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Abstract

We study wireless ad-hoc networks consisting of small microprocessors with
limited memory, where the wireless communication between the processors can
be highly unreliable. For this setting, we propose a number of algorithms to es-
timate the number of nodes in the network, and the number of direct neighbors
of each node. The algorithms are simulated, allowing comparison of their perfor-
mance.
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1 Introduction
Wireless networks are part of our everyday lives. The most commonly known wire-
less networks enable communication between computers or PDA’s. Recently there
has been an increased interest in wireless networks of smaller microprocessors with
limited processing power. It is the possible large deployment of these small wireless
devices, that makes them applicable to many diverse situations. By equipping nodes
with sensors, networks of many such nodes can, for example, gather information on
bird flocking [2], monitor social behavior and map crowd dynamics [7], and detect
forest fires [12].

The technology that is currently being developed at CHESS [1] enables the nodes to
communicate with each other by broadcasting short messages through the air. How-
ever, not all nodes will actually receive such broadcasts. For nodes that are too far
apart, the signal may be too weak to establish a link. But even for nodes that are
physically close, the wireless communication may be asymmetric or temporarily fail-
ing. Moreover, the topology of the network is inherently dynamic due to the possible
physical movement of the nodes. These factors add up to highly unreliable networks.
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Previous experiments at CHESS have been successful in synchronizing the internal
clocks of all nodes in a network with each other. To save the battery lifetime of
each node, one would like to reduce as much as possible the time interval in which
a node listens to incoming messages. However, a node can only receive a message
from one other node at a time. Thus, a trade-off has to be made between saving
battery power and receiving sufficient messages. To this aim, each node needs to have
information about the size of the network it is in. The goal of this study is to design
robust algorithms that retrieve this information, using minimal processing and storage
memory.

The paper is organized as follows. In Section 2 we explain the problem in more
detail, and state the main assumptions for this research. We describe a number of
algorithms to estimate the neighborhood size in Section 3, and to estimate the network
size in Section 4. Then, in Section 5 we discuss the simulation of the algorithms
and the corresponding results. Finally we draw conclusions and give suggestions for
further research in Section 6.

2 Problem Description
For the goal of the research presented in this paper, we propose a number of algorithms
that estimate, for each node:

1. the number of direct neighbors (also called the degree), and

2. the total network size.

We will assume that the algorithms proposed in this paper are much faster than
the changes that occur in network topology. This motivates our choice to consider
only networks that have fixed topology, although some random noise in data exchange
is allowed. Naturally, this assumption restricts the robustness of the algorithms: the
longer they take, the more likely the topology will change in practice, yielding unreli-
able estimates.

As mentioned, each node has its own clock; the available technology allows syn-
chronization of these clocks. However, synchronization only works between nodes
within a (sub-) network. In practice, it may take some time until all nodes in a net-
work are synchronized, especially if two separated sub-networks merge. Because of
the different time scales assumption, the nodes in the networks under consideration
are synchronized.

Typically, the clock of each node has a period of 1s, which is divided into an
active period (of the order of 1% of the total period) and an inactive period. During
the inactive period, the node cannot receive any messages, which saves its battery
life considerably. The active period is subdivided into a number of slots (typically
multiples of 4 or 8). Within one time slot, a node can receive one message from one
other node only; if messages from multiple nodes arrive at another node within the
same slot, the messages will interfere, and the receiving node can no longer distinguish
the signal from noise (in this case we speak of a collision). See Figure 1.

Each node has a unique identifier; one trivial way to estimate the neighborhood and
network size would be to simply let each node broadcast its identifier together with all
identifiers it has received so far. However, this method requires too much bandwidth
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Figure 1: The periods of a node.

and local memory. Hence, we devise less demanding algorithms for estimating the
neighborhood and network size.

3 Algorithms for neighborhood size estimation
In this section we study the neighborhood size (degree) of a given node. We present
four estimation algorithms. The organization is the same in all cases: first we give an
informal description, then we provide pseudocode for the algorithm.

Before presenting the algorithms, we should first note that the links between nodes
are possibly directional. Since a node can not directly determine how many nodes
receive its message (the outgoing degree), we focus on the neighbors from which
a node can receive a message (the incoming degree). Sometimes we will refer to
the incoming degree as the number of potential neighbors, to stress that we include
neighbors whose message may not be received due to noise or collisions.

Secondly, we note that, given the number of messages received by a single node
in each of the last X time periods, a simple lower and upper bound on the number
of unique neighbors d can be constructed. Denote the number of received messages
by m1,m2, . . . ,mX . As a lower bound dL on the neighborhood size, we take the
maximum of received messages in one period:

dL = max
1≤j≤X

mj .

The messages in one period are certainly coming from unique neighbors. Hence, the
maximum is a lower bound: in the best case scenario, all messages originate from a
neighbor already included in the lower bound. As an upper bound dU , we take the
sum of all messages received. In the best case scenario for dU , all messages originate
from different neighbors. Thus:

max
1≤j≤X

mj = dL ≤ d ≤ dU =

X∑
j=1

mj .

Note that these bounds only incorporate the neighbors from which a message was
actually received during at least one of the last X periods. It might be possible that it
has more neighbors from which no messages have come through the last X periods.

3.1 Random ID: neighborhood size estimation
Here we describe an algorithm similar to the basic algorithm given at the end of the
Section 2. The main difference is that we use randomized identifiers in stead of the
built-in ones as follows.
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Let L be the range of the random IDs, a parameter of the algorithm. Each node
v picks a uniform random number from {1, 2, . . . , L}, which we refer to as random
identifiers and denote by RIDv . Also each node v uses Rv a bit vector of length L,
set to 0 at start.

Each node in each round sends a signal containing its random ID. When a node
v receives a signal from node w, then set the RIDwth bit of Rv to 1. The vector
Rv stabilizes with a list of the random IDs of the neighbors of v. Then we use the
estimator in (2) explained below. The pseudocode is given in Algorithm 1.

