualization of the direct nonlinear optimization from Section 3.3. At
this moment, the thrusters are overloaded as indicated by the red circles that show the maximal
thrust and the thrust vectors that are longer than that radius.

(b) Still image form the visualization for the nonlinear optimization with special handling of the
overloaded thruster situation as explained in Section 3.3. At this time, the thrusters would be
overloaded, as shown in 3.6(a). So the alternative approach with penalty function is used: instead
of overloading the thrusters, the required force and momentum constraint is loosened and matched
as closely as possible given the available capacity.

Figure 3.6: MATLAB visualization of the resulting thrusters settings. The required
(gray) and achieved (blue, red if not produced) total force (Fx,Fy) and moment Mz are
shown, together with all the thruster forces of this semi-submersible. The constraints
are also shown: filled sections show the forbidden angles and the circle’s radius is the
maximum thrust capacity. If constraints are violated, the corresponding section or
circle is shown in red.
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straightforward.
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