OPTIMAL ORDER QUANTITIES WITH
VOLUME DISCOUNTS BEFORE AND AFTER
PRICE INCREASE
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Abstract

An inventory problem in which annual demand is normally distributed
with known means and standard deviations is considered. A purchase
price increase is imminent before the next order is placed. Volume
discounts are also given in accordance to the size of the order. A
model to compute an optimal order quantity and an optimal delivery
point is presented. This model can also account for any price change
that may occur from time to time.

1 Introduction

Models involving price increase have been discussed (Tersine (1976), Nad-
dor(1966), Huang and Kulkarni (2003) ). In these models constant annual
demand rate is assumed.

Tersine (1976) assumes no stock when the order needs to be made and
the special order coincides with the end of a cycle. Naddor (1966) on the
other hand assumes that the special order is a multiple of the economic
order quantity (EOQ) after the price increase. Huang and Kulkarni (2003)
discussed an infinite horizon model in which the special order size is not
necessarily a multiple of the new EOQ. In all these models, the approach
is to determine the special order size by minimising some cost difference
function of when the special order is made and when it is not. Naddor
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(1966) and Huang and Kulkarni (2003) achieve this by using a so called
Cesaro limit and conclude by finding a (s, S) type strategy.

The problem of volume discounts has also been discussed separately in
the literature (Taha (1992), Naddor (1966) and Winston (1997)). These
models are based on an assumption of no price increases and hence no con-
sideration of special order quantities. Algorithms for minimising total an-
nual costs have been proposed for use in such a case to determine an optimal
order quantity that takes advantage of the volume discounts.

Here we propose a model that can incorporate both volume discounts
and price changes. Annual demand is assumed to be normally distributed
with known mean and standard deviation. The order size and cycle length
between delivery points are also assumed to be variable. Central to this
model is that the demand rate in one cycle is not equal to that of the others.
This allows for such practical cases as seasonal demand, about which the
retailers would have an idea of how the stock can deplete in a particular
cycle. Shortages are allowed in any cycle but no backlogging is assumed.
The optimal order quantity is dependent on the price.

2 The model

2.1 Model assumptions

We assume a finite planning period of one year, during which a predeter-
mined number of orders are to be made.Annual demand is stochastic with
a known mean annual demand (D). The order quantity, ¢;, and the length,
T;, of each cycle are variable. Order quantity ¢; is placed at ¢ = 0. For the
i-th cycle the retailer has a good knowledge of how the stock is depleted and
can assign a mean demand rate, which may vary from cycle to cycle. The
inventory level is stochastic with constant variance over a time cycle. Back-
logging is not allowed. Hence all shortages account for lost sales. On time
delivery of an order is assumed. Ordering cost, O;, has two components: the
fixed ordering cost and variable ordering costs. The variable cost depends
on the quantity ordered, so that O; = F' + cg;. This is in addition to the
purchase cost, P; = p;q;, associated with the unit price of the stock. The
times when an order is delivered are allowed to vary within certain ranges;
ie. t; € [lj,u;],i > 1. The sum of the periodic order quantities equals annual

mean demand; i.e. ZQi =D.
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Figure 1: Operational structure (n = 3).

2.2 Description

Let the mean demand rate u; for each cycle be known. Then the inventory
level in each cycle will be determined by

q=c — it +v, (2.1)

where v; ~ N(0,02) and ¢; = ¢;(q;, vi_1). Therefore the inventory
g~ N(ci — pit, o).

We normalise the demand rate so that if y; = 0, then v; = Z;o0;.
We consider the case where o; is proportional to the order quantity, i.e.
o; = €q;, € small. Thus v; = v;(¢;) and in every reference thereto such

dependence shall be understood.
Figure 1 shows some of the features of the operation for a planning
horizon involving 3 orders/cycles. The initial order quantity, ¢1, is dehvered

at tg = 0. At any stage, the next delivery point occurs at t; = ¢;_1 + =

i
1=1,...,n—1, with ¢, = 1 marking the end of the planning horizon and
hence no delivery at that point.
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Qi

Figure 2: Interval T;

A more detailed representation of a typical cycle i is shown in Figure 2.
Each cycle begins with a delivery of an order quantity ¢;, ¢ = 1,2,...,n,
which is depleted at a mean demand rate u;, ¢ = 1,2,...,n, over a period
T, = % The stock level during the i-th cycle is given by the stochastic
function ¢ = q(t) = ¢; — pit + v;.