After Rv is stabilized, the probability that the first bit of Rv is equal to 0 is given
by

P (Rv(1) = 0) =

(
1− 1

L

)d
. (1)

Replacing P (Rv(1) = 0) in Eq. (1) with

Vv =
#{i |Rv(i) = 0}

L
,

the proportion of the bits with value 0 in Rv provides the estimate

d̂v = − log Vv

log
(
1− 1

L

) ≈ −L log(Vv). (2)

To conclude, we discuss the choice of the parameter L. Using Taylor expansion,
Whang et al. [15] show that, the bias and standard error of d̂vd satisfies

E

(
d̂v
dv
− 1

)
/
et − t− 1

2dv
→ 1, (3)

StdError

(
d̂v
dv

)
/

√
L (et − t− 1)

dv
→ 1 (4)

as dv, L→∞ with dv
L → t.

In [15], only the case L = O(dv) was considered. Hence, they keep open the
possibility to use the estimator d̂v for smaller values of L. However, a simple com-
putation based on the expected number of 0 bits of the stabilized Rv shows that we
have to choose L > c dv

log dv
for some constant c to be able use the estimator d̂v. Hence

we have to use at least O
(

dv
log dv

)
of memory to get a non-trivial estimate with this

algorithm. This is not a significant improvement on the algorithm described at the
end of Section 2 which uses O(dv) memory. Nevertheless, we can use equations (3)
and (4) to tune the parameter L for the desired accuracy, in the same way as in [15].
This results in a constant multiple (depending on the required accuracy) of memory
decrease compared to the basic algorithm of Section 2.

3.2 Parameter estimation of binomial distribution
A given node has d potential neighbors, i.e. other nodes from which it might receive
messages. Assume that with probability p ∈ [0, 1] such a message from a potential
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Algorithm 1 Random ID: neighborhood size estimation.

Parameters:
Range for random IDs: L

Initialise:

1: Set R to an array of bits with length L of 0-s.
2: Set RID to rand(1, L).
3: R(RID) = 1

Each round:

1: bsp bradcast(RID)
2: for i = 1 to bsp nlsots do
3: r = bsp get(i) where r is the sent random ID.
4: Set R(r) = 1.
5: Compute Vv and −L log(Vv) – that is the estimate

neighbor is indeed received in a period, independently and identically distributed for
all messages, all potential neighbors, and all periods. Then, the number of messages
that this nodes receives during a period, denoted by the random variable M , follows a
binomial distribution with parameters d and p.

We are given the number of messages received by the node during the last X
periods. Let these numbers be given by the vector m = (m1, . . . ,mX), where each
mj , j = 1, . . . , X , is a realization ofM . From this information, we want to estimate d,
as this gives an estimate for the number of unique neighbors the node has seen during
the last X periods.

So, we reduce the problem to estimating the parameters d of a binomial distri-
bution, when X observations are given and p is unknown. An option would be to
use the maximum likelihood estimator (MLE), or use the method of moments estima-
tor (MME), however, both are known to be unstable [3]. That is, if instead of some
mj one observed mj + 1, this can result in a relatively large change in the estimator
for d. Therefore, we chose a more stable estimator, more precisely, the one given in
DasGupta and Rubin [5]. It uses three variables that are derived from the vector m,
namely the mean, denoted by m, the maximum, mmax, and the sample variance:

S2
m =

( X∑
j=1

(mj −m)2
)
/(X − 1).

Then, the estimator for d, d̂, is given by (cf. [5, Eq. (8)])

d̂ =
m2
max S

2
m

m (mmax −m)
. (5)

The proposed estimator of [5] actually involves an extra parameter α, which can be
used for fine tuning the estimator. We set α = 1 here, which is claimed to be a good
generic choice [5, p. 397]. A more complex estimator is proposed [5, Eq. (11)] as
well, which uses a summation over inverse Beta functions. We, however, judge this
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Algorithm 2 Parameter estimation of binomial distribution.

Parameters:
Number of previous periods taken into account: X

Initialise:

1: Let m = (m1, . . . ,mX) be the vector of received messages in each period,
initialize m to be zero-vector of length X .

Each round:

1: Count the number of received messages in round: m0.
2: Update m to be m = (m0, . . . ,mX−1).
3: Calculate sample mean m, sample variance S2

m, and maximum mmax based on
this m.

4: Compute d̂ =
m2
max S

2
m

m(mmax−m) (Equation (5)) - this is the estimate for number of
unique neighbors.

one to be too complicated and time consuming to be executed on each node in every
period.

Now, (5) gives an estimate for the number of (unique) neighbors of the node un-
der consideration seen during the last X periods. In the next period, a number of
messages is received by this node, say m0, and the vector m is updated accordingly:
mX is discarded and m0 is prepended to m. All steps of this estimator are given in
Algorithm 2.

3.3 Future broadcast
The key idea is to broadcast a message consisting of a set of random numbers which
are used by the receivers to avoid repetitions in counting the number of their neighbors.

We denote by k the size in bits of the random numbers that used generated by
each node, by l the size of the set of random numbers that a node broadcasts in a
single message and by X the number of active periods during which one wants to
estimate the number of their neighbors. In any application, there will be an intrinsic
relation between these variables. In particular, l should equal the average number of
broadcasts by a node in X active periods.

A broadcast message from a node consists of a list of size l, whose elements are
k-bit random numbers. Once the message is broadcast, the node removes the leading
random number from the list and appends a newly generated random number to the
end of the list. This new list is then used in its next broadcast.

On the receiving end, a node maintains a list of recently seen random numbers and
a list of counters whose elements keep the count of number of neighbors in the recent
active periods. In an active period, each received broadcast message is discarded if the
leading random number in the message is an element in the list of random numbers.
If not, the list of random numbers in the message is appended to that of seen random
numbers. A new counter is added to the second list which keeps track of the number
of new neighbors seen during the current active period. At the end of the active period,
both the lists are updated by removing the old random numbers and the old counter of
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Algorithm 3 Future broadcast.

