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Abstract

This paper addresses a few modeling issues relevant for the basic theoretical under-
standing of the meat flow behavior in simple geometries. We model the meat mixture
as a non-Newtonian compressible fluid. Focusing on conceptually easy-to-follow cases
like flow in thin molds, or steady incompressible or compressible flow in straight pipes
we derive explicit expressions for the velocity and pressure profiles. For the thin mold
case, we formulate a one-dimensional free-boundary problem able to capture the a pri-
ori unknown position of the moving meat-air interface. Special attention is payed on
the derivation of the free boundary conditions.

5.1 Introduction

Understanding how meat flows is one of the fundamental aspects when designing a
stable shape and content quality for food products, such as nuggets, croquettes, or
meatballs. The overall process has a twofold complexity:

(1) Meat is a compressible non-Newtonian fluid with variable viscous properties
and micro-structure (e.g. fiber orientation) strongly dependent on temperature
variations. Such a flow behavior typically causes complex (meat) deformations
especially in non-continuous flows, where the values of meat parameters and
even the equipment itself never stabilizes. This is a highly complex scenario
and complexity hampers the accurate prediction of both flow and final product
quality (and, consequently, also the optimization of the processing equipment).

(2) The geometry (patterned manifolds, irregular molds) is often complex and is
continuously changing from a product to another.

The problem posed by Marel to the 72 European Study Group Mathematics with
Industry was the following: Predict in a better way how meat properties affect flow
in forming (molding) machines, where the meat mass is pressed in molds during mold
opening and flow is a start-stop phenomena. More precisely, develop a mathematical
model that predicts non-continuous flow of viscoelastic, compressible meat mass in
simple geometries, where the pressure fluctuation, deformation rates, mold filling
rates, and final product weight are key parameters.
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We have chosen to discuss the case of a simple geometry* — cylindrical pipes —
and we have focused on developing a complete mathematical model for isothermal
viscous compressible flow of meat (e.g. chicken). We included the micro-structural
meat properties in a nonlinear power-law relationship connecting the shear rate to the
shear stress. Besides the law governing the conservation of meat mass, we derived,
by means of first principles arguments, a constitutive law for the meat density as a
function of internal pressure.

In the steady case and also when neglecting the nonlinear inertia terms, we suc-
ceeded to find an approximate solution for the velocity profile for meat flow in cylin-
drical pipes and meat flow between two plates.

Furthermore, we can give theoretical estimates of the time to fill a mold in two
conceptually-distinct ways:

(a) As mentioned in Remark 5.3.1, we know how to formulate a time-optimal-
control problem for the meat density, the time to fill a mold, and a corrector
factor (using an approximate velocity profile). Interestingly, the resulting prob-
lem resembles the porous media equation.

(b) We can suggest a calculation strategy, which gives exact results in one-space
dimension, for the time to fill a mold, namely a free-boundary problem having
as unknowns the velocity profile and the position of the interface between meat
and air.

In our opinion, both working strategies deserve further attention from a combined
modeling, analysis, and simulation perspective. Here we focus only on strategy (b).

The paper is organized as follows: In section 5.2, we develop a general model
involving partial differential equations (PDEs) to describe the meat (chicken) flow.
This is the core of our paper. The aim of section 5.3 is mainly to derive an easy-
to-handle approximate solution for velocity profiles, for getting some insight about
the characteristics of the problem, while in section 5.3 we propose a free-boundary
problem to better understand meat flow behavior in linear molds.

5.2 Modeling chicken flow

In the current section we describe a complete set of equations which are able to
capture the macroscopic behavior of chicken flow in a given geometry, say Q CR3.
Note that the meat is a mixture of material fractions with different properties, such as
a fibers, animals fats, bubbles of air trapped during the process of homogenization of
the mixture, and so on. The presence of all these components, some of which having
complex rheological properties, define the overall flow properties of the material.
Assuming that the material is homogenized to an extent such that inhomogeneities
of the meat are not noticeable at the macro-scale, allows us to make use exclusively
of "effective” or averaged variables, coefficients and model equations. Let’s denote by

4Note that the structure of the balance equations does not depend on the precise choice of the
geometry.
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T the final time of the process. Then t € (0,7 is the time variable, while x € () is the
spatial variable.
The conservation of mass is stated by continuity equation

%—F(V-pv):Oin Qx(0,7). (5.1)

Here p is the density of the meat-mixture, while v represents the meat flow velocity.