Also, the admissible range for the delivery point is ; < t; < u;, where [;
and wu; are respectively the lower and upper bounds for the variation.

The costs likely to be incurred in cycle T; are:

Holding cost:

If v;_1 > 0, then there will be stock, x;_1, on hand when the next delivery
q; occurs. The holding cost is taken up to ¢;_1 and the rest is incorporated
into the next cycle. If we let Q; = x;_1 4+ ¢; be the total stock at the
beginning of the i-th cycle, then the average inventory during 7; is

Wi it
I, = (Q; — it + ;) dt . 2.2
; H/ (Qi — it + ) (2.2)
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The holding costs incurred between ¢; 1 and t; = t;_1 + 4 are therefore
i

m:<%+w>mh (2.3)
Hi

given by

where h is the cost of holding a unit in stock for a year. The last inventory
holding cost incurred if v, > 0 is

tt L
H;:h/ " Qn — it + vy dt (2.4)
t

n

Shortage cost:

»
If v; < 0, then a shortage cost is incurred between t; + — and ¢; and is given

(A
by
4q;

Si = S/Ii, (Qi — pit +v4) dt (2.5)

i

where s is the shortage cost per unit per year.

Ordering cost:
This is given by

O;=F+cq . (2.6)
Purchasing cost:

This is the cost of the stock given by

P; = piq; . (2.7)

2.2.1 Total inventory cost:

The total cost in interval T; is therefore

s = (2.8)

Pi+0i+Hi+|Si| if v, <0.
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2.3 Total annual cost

The main objective is to minimise the total annual cost,

C:ZCi:f(Q1=QQ7---=Qn) .

i=1

The optimisation problem can be stated as

Minimise C == f(q17 q2, .- 7qn) (29)
subject to h <t <w, i=12...n (2.10)
where )
tlzga ti:ti—l‘F&, 1=2,...,n.
H1 Hi

The total annual costs depends on a number of cases. Let the total cost in
cycle T; be

C; = P+0O;,+H;, if S;,=0, (2.12)

For example the following total annual costs for n = 3 arise ( see Ali and
Masinga [2004] for details):

Case 1: vi,1v0,13 <0

C=Ci+C5+C3, (2.14)

Case 2: v, < 0,13 >0
C=C;+C5+Cs+ HY, (2.15)

Case 3: v1,v3 > 0,19 <0
C=C+C5+Cs+ H} , (2.16)

Case 4: v1,v3 < 0,19 >0
C=Ci+0Cy+0C3, (2.17)

Case 5: v1,10 > 0,13 <0

0201+02+C§ , (2.18)
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Runl Run 2 Run 3
Inputs
P1 50 50 90
D2 50 60 80
3 50 70 70
Output
q1 269 979 267
Q2 99 415 99
qs3 1132 105 1133
>4 1500 1499 1499
Total costs 8850 9186 118835
31 0.1571  0.5498  0.1506
to 0.2013 0.7612  0.2007
t3 0.7403 0.8113 0.7406

Table 1: Results for three runs for a set of data.

Case 6: v; < 0,19,v3 >0
C=C;+Cy+Cs+ Hy, (2.19)
Case 7: v1 > 0,v9,v3 <0
C=0+C5+C3, (2.20)
Case 8: vq,15,v3 >0
C=Cy+Cy+Cs+ Hj . (2.21)

The model is elaborated further in Ali and Masinga (2004), where a
detailed breakdown of the computation is given.

3 Conclusions and recommendations

The model was tried for the case n = 3, using some data previously used for
other models for different values of the unit price in different intervals. Some
data taken from Yong-Wu (2004), with F' = 500, h = 10, s = 15, ¢ = 4
and pp = 1780, puo = 1970, psz = 2100, D = 1500 were used. The results
obtained for different runs are shown in Table 1.

The results show that the model adapts well to variations in the mean
periodic demand p; and the respective prices p;. For example, we can deduce
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from Run 1, where the price is fixed, that the optimal strategy would be to
leave the highest order quantity to the last, which is in line with the fact
that the mean demand is highest in cycle three. In Run 2 mean demand
values are the same, and the price increases from cycle to cycle. The optimal
order quantities are g1 = 979, g2 = 415, g3 = 105. Thus when the price is
highest, the order quantity is lowest.

With such results, it seems possible that the model can be modified to
accommodate the case of quantity discounts. This and other such consider-
ations are presented in Ali and Masinga (2004).
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