Parameters:
Length of random numbers: k
Number of active periods to be considered: X
Average number of broadcasts by a node in X active periods: l

Initialise:

1: Set M to an array of l random numbers between 1 and 2k − 1.
2: Set RR to an array of length X of arrays.
3: Set C to an array of length X .
Broadcast:

1: broadcast(M)
2: Remove the last element from the list M .
3: Insert (rand(1, 2k − 1) at the beginngin of the list M .
Each active period:

1: Set c = 0.
2: Set temp = [ ].
3: for each received message do
4: if M [0] /∈ RR then
5: append(M, temp).
6: c = c+ 1.
7: Remove the last element from the list RR.
8: Remove the last element from the list C.
9: Insert temp at the beginning of the list RR.

10: Insert c at the beginning of the list C.
Count the number of neighbors:

1: Return(sum(C)).

number of neighbors.
The broadcast message simply consists of a list M of l k-bit random numbers.

Every node maintains two lists of lengthX each: a listRR of lists of random numbers
seen during each of the last X active periods and a list C of number of neighbors seen
during each of the last X active periods. In an active period, both these lists are
appended at the end with the newly seen random numbers and the number of newly
seen neighbors respectively and the leading elements are deleted.

The sum of all the elements from the list C gives an estimate of the number of
unique neighbors seen during the last X active periods. All steps are given in Algo-
rithm 3.

3.4 Counting neighbors of neighbors

We now focus on the average degree of a node in the network, using this average as
a (rough) estimate for the number of neighbors. For this, we want a node to count its
neighbors, the neighbors of its neighbors, the neighbors of the neighbors of its neigh-
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bors, and so on. Each node has to broadcast a small list containing these numbers. It
also receives these lists from its neighbors, from which it updates its own list. Note
that there is inevitable double-counting of nodes in this approach, but that is taken into
account in this method, and hence it is not a problem.

Let n(1)
i be an estimate for the neighborhood size of node i, e.g. as in (5) or just

the number of messages received during the last period. These are the ‘first degree’
neighbors. A message received from neighbor j includes node j in its estimate of
its neighborhood size n(1)

j . The number of neighbors of neighbors for node i is now
simply the summation over these numbers, resulting in an estimate for its ‘second
degree’ neighbors (all nodes at most two connections away): n(2)

i =
∑
j∈Ni n

(1)
j ,

where Ni is the set of all neighbors of node i in the last period. As these numbers are
broadcast as well, node i gets the following estimate for its ‘third degree’ neighbors:
n

(3)
i =

∑
j∈Ni n

(2)
j . Theoretically, we can continue this to every desired degree:

n
(k+1)
i =

∑
j∈Ni

n
(k)
j ,

where k = 1, . . . ,K for some arbitrary K. However, the information to be broadcast
by every node increases in the length of the list (n

(1)
i , n

(2)
i , . . . , n

(K)
i ). Therefore,

we propose to send only the list (n
(1)
i , n

(2)
i , n

(3)
i ), i.e. K = 3, that consists of three

numbers, so a node can compute up to its fourth degree neighbors n(4)
i . In a graph

that satisfies a power law for the degrees at its nodes, typically all nodes are connected
within six connections. Also, an Erdős-Renyi random graph typically has a small
diameter. Hence, we argue that knowledge up to the fourth degree neighbors is a
good balance between knowledge of the network and the amount of data that has to
be broadcast.

We use these counts to come up with an estimate for the average number of neigh-
bors (degree) of a node in the network. We denote this average by d̄. Hence, a node
has on average d̄ neighbors, so n(1)

i ≈ d̄. These d̄ neighbors have each d̄ neighbors
(n(2)
i ≈ d̄ · d̄), and each of them have again d̄ neighbors (n(3)

i ≈ d̄3), and so on. From
this a list of estimates for d̄ follows:{(

n
(k)
i

)(1/k)}K+1

k=1
.

We expect the entries of this list to converge. We use the last element from this list
in the estimator for d̄, the average degree of a node. So, the estimator for d̄, say d̂, is
given by:

d̂ =
(
n

(K+1)
i

)1/(K+1)

,

where we have chosen K = 3 here. We use d̂ as an estimate for the number of
neighbors of the considered node. All steps of the estimator are given in Algorithm 4.
Moreover, as actually the average number of neighbors of an arbitrary node is esti-
mated, we use it as well in Algorithm 8 of Section 4.4 for estimation of the network
size.
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Algorithm 4 Counting neighbors of neighbors

Parameters:
Maximum degree of neighbors taken into account: K

Initialise:

1: Let n(k) be the number of kth degree neighbors, initialize n(k) = 0 for
k = 1, . . . ,K.

Each round:

1: Broadcast (n(1), . . . , n(K)).
2: Set n(1) to estimate number of unique neighbors.
3: From the received vectors (n

(1)
j , . . . , n

(K)
j ), calculate and update

n(1), n(2), . . . , n(K+1) using n(k+1) =
∑
j n

(k), for k = 1, . . . ,K.

4: Compute d̂ =
(
n(K+1)

)1/(K+1)

- this is the estimate for the average degree of
an arbitrary node in the network.

5: Let d̂ also be the estimate for number of unique neighbors.

4 Algorithms for network size estimation
In this section we present a number of algorithms for the estimation of the network
size, i.e. the total number of nodes in the network. In each case, we first give an
informal description of the algorithm, followed by a pseudocode. Additional to the
algorithms presented in this section, we have included in the Appendix one algorithm
that needs more investigation of its possible implementation and performance.

4.1 Epidemic algorithm
The idea of the method is to start a diffusion-like process such that after enough time
an initially concentrated (in one node) quantity will be uniformly distributed over all
nodes. If the initial quantity is exactly 1, then the amount present at each node when
equilibrium is reached should be 1/N , where N is the size of the network.

