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Abstract

During the study week 2011 we worked on the question of how to automate
certain aspects of the design of analog chips. Here we focused on the task of
connecting different blocks with electrical wiring, which is particularly tedious
to do by hand. For digital chips there is a wealth of research available for this,
as in this situation the amount of blocks makes it hopeless to do the design by
hand. Hence, we set our task to finding solutions that are based on the previous
research, as well as being tailored to the specific setting given by NXP.

This resulted in an heuristic approach, which we presented at the end of the
week in the form of a protoype tool. In this report we give a detailed account of
the ideas we used, and describe possibilities to extend the approach.

1 Introduction

1.1 NXP Semiconductors

NXP Semiconductors N.V. (Nasdaq: NXPI) is a global semiconductor company and a
long-standing supplier in the industry, with over 50 years of innovation and operating
history. The company provides high-performance electronic chips to its customers,
and produces these building on its expertise in the areas of RF, analog and digital cir-
cuits, power management, and security. These innovations are used in a wide range
of automotive, identification, wireless infrastructure, lighting, industrial, mobile, con-
sumer and computing applications. Headquartered in Europe, the company has ap-
proximately 28,000 employees working in more than 25 countries and posted sales of
USD 3.8 billion in 2009.

1.2 Place and route for analog designs

The increasing demand for smaller, faster, and multi-functional electronic devices
such as smart phones is one of the driving forces in the semiconductor industry. Com-
bined with requirements on power usage, sustainability, and wireless functionality this
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is generating challenges in several domains. During the design of the layout of a chip,
which is a representation of the chip in shapes in its physical layers (silicon, oxide,
metal), one of the challenges is to place and route (wire) the circuit components in
an optimal way. Aspects that define optimality may vary per design/application and
are typically related to the area (convex hull) of the chip, the total wire length, and
the unintended side-effects caused by the wires (crosstalk, i.e., electrical fields be-
tween wires). The place and route problem is further complicated by design rules and
geometrical constraints.

The place and route problem has been studied for many years and mature solutions
are available for digital designs [1, 4, 10, 11, 12, 15, 16, 17, 21], which typically
consist of (almost) equally sized blocks and predefined routing channels. For analog
designs, the main interest of NXP, the place and route problem is more complicated
because blocks can vary in size and aspect ratio and may even overlap (so that there is
no need for explicit routing), and because routing channels are typically not available
but defined by the placement. Also, while typically several layers (metal) are available
to route in, often one would like to limit this to as few layers as possible, and in some
cases routing is even restricted to a single layer. Other objectives one can think of
are to minimize the wire length and the number of turns in the wires, and typical
constraints are that wires are either horizontal or vertical (only 90-degree turns) and
should be at a certain minimum distance from each other. Furthermore, it is desirable
to have a routing algorithm that is robust with respect to (small) changes in the layout,
so that it can be used in parametrized designs to update the routing automatically when
parameters change. This allows designers to quickly explore different physical design
variants.

The challenge NXP set for the study week of 2011 was to develop an algorithm
that, given a number of circuit blocks and their interconnections, computes an optimal
layout including placement and routing.

1.3 Outline

In Section 2 we describe the precise task we discussed during the study week, and we
give a detailed account of the partial results we were able to achieve, including the
prototype of a tool that we think can simplify the work of chip designers. In Section 3
we give an overview of possible extensions and improvements of one particular aspect
of our algorithm, which we believe could be a computational bottleneck for larger
instances; Section 4 outlines a slightly more sophisticated algorithm than the one in
Section 2, which also has the benefit of giving us lower bounds on the quality of the
solutions it produces. We conclude the report with a summary of our results and an
estimation of the success in terms of the original challenge.

2 Heuristic Method and Implementation

As illustration of the ideas developed for NXP during the study week, we implemented
a heuristic for solving the problem as a C++ program. An early version of this program
was demonstrated during the final presentation session of the study week as well as a
later version during a visit to NXP in Eindhoven (Figure 1).
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Figure 1: Screenshots from the demonstration at NXP, Eindhoven. The top picture
shows generated routing for the tunedCap circuit and the bottom two pictures
show routing for di fInvStage. Both these circuits consist of 5 layers.