The balance of the (linear-) momentum density is described by a Navier-Stokes-
like equation. The major difference here compared to the Navier-Stokes equations for
usual Newtonian liquid lies in the very special expression of the stress tensor. This
balance of linear momentum reads:

%(pv)—l—(v'V(pv)):—Vp—i—V-a' in Qx(0,7). (5.2)
Here o is the stress tensor and p is the static pressure in the material.

Due to the specifics of our problem, all investigations reported in this note are
focused on shear flows. Therefore it is enough to determine averaged shear properties
of the meat-mass to account for the contributions to the stress tensor. Previous
works (cf. e.g. [6, 8, 3, 4], or [7] (chapter 5)) indicate that the flow properties of the
meat-masses can be taken in the form:

Monewr =k 3" in Q% (0,7), (5.3)

where k>0 and n €[0.2,0.4] are empirical® coefficients.

To complete our model we still need an equation of state. To be more precise,
we have to specify the compressibility properties of the material as a function of its
actual density and temperature. The change of temperature has a twofold effect -
it changes coefficients k, n and directly affects the flow compressibility. It is worth
noting that the empirical equation (5.3) defining the shear viscosity of the meat flow
is approximate, and moreover, this approximation strongly depends on temperature
variations. This means that we expect that small changes in temperature are able to
produce rather large deviations from the real shear viscosity. The parameters k and n
play the role of correctors compensating some of the errors induced by the variations
in temperature. In what we are concerned, we consider only an isothermal situation,
hence, k£ and n are fixed for when fixing the temperature level. What about the
influence of the temperature changes on the compressibility? The main part of the
compressibility of the meat-mass is due to the most compressible material fraction, i.e.
due to air bubbles. The effect is rather obvious: The bigger the bubble fraction is, the
bigger the compressibility. Roughly speaking, in order to notice the compressibility
of the air the changes of temperature should be in the range of 300K . However, this
temperature range is not the one encountered when filling molds with flow meat. This
fact suggests that as equation of state we may consider a density-pressure relationship.

The fact that the our material system consists of both compressible and incom-
pressible parts (air-filled parts versus liquid and solid parts of meat) leads us to the

5In most of the cases, n and k are fitting parameters. We expect them to incorporate important
micro-structure information like the local orientation of the meat fibers.
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following first principles approach:

pV=b1p+by in Qx(0,T), (5.4)
or equivalently,
p .
=——in O x(0,7). 5.9
P=ppan, M X (0D (5.5)

Here by1,bs, or equivalently, l~)1,l~)2 are material coefficients depending on the concen-
tration of air.

The equation of state (5.4) together with boundary conditions (describing the
experimental setup — the concrete food-processing machine) and initial condition
(the precise type of meat) complete the set of our model equations. It is worth noting
that, trusting arguments like those employed, for instance, in [1] (chapter 3) and [2]
(chapter 3), we expect that our model is thermodynamically consistent in the sense
that it fulfills the Clausius-Duhem inequality.

In the remainder of the paper, we study various flow behaviors corresponding to
specific (simple) geometries when boundary conditions delimitate different experi-
mental situations. Our focus will then be oriented towards the motion of the a prior:
unknown free interface separating meat and bulk air.

5.3 Construction of approximate velocity profiles

In this section we derive an approximate velocity profiles for the chicken flow in
cylindrical pipes. We start by considering the case of steady incompressible meat
flow. Under these assumptions, the term %(pv) drops out, and hence (5.2) takes the
form

p(v-Vv)=—-Vp+V.oin Q. (5.6)

Due to the prominent viscous properties of the meat mixture and due to the particular
scale of speed used in the processing machines, inertial effects become less important
than viscous effects. Therefore, neglecting the inertia term in (5.2) yields

~Vp+V-0=0in Q. (5.7)

Note that (5.7) is some sort of Stokes-like approximation, in which the stress tensor
o appears in general form.

In what follows we consider particular geometries mimicking standard ones used
in food processing technologies in order to derive closed-form expressions for meat
velocity and density profiles.