This approach is not new and we follow ideas of Jelasity and Montresor [9] who
apply the anti-entropy epidemic protocol introduced by Demers et al. in their seminal
work [6] to the aggregation problem. Aggregation is defined as a ‘collective name of
many functions that provide global information about the system’ [9].

Jelasity and Montresor prove that using this method in a fully connected network
with reliable bidirectional links, all nodes estimateN continuously and adaptively: the
estimates converge exponentially fast to the exact size of the network. Furthermore,
the convergence rates and memory requirements are independent of N and the same
for all nodes.

More precisely, let V (j) denote the amount of the aforementioned quantity, present
in node j. In a perfect network the algorithm is conservative in the sense that

N∑
j=1

V (j) = 1
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at all times, and has the convergence property

V (j)→ 1

N
, for all j = 1, . . . , N.

The question is if this algorithm can still be effective in an unreliable network. Be-
cause of asymmetric links undetectable information loss is possible as a node can not
establish which other node has received its broadcasts. The effectiveness and accuracy
of the algorithm in directional, unreliable networks will depend on the network under
consideration, and can only be studied by extensive simulations.

Nevertheless, heuristically we can argue the following. If we restrict our analysis
to one node, there are two ways in which its communications are affected due to the
unreliability of the network:

1. some of the potentially incoming messages are lost which leads to an underes-
timation of the neighborhood size

2. some of the messages broadcasted by the node are also lost.

Thus, the presented algorithm may have a natural tendency to correct errors in esti-
mating the size of the network due to 1 and 2, if the incoming error and the outgoing
error would cancel themselves out.

The pseudocode of the algorithm is given in Algorithm 5.

4.2 Random ID: network size estimation

The set-up is the same as Section 3.1. The main difference from the algorithm in
Section 3.1 is that now each node will not only broadcast its random ID, but also the
list of random IDs which it already encountered. An additional difficulty arises, since
usually the recurrence vector does not fit in the message, since the network size is
usually much bigger than the length of the message which can be broadcasted in one
round. Hence we divide the recurrence vector of pieces of l bits, and send the pieces
separately, in random order. The algorithm is the following:

Let L be the range of the random IDs, and l is the length of the broadcasted piece,
parameters of the algorithm. Then each node v picks a uniform random number from
{1, 2, . . . , L},which we refer to as random identifiers and denote byRIDv.Also each
node v uses Rv, a bit vector of length L, set to 0 at start.

Each node in each round picks a uniform random number k from {1, 2, . . . , bL/lc}.
It sends a signal containing RIDv, k and the kth part of its recurrence vector, which
we denote by Rv,k. When the node v receives a message from w, then it sets the
RIDwth bit of Rv to 1, takes k = kw and updates Rv,k to Rv,k ∨ Rw,k, where ∨
denotes the coordinate-wise maximum. Then we use the estimator of EQ. (2). The
pseudocode is given in Algorithm 6.

Note that the vectorRv stabilizes with the list of random IDs in the network for all
nodes v. Using the arguments of Section 3.1 we get results similar to those in Section
3.1 for the memory usage of the algorithm.



Node counting in wireless ad-hoc networks 59

Algorithm 5 Epidemic algorithm.

Parameters:
None

Initialise:

1: Assign to all nodes except one node called i the value zero. To i assign the value
one:

V (j) := 0, for j 6= i;
V (i) := 1.

Each round:

1: Each node j estimates its outcoming degree by counting the number of incoming
messages

2: Each node sends a message containing

m(j) =
V (j)

din (j) + 1
.

3: Each node updates its value

V (j) :=
V (j)

din (j) + 1
+

∑
k incoming msg

m (k) .

Algorithm 6 Random ID: network size estimation.

Parameters:
Range for random IDs: L
Length of the pieces recurrence vector: l

Initialise:

1: Set Rv to an array of bits with length L of 0-s.
2: Set RIDv to rand(1, L).
3: Rv(RIDv) = 1

Each round:

1: Set k = rand(1, dL/le).
2: bsp bradcast(RIDv, k, Rv,k)
3: for i = 1 to bsp nlsots do
4: g1g2g3 = bsp get(i) where g1 is the sent random ID, g2 position, g3 is the

part of the recurrence vector
5: Set Rv(g1) = 1.
6: Set Rv,g2 = max(g3, Rv,g2).
7: Compute Vv and −L log(Vv) – that is the estimate
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4.3 The MinTopK algorithm
Let us assume, as in the previous section, that each node keeps its private random
identifier, RIDv , that is drawn uniformly from a set of identifiers that is much bigger
than the network sizeN , so it is safe to assume that all identifiers are different. For the
sake of simplicity of our presentation we will view these identifiers to be a uniform
sample of size N , drawn from the interval [0,1]. The key idea behind our algorithm
is based on an observation that the nodes can collectively create a list (shared by all
the nodes) of K biggest values, where K is relatively small, for example K = 100,
depending on the size of the available memory. The smallest element of this list, call
it s, can be used to estimate the network size. Indeed, if the interval [s, 1] of length
1 − s contains K values, then the whole interval [0, 1] is expected to contain about
K/(1−s) values (they are uniformly distributed), so the network size can be estimated
by K/(1− s).

In the rest of this section we work out some details of our method. First, we
present an algorithm that each node has to execute in order to create the list of top K
values that are known to network nodes. Second, we provide a slightly better formula
for estimating the network size from the smallest value of this list and experimentally
evaluate the accuracy of our approach as a function of K and N . Finally, we make
some recommendations for further research.