Because of the time constraints of the study week we chose to focus only on the
routing aspect of NXP’s problem: the program should be able to import a layout
specified in NXP’s circuit design software (Figure 2), where all the components have
already been placed on the chip, and export routing in the form of wires connecting
these components (thin wires in Figure 1). Wires are formed on the circuit by deposit-
ing metal in the production process.

The circuits are produced layer-by-layer, so we know beforehand that there is an
l € N specifying the number of layers (I = 5 in Figure 1) and a bounding box of the
entire circuit board within which all components and wiring should be contained. We
do not want to short-circuit different components on the circuit board by placing metal
at the wrong places, therefore we receive for each layer a number of solid rectangles,
in which no metal can be deposited (solid gray blocks in Figure 1). These rectangles
are characterized by their lower-left and upper-right corners in R2, as well as the
number of the layer in which they are present. The components in the circuit need to
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Figure 2: Circuit design software of NXP showing the layout of tunedCap.

be connected by conducting metal: we are given a list of pins, conducting rectangles
belonging to a certain layer and having a certain color (the colored blocks in Figure 1).
All pins sharing the same color should be connected by metal. To prevent accidental
short-circuiting and interference, wires should have a minimum distance from each
other; these minima can be different for different layers, so they are represented by a
vector 6 = (d1,...,0;) € Rl>0- It is important to note that wires are not restricted to
a single layer: wires can make jumps to other layers by vias.

Our program now needs to find out, given these parameters, where to deposit metal
in the circuit such that

* for each pair of pins sharing the same color there exists a continuous metal path
connecting the pins;

* the distance between two bits of deposited metal in the same layer %k that are
connecting pins with different colors is always > dj;

* no metal is deposited in the solid areas and no metal is deposited outside of the
circuit board.

These are hard constraints in the sense that any solution which does not satisfy all
these criteria is unacceptable.

2.1 Optimization

If we only took the hard constraints into account, we could end up with very unfa-
vorable and costly solutions (e.g., paths that needlessly use a lot of metal). Therefore
we will, in addition to satisfying the hard constraints, try to minimize the following
quantities:

* the total amount of metal that needs to be deposited (as depositing metal costs
money and long paths increase the resistance, which increases power consump-
tion);
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Figure 3: Left: two wires that use the same amount of metal, but turn a different
number of corners. The blocks S; and S> are solid area bounding boxes, P; and P»
are pin bounding boxes, and S1° and S¥' are the lower-left and upper-right corners of
S1. Right: Construction of a Steiner tree (see Section 3) by first creating the shortest
path between the pins farthest away from each other (solid line) and then connecting
the remaining pins to this path (dashed line).

¢ the number of corners in each of the paths (as corners introduce interference and
are more susceptible to production errors, compare paths 1 and 2 in Figure 3);

* the number of jumps between different layers (as producing vias is expensive).

Depending on the specific circuit for which a routing needs to be generated, there
could be additional objectives, such as

* limiting the amount of metal deposited in a specific layer;
* discouraging paths from lying on top of each other;

* encouraging metal deposition in certain areas of a certain layer, while discour-
aging it in others;

Hence the optimization criteria should be as customizable and flexible for the circuit
designers as possible.

The heuristic (Algorithm 12) we use to solve the problem described above is based
primarily on Dijkstra’s shortest path finding algorithm [6] (in our implementation we
improved performance by using the A* algorithm [9]; compare [11] and, for possi-
ble improvements, [17]). Dijkstra’s algorithm is particularly useful for incorporating
flexible optimization goals by viewing the minimization of total distance as the mini-
mization of a more abstract cost function in which the goals of the chip designers are
incorporated. Hence we look for cheapest paths with respect to this cost function (an
example of which is given in Algorithm 13), using Dijkstra’s algorithm.
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2.2 Dijkstra’s algorithm

Dijkstra’s algorithm [6] computes the shortest paths between a single source vertex
s and all vertices v in a directed graph G = (V, E) with non-negative weights on
the edges representing distances or more general costs; for our routing problem, the
weights represent costs of various types. The algorithm works as follows. For each
vertex v, a temporary best distance d(v) is maintained. The distance d(v) is lowered
each time a shorter path to v is encountered. The predecessor of v