Steady flow in straight pipe

Let us consider firstly a straight cylindrical pipe. In this particular case, by neglecting
the effects of gravity, we can assume axial symmetry of the flow with respect to the
center line of the pipe. Consequently (5.7) can be rewritten in cylindrical coordinates
as follows

dp O

~ 4 D (KREI4) + kAT ) =0, i 9 (5.5)
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where z is the coordinate in the axial direction, and r is the coordinate in the radial
direction. Applying the chain rule of differentiation and multiplying the result by r
gives
ap a . n—1. .
—r— 4+ —(rk|¥(r r):Oan. 5.9
ot (PR () (5.9)
After integrating with respect to r and substituting 4(r) = —0v/dr, where v denotes
the axial velocity component, the latter equation takes the form
r dp |Ov "1 9y
-+ | = — =01in Q. 5.10
2k 0z + or or o (5.10)
Solving for Qv /0r, integrating with respect to r, and finally, using the no-slip condition
at the wall of the pipe, we obtain

n 1 0p 1/n nt1 nti1
v(r)fn—_'_1 (%82) (R no—pon ) for all r€Q, (5.11)

where the new constant R stands for the radius of the pipe. Fig. 5.3 shows a com-
parison between the well known parabolic Poiseuille profile for Newtonian fluids and
a typical profile for steady non-Newtonian flow (5.11). Depending on the particu-
lar value of the parameter n, the profile becomes flatter or steeper. For the case of
chicken flow with n €[0.2,0.4] the viscosity decreases when the shear rate increases.
Consequently, the profile becomes flatter.

Compressible steady flow in a pipe

The velocity profile (5.11) was obtained by neglecting the effects of compressibility.
However, when speaking about meat flow, one actually wants to keep some compress-
ibility effects in the game. In this section, we look at a steady flow of the meat-mixture
and including the compressibility accordingly to the equation of state (5.4).

In order to simplify matter, we consider our equation already averaged over the
cross section of the pipe. Let Q.= (0,L) be the new domain, where L is the length of
the pipe. For notational convenience, we use in the derivations below v for denoting
the average velocity over the pipe cross section. Note that the velocity v can be
decomposed as

v(z) =vo +u(z), (5.12)
where vy is the average of the velocity profile (5.11) derived in the previous subsection.
Furthermore, by neglecting inertia effects and linearizing our equations, we obtain the
following system of equations posed in QO

Op Gp@_o

R il 1
0z + Op 0z (5.13a)
ou dp

Dividing (5.13b) by p and integrating with respect to z we obtain

u(z) = —woln (’”). (5.14)

Po
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Figure 5.1: Velocity profiles in a straight pipe, for Newtonian and non-Newtonian
fluid.
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Figure 5.2: Velocity deviation u as function of the axial position.
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From (5.13a) we obtain then the density p(z). Indeed, substituting (5.4) in (5.13a)
yields

0 dp
— (b b2) p|=— 5.15
ap [(b1p+b2) p] D’ (5.15)
from which we finally obtain
— o, .
p(z) 0z for all ze (. (5.16)

bl( 7%)24’[)2

One important conclusion can be observed from this derivation. That is, that even
in the case of steady flow, the average velocity along the pipe is not uniform. In fact,
due to compressibility, the velocity of the flow increases with the axial direction. This
can be clearly observed in Fig. 5.2 for different values of the pressure gradient, the
density is plotted in Fig. 5.3. The decompression taking place in the axial direction,
introduces an extra velocity component to the flow, making the velocity distribution
non-uniform.
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Figure 5.3: Density p as function of the axial position z € Q:=(0,L) with L=1.

Remark 5.3.1. Interestingly, the pipe chicken flow situations described is remotely
resembling the porous media equation. One can see this easily when inserting the
explicit expressions of v=uv(p,po,vo) into meat mass balance. This similarity can
potentially be used (see e.g. [5]) to formulate a time optimal control problem for
chicken flow.
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On moving free chicken-air interfaces in linear molds

The aim of this part is to describe the filling of the mold by meat masses. We assume
that the mold has the form of the parallelepiped with a much less height compared
to its width and thickness. We choose the Cartesian coordinate system so that Oz is
directed vertically, Ox is directed from left to the right and Oy forms the right triple
with the other two axes.