To create a list of the top K values we propose the following algorithm. It is
well known that calculating the maximum of values that are distributed along the
nodes of the network is a relatively simple task: the simplest gossip-based algorithm
which asks network nodes to propagate only the biggest value they have ever seen,
converges, under some assumptions, exponentially fast to a configuration, where each
node knows the maximal value. This style of propagating information through the
nodes was successfully generalized to compute other aggregates, such as average,
variance, count, see [11] or [10]. Our algorithm finds a list of k biggest values that are
distributed along the nodes using the same principle. During the initialization, each
node creates a local list of K values that are initially set to 0. The only value that
is known to a node - its own identifier - is stored in the list. Then the nodes start to
exchange information: each node broadcasts a randomly selected non-zero value from
its local list and, whenever a new value is received, it is inserted into the list as long as
there is a place for it - the smallest element of the list can be deleted to make a space
for the new value, as long as this new value is bigger than the smallest one. Clearly,
the network will eventually converge to a state, where each node keeps a list of the
top K values. The pseudocode of the final procedure for estimating the network size
is presented in Algorithm 7.

To estimate the network size from MinTopK we proceed as follows. As mentioned
earlier, if s denotes the smallest of the top K values then K/(1−s) is a good estimate
of the network size. However, it may happen that the network size is smaller than
K. In such a situation the constructed list of biggest values will contain exactly N
non-zero elements, so the exact network size can be found by counting these non-zero
values. However, it is clear that in case K < N , the estimate of the network size will
be only an approximation of the true node count. Instead of quantifying the quality
of this approximation in an analytical way, we have estimated this error by generating
100.000 uniform samples of size N and applying our formula to the minimum of the
top K elements of each sample. The results are summarized in Table 1.
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Obviously, the errors reported in the table provide only a lower bound on the ac-
tual errors made by the MinTopK algorithm. In practice, depending on the network
topology, reliability of connections and the number of send messages, the actual er-
rors might be bigger: the lists that are maintained by the nodes need some time to
converge to correct values. One way of estimating these errors is by running extensive
simulations. Some initial results of such simulations are described in Section 5.

K=8 K=16 K=32 K=64 K=128 K=256
N=64 31.07 18.76 10.65 0.00 0.00 0.00
N=128 32.37 20.34 12.77 7.25 0.00 0.00
N=256 33.06 20.69 13.72 8.89 5.02 0.00
N=512 33.07 21.27 14.34 9.70 6.22 3.58
N=1024 33.45 21.37 14.37 9.69 6.64 4.38
N=2048 33.12 21.57 14.51 9.97 6.94 4.67
N=4096 32.74 21.34 14.75 10.04 7.06 4.84

Table 1: The average relative absolute error (in percents) of the MinTopK estimator
for various values of N and K. Each estimate is based on the results of 100.000
runs. The standard errors, all smaller than 0.4%, are not shown.

There are several research problems that could be further investigated. Firstly, we
have considered only the most elementary version of the gossiping algorithm. It is
obvious that this algorithm can be improved in many ways. For example, local lists
could be sorted and instead of propagating only values, nodes could propagate values
together with their ranks. This information could be used to speed-up the convergence,
by intelligently processing the incoming information. Also, instead of selecting ran-
domly values to be broadcasted, nodes could put more attention to broadcasting values
that just entered their local lists: these seem to be most informative.

Secondly, performance of the presented algorithm should be tested on various
topologies and other properties of networks. Let us note that our network might be
organized in such diverse structures as a 1-dimensional grid and a fully connected
graph. Clearly, the convergence speed will strongly depend on network topology.

Thirdly, it would be interesting to modify our algorithm to handle situations when
nodes join or leave the network or the network topology is dynamically changing over
time.

4.4 Power law
The inspiration for this algorithm was provided by a paper by R. Cohen et al. [4],
in which the internet is modeled as a random graph. A network is considered in
which the nodes are connected randomly to each other. The probability that a node
is connected to some other node depends on the connectivity of the two. That is, the
number of edges connected to the node. Connectivity is also called degree. In the
paper a particular type of such random graphs is analyzed, namely those graphs in
which the connectivity is distributed according to a power law.
More specifically, the probability that a certain node is connected to exactly k other
nodes is given by:

P (k) = ck−τ , k = m,m+ 1, . . . , (6)
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Algorithm 7 The MinTopK algorithm.

Parameters:
Length of the list of values: K

Initialise:

1: create a list of K entries, each storing 0
2: put on the top of the list your own value
3: set the current estimate of network size to 1

Each round:

Broadcast:

1: choose at random any non-zero element from the list and broadcast it
Receive:

1: for each received identifier x do
2: find the smallest element on the list, s
3: if s > x then
4: do nothing
5: else
6: replace s by x
Estimate network size:

1: find the smallest element on the list, s
2: if s = 0 then
3: set the current estimate of network size to the number of non-zero elements on

the list
4: else
5: set the current estimate of network size to K/(1− s)
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where typically 2 < τ < 3 holds, and c is a normalization constant. m denotes the
smallest possible degree (in many cases m = 1 will hold). For simplicity, integration
is used instead of summation, such that c can be derived from the condition:∫ ∞

m

ck−τdk = 1. (7)

It follows that:
c = (τ − 1)mτ−1. (8)

A finite graph, consisting of N nodes, is considered, where the degree of each node
is a random sample from the proposed power law. To estimate the maximal degree
M in this graph, the assumption is made that only one node in the whole network is
expected to have degree M . We denote by:

p :=

∫ ∞
M

P (k)dk, (9)

the probability that a particular node has degree greater than or equal to M . Now, the
expected value of the number of nodes with degree greater than or equal to M is:

E[# nodes with degree >M ] =

N∑
k=1

k

(
N
k

)
pk(1− p)N−k

= Np

N−1∑
j=0

(
N − 1
j

)
pj(1− p)(N−1)−j

= Np. (10)

Setting this expected value 1, we obtain:∫ ∞
M

P (k)dk =
1

N
. (11)

From the above one easily derives:(m
M

)τ−1

=
1

N
, (12)

and thus the network size can be deduced from the minimal and maximal degree,
together with the parameter τ :

N =
(M
m

)τ−1

. (13)

We would like to apply the ideas of [4] to our network of broadcasting nodes. We
assume that the connectivity of our nodes can also be modeled by a power law dis-
tribution. This implies that an estimate of the network size N can be obtained, given
that we have (good) estimates for m, M , and the parameter τ . These estimates are to
be derived from the information a node receives from its surroundings. In particular
we want to derive the value of τ from the average number of neighbors of a node in



64 Proceedings of the 79th European Study Group Mathematics with Industry

Algorithm 8 Power law.

Initialise:

1: Perform the initializations of Algorithms 2 and 4.
Each round:

1: Receive messages from neighbors j from index set N ; extract d(j)
min and d(j)

max.
2: Perform Algorithms 2 and 4; extract n̂ and d̄.
3: Set m = M = n̂.
4: for j ∈ N do
5: m = min(m, d

(j)
min)

6: M = max(M,d
(j)
max)

7: Set dmin = m and dmax = M .

8: Calculate τ =
dmin − 2d̄

dmin − d̄
.

9: Calculate the estimate for the network size: N =
(dmax

dmin

)τ−1

.

10: Broadcast message containing information desired in Algorithms 2 and 4, and
dmin and dmax.

the network. First of all, note that the expected degree d of a particular node is given
by (again using integration instead of summation):

E[d] =

∫ ∞
m

kck−τdk =
τ − 1

τ − 2
m, (14)

provided that τ > 2.
For each node we need an estimate of the average neighborhood size (d̄, the average
taken over all nodes), which can be obtained by the method described in Section 3.4.
From d̄ we derive an estimate for the parameter τ , by assuming d̄ = E[d]:

τ =
m− 2d̄

m− d̄
. (15)

For estimating m and M the own neighborhood size of a node (n̂) is needed. Again,
this quantity can be obtained from the algorithm described in Section 3.4. In order to
get a clue of what the minimum and maximum degree in the network are, we com-
pare n̂ to estimates of m and M which we receive from our neighbors. We make this
more precise in the pseudocode for the algorithm, see Algorithm 8.

Note that this algorithm is based on the ideas presented in [4], but mathematical
proofs for the applicability to our problem are lacking. For the moment we rely on
simulations, as an indication of whether we are on the right track.

In case of a dynamic system, after some time, reset the system. This might be
desirable, since the algorithm in its current form is incapable of capturing splitting-up
of the network.
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4.5 Random tours using convergence detection

This algorithm is based on a paper by L. Massoulié et al. [13], in which an estimate
of the number of nodes in a peer-to-peer network is obtained using random walks.
According to this algorithm, we start at a selected node, gather information on the es-
timated degree, randomly select a peer, and send the collected information there; the
receiving node then repeats this process. By selecting random neighbors, we naturally
construct a random walk, and this walk eventually returns at the initiating node, turn-
ing the random walk into a loop: this is also called a random tour. The information
gathered at each node i in the tour is its estimate of the local degree di; the factor 1/di
was added to the prior information on the degree and got sent to the next stop of the
tour.

Upon completion of the tour, this data is multiplied by the current estimate of the
degree which directly gives an estimate of the number of nodes in the entire network.
The proof of convergence relies on modeling the random walk process as a Markov
chain process, and specifically it should be a reversible chain with a unique stationary
distribution. More global assumptions are that the graph is connected; but this is not
restrictive: if not entirely connected, it estimates the size of the connected component
of the initiating node, thus corresponding with our definition of a stationary network.
Another assumption made is that individual neighbors can be selected and commu-
nicated to, and that the connectivity of the network is stable (messages over edges
arrive with probability 1). Both of the last two assumptions surely do not apply to our
situation, and need to be attended to.

We now describe how this algorithm is modified to apply to broadcasting systems.
Instead of creating random walks, we broadcast a message starting at the initiator,
and assign this message a randomized identification number (ID) and a path length
(initially 0). Nodes receiving this message will store this message ID together with the
current path length and re-broadcast this message. When a node receives a message
of which the ID is already known, and the path length is large enough1, two random
broadcasts have converged and can be considered to have followed a specific path; the
concatenation of these two paths then form a tour, and an estimate of the network size
can thus be calculated (the degree information and tour lengths can be added to each
other). Due to the network unreliability, however, there is no theoretical guarantee
that the obtained estimate can be expected to be close to the network size when two
tours meet. As such, initial simulations should be made to determine whether this
method works as is or requires further adaptation. Algorithm 9 details this algorithm
in pseudocode.

4.6 Message based counting

The main problem with broadcasting all node IDs in a network and keeping a list of all
received IDs, is the memory usage involved with such a scheme. The idea described
here attempts to save memory usage, while in principle still being able to obtain an
exact network count (again assuming a static network topology). This is done by ID
compression by grouping nodes in unique network trails, where a trail visits nodes in
a network by traversing on arbitrary edges using each edge at most once. Note that

1this is a parameter to be experimented with
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Algorithm 9 Random tours using convergence detection.

Parameters:
Minimum message ID length mID bits,
minimum tour length ml,
a probability pinit of initiating a counting broadcast.

Main algorithm:

1: Set d to the estimated neighborhood size
2: if If rand() < pinit then
3: Set r1 . . . rmID to a random binary number
4: Set rmID+1 . . . rmID+1+log2ml to the decimal number ml

5: Set the remainder of bits (up to r27·8) to 1/d
6: bsp broadcast(r1 . . . r27·8)
7: SetM to ∅
8: Set C to ∅
9: Allocate an array x = x1 . . . xbsp nslots()

10: Allocate an array l = l1 . . . lbsp nslots()
11: for l = 1 to bsp nslots() do
12: g = g1 . . . g27·8 =bsp get(l)
13: if g is a valid message then
14: Set i = g1 . . . gmID

15: Extract path length l from gmID+1 . . . gmID+1+log2ml

16: Extract a floating point number f from gm+1 . . . g27·8
17: if i ∈M then
18: if l = 0 then
19: Convergence: obtain a network size estimate of d(xi + f)
20: Store i into C
21: else
22: if l < li then
23: Store l into li
24: Store f into xi
25: else
26: Store i inM
27: Store f into xi
28: Store l into li
29: Select a random i inM s.t. i /∈ C
30: Construct a message g with the first bits containing i, followed by l − 1 in

log2ml bits, and with the remaining bits set to xi + 1/d
31: bsp broadcast(g)
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Algorithm 10 Message based counting.