Near the walls the speed of the meat is minimal and somewhere inside gains its
maximum. The small height of the mold means that the vertical velocity gradients
are much bigger than the horizontal ones. Consequently the main input in the fric-
tion term seems to be caused by vertical velocity gradients. If the boundary data
prescribed at the left and right sides do not vary much along the sides then it also
makes sense to formulate the filling-mold-problem as a one-dimensional event. Let’s
denote by s(t) the free boundary (meat front) separating the meat bulk (0,s(¢)) from
the air part (s(t),L). The front of the meat starts to propagate from left side to
the right. We are now interested in the time-behavior of the front of the meat. The
equations in this case can be derived from equation (5.2) by integrating along the
Oy and Oz directions. Locally, due to the high viscosity of the meat mixture, the
velocity profile along Oz direction can be taken as in-between two parallel plates.
But, of course, the average velocity given by this profile can be different for different
points x.

[
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Figure 5.4: The velocity profile for the steady flow between two plates.

The velocity profile between two parallel plates is then

1 n+1
mfd\ " n+1 dd

Here d is the distance between the plates, Vp is the pressure gradient, while k and n
enter the expression for the viscosity (5.3). From this profile we get a relation between
the average velocity and the pressure drop due to viscosity

vpd?‘op:§|v|n_1u7 (5.18)

n_|p

v(x)=n+1 k
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where £ is a constant coefficient which relates to the coefficient k.
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Figure 5.5: The velocity profile for steady meat flow between two plates.

Summarizing, we get the equations for the averaged velocity v(x) and density p(x)
in the mold. The balance of momentum is
d(pv) _ 9p

e n—1, -
p T &lv|" " v in [0,L] % (0,T), (5.19)

and the conservation of meat mass reads

% +p(V-v)=Q(x,t) in [0,L] x (0,T). (5.20)
Here the total differentials are the Lagrange derivatives, i.e. this is the derivative in
accompanying system of reference for a local portion of the fluid. The function Q(z,t)
- accounts for a possible sources of meat inside the mold. The additional sources of
the meat are the possible inlets for the meat at the sides of the mold.

The boundary conditions are:

p(Ovt) :pin(t) and p(s(t)vt):plr

Here v;,,(t) is the velocity at the left side of the mold, p;,(t) is the pressure on the
left side, and p(s(t),t) =pp - the pressure at the meat front. py is the atmospheric
pressure. In practice there are many small outlets for the air to go out in the mold.
The inertia of the air is negligible compared to the inertia of the meat. That is why
we can neglect the changes of the pressure near the right boundary due to the flow
of air. s(t) is the function of the coordinate of the meat-air boundary on time and
is an unknown of our model. To determine s(t) we have to introduce an additional
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interface condition. This condition naturally arises when imposing the momentum
balance at that boundary. But, as it was said above, we neglect the inertia of the air.
Consequently, the momentum transfer by air is also negligible. So the condition on
the free boundary should be "no momentum transfer to the air”, i.e.

n—1
d
d% in [0,L] x (0,T). (5.21)

d?s Op

p@: ox

ds
dt

This equation defines the motion of the free boundary. It is a kind of Rankine-
Hugoniot conditions. But to make use of it we need to know the pressure gradient
near the boundary. To find it we have to find the function p(z,t). Therefore this
equation has to be solved together with (5.19) and (5.20). If we assume for a moment,
that the pressure gradient is constant in time, then we can immediately find the meat-
boundary motion. The pressure on the moving boundary is constant, and therefore
the density near the boundary is also constant. This leads to the following equation
for the boundary

d n— n—1_ .
pdit’ —¢lul"  u—€lo[* v in [0,L] x (0,T). (5.22)
Here u is a constant that can be related to the strength of the flow. The bigger the
pressure applied on the left edge, the bigger u is. The plot v(t)=s'(t) is shown in
Fig. 5.6.

Figure 5.6: The velocity s'(t) of the meat front in the mold as a function of time.

It seems that for short time the velocity of the meat front follows the asymptotic
relation §'(t)=0 (t%> for t>0. On the other hand, we expect that the large time

behavior of s'(¢) will essentially depend on the exponent n. We will focus elsewhere
on capturing the precise short- and large-time asymptotics of the meat front.
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