Initialise:

1: SetM to ∅
2: Set s = 0

Main algorithm:

1: if bsp pid() is an algorithm initiator then
2: bsp broadcast((0, {bsp pid()}))
3: Set s = 1
4: for l = 1 to bsp nslots() do
5: if g = (o, T ) is a valid message then
6: if s = 0 then
7: if |T | = M then
8: bsp broadcast(o+ 1, {bsp pid()})
9: else

10: bsp broadcast(o, T ∪ {bsp pid()})
11: Set s = 1
12: Add the sent message toM
13: else
14: if g /∈M then
15: Add g toM
16: if no message is sent yet then
17: Select b fromM randomly
18: bsp broadcast(b)

nodes can thus be visited more than once; a trail thus differs from a path in this sense.
The algorithm works by sending messages of the following type: (o, T ) with 0 ≤

o < M − 1 an integer and T a collection of at most M − 1 IDs; these messages
thus have a size of M integers. Each node furthermore can store received messages
in a collection M, and has a local boolean s keeping track whether it has modified
an incoming message. We assume the existence of an initiator, which starts with
broadcasting a message (0, {bsp pid()}), storing this message in its local M, and
settings its s to true. Other nodes start withM = ∅ and s set to false.

Each node, when a message is received and s is false, adds its ID to T , sets
s to true, and re-broadcasts. It can happen that T becomes too large after addition
of the local ID; in this case, the other, older, IDs are first removed from T , and o is
incremented by one. The message variable o thus counts the number of overflows;
while the message ID, now set to the node at which it overflows, remains unique; this
is by virtue of the local s variable which prevents adding a node to a message more
than once. Thus the message size is compressed: the re-broadcasted message still
contains enough information to obtain the number of nodes its trail visited.

If a message is received but s is set to true already, if it is not already in M,
it is added to M; otherwise it is not added. In all cases, a random entry of M is
re-broadcasted so that in time, nodes in the network may converge to having the same
set of trails. Algorithm 10 shows an implementation of this scheme.
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5 Simulation and results
In this section we first describe the graphs for which we simulated the algorithms, then
we describe how we have simulated the algorithms, and finally present the results of
the simulations.

5.1 Random graphs

The graphs that we use in the simulation are generated such as to mimic the conditions
of sensor node networks in practice. They depend on three parameters: the given net-
work size N , the (expected) average degree d̄, and an additional probability α (which
we fix as 0.8) that a directed edge will be created. Although only the topological
properties of the network are relevant, these are often related to geometric properties.
Therefore, we first choose random positions for each node within a two-dimensional
box of size 1. Next, we calculate the radius R that models the distance that messages
may cover, such that the expected degree will be as given:

d̄ = α(N − 1)πR2.

Between each pair of nodes that are within radiusR of each other, a directed edge then
is created with probability α. Moreover, we add a small number of completely random
directed links between any two nodes with probability N/d̄. These are added because
experiments at CHESS have occasionally shown some unexpected links between nodes
that were geographically far apart. Finally, we add to each directed edge a (uniformly)
random number in [0.4, 0.8] that models a probability that will be received.

We remark that the expected average degree will deviate slightly from the re-
quested degree because of the latter random added links, and because we do not take
into account that nodes may be close to the border of the box.

5.2 Simulation

A natural way to simulate the nodes is by a Bulk Synchronous Parallel (BSP) model [8,
14]. In BSP, each iteration cycle consists of two steps. During the first step (also called
a superstep), each nodes performs only local calculation and processing, i.e. without
communicating with the other nodes. In the second step (also called synchronization),
communications starts: all nodes broadcast and their receive messages.

We simulate the dynamic topology as follows. Messages can only be transmitted
along directed edges of the graph, but have a edge-specific reception probability that
is fixed in advance. The order in which the nodes broadcast their messages is random;
but when a node has received 32 messages, all new messages will be ignored. Previ-
ous experiments at CHESS show that this a realistic way to model the time slots and
possible collision of messages in a slot.

5.3 Results

All algorithms were simulated for several given network sizes and average degrees,
yielding estimates for the actual values of the network and neighborhood size in each
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node. From these estimate we calculated the absolute errors, normalized by the actual
values, and averaged over all nodes in the network. The results are shown in Table 2.

Some remarks about these results need to be made. First of all, most algorithms
for network size estimation make use of an estimate of the (average or local) neighbor-
hood size. The Power Law algorithm uses the Neighbors-of-Neighbors estimator for
the average neighborhood size; the Epidemic algorithm uses an explicit (deliberately
undershooting) estimate for the outgoing degree. For the other algorithms that needed
such estimates, we used the exact values, possibly leading to better results.

Secondly, most algorithms have one or more specific parameters to improve the
convergence and precision. We did not study what the optimal values for such pa-
rameters are, and choose constant values while running the simulations on different
networks sizes and average degrees. Most of these parameters are related to the values
that are estimated by the algorithms, which are of course unknown beforehand.

Thirdly, some algorithms like the Power Law and the Parameter Estimation al-
gorithms assume various things about the network under consideration or the occur-
rences of message loss. The resulting estimates are expected to be more accurate for
networks that precisely meet these assumptions.

We paid a special attention to the MinTopK algorithm that seems to be very
promising. As discussed in subsection 4.3, the accuracy of this algorithm strongly
depends on the value of K, see Table 1. By playing with this value one can control
the trade-off between the memory used by network nodes and the accuracy of the al-
gorithm. In our experiments, we used three values of K: 8, 32, 128. For each of these
values we performed 10 simulations and averaged the results, see Table 2. The results
are consistent with our expectations and are close to the estimates that are provided in
Table 1. The observed deviations can be attributed to the fact that not all simulation
runs converged to the “correct” configuration–this is certainly the case for networks
with 1000 nodes and the number of iterations limited to 30.

The Random Tours algorithm did not yield any estimates, which is denoted in
the table by a dash. This is due to the fact that, in order to get a good random tour,
the minimal path length must be high enough; but due to message loss, the higher
this parameter, the lower the probability that two broadcasts meet, resulting in no
estimates. Moreover, even if a random tour would be completed and estimates were
calculated, we expect these to be inaccurate since the assumptions of the original
algorithms for bidirectional graphs are not met: the Markov process corresponding to
one of the random paths generated is not necessarily reversible, recurrent, nor does it
necessarily have a stationary distribution.

We observed that the Epidemic algorithm sometimes diverges, especially for larger
networks with a higher connectivity. This results from too much mass being lost by
failing links, such that the estimates for the network size in each node (taken as the
inverse of the mass in that node) will blow up.

In general, we can see that all algorithms become more inaccurate for larger net-
works and increasing average degree. This is expected since in larger networks, algo-
rithms must run longer before reaching consensus, and depending on the algorithm,
too much information may become lost in the process.
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size 100 100 1000 1000
av. degr. 10 30 30 100

algorithm steps neighborhood size estimation
Rand. ID nbh. 30 1.5% 4.1% 16.1% 50.9%

300 1.5% 4.1% 58.5% 59.6%
Parameter est. 30 55.3% 178.0% 252.2% 942.3%

300 15.6% 20.7% 30.0% 95.6%
Future bc. 30 119.1% 138.5% 136.9% 33.9%

300 116.2% 127.0% 136.6% 39.6%
algorithm steps average neighb. size estimation
Counting n. of n. 30 29.9% 25.9% 27.5% 53.3%

300 29.5% 25.0% 27.4% 53.0%
algorithm steps network size estimation
Epidemic 30 76.0% 91.3% 80.0% 89.0%

300 72.8% 91.5% 93.5% 94.0%
Rand. ID nw. 30 85.5% 55.4% 90.5% 85.4%

300 37.1% 2.4% 5.5% 84.5%
MinTop8 30 22.7% 33.9% 23.3% 77.6%

300 28.3% 30.4% 22.8% 39.8%
MinTop32 30 17.2% 14.0% 12.5% 72.9%

300 11.3% 10.1% 17.4% 49.9%
MinTop128 30 0.3% 0.3% 8.8% 84.5%

300 1.0% 0.5% 5.4% 36.5%
Power law 30 1550.2% 567.5% 98.6% 94.5%

300 82.8% 8190.6% 98.6% 94.8%
Random tours 30 - - - -

300 - - - -
Msg.b. count. 30 30.1% 22.8% 84.9% 91.7%

300 36.4% 55.8% 77.4% 90.0%

Table 2: Simulation results: mean relative absolute errors.



Node counting in wireless ad-hoc networks 71

6 Conclusion and Further Research
Although most algorithms did converge to a stable estimate, the relative errors were
still significant, especially for larger networks. As mentioned, large network sizes are
generally difficult to estimate in unreliable networks. The results of our simulations
seem to suggest that the MinTopK algorithm is the most promising. However, a fair
comparison between the algorithms is difficult because of the trade-off between mem-
ory and accuracy, and because all algorithms use different parameters. More research
needs to be done to find smart and adaptive choices for the parameters of the algo-
rithms, which is expected to improve the estimates considerably. Such results can be
used in more extensive simulations to decide which of the algorithms are the fastest,
robust and the most accurate.
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A Appendix: Halving algorithm
In this section we describe the strategy of an algorithm which computes the exact size
of a network. This strategy can be applied to networks with both static and dynamic
topologies.The main idea of this algorithm is to select one half of the population of
the network a consecutive number of times, at the end the nodes which represent the
remainder of the halving at some stage represent some digit 1 of the binary expression
of the number of node in the network.

The core of the algorithm consists of a loop with three steps:

1. in the first step a node send messages to find a partner and check incoming
messages to find pairing requests of other nodes,

2. in the second step (when a node either has received a pairing request or his
pairing requests has been accepted by another node) the node decides whether
itself or the partner is going to be included in the selected half of the population
(upgrade). The level of the upgraded node is increased by one (the initial levels
of all nodes are zero),

3. if a node can not find a partner considers itself a digit (at the position of its level)
of the binary expression of the size of the network and spreads this information
around

The algorithm eventually converges to the size of the network, nevertheless at any
time it is undecidable if the current estimation of the size of the network is the final
one (except when the estimation is less than the number of neighbors) this because the



72 Proceedings of the 79th European Study Group Mathematics with Industry

problem is semicomputable. There are a number of issues to take in account in order
to ensure that the algorithm will converge.

First of all the way a node finds a partner needs to be implemented in a way which
does not generate deadlocks. The most simple implementation is to set states for each
stage of the pairing process, one for the following situations:

1. a node looking for a partner

2. a node who accepted the request of pairing of another node and he is waiting
for confirmation

3. a paired node

To ensure the absence of deadlocks the second state needs to be split in two states,
according to the role which a node has during the pair process. The role can be the
one of asking the pairing, or the one of being asked the pairing, for instance the role
can be decided according who has the greatest id. The same criteria could also decide
which of the two nodes is going to be upgraded.

The pairing request is communicated by messages. A node is more likely to get
paired with a neighbor. Nevertheless it may happen that all neighbors are paired and
the only node available is distant and can not be reached by the messages because their
lifespan is too short.

To cope with this issue every time a node needs to wait too long to find a partner
doubles the life of his messages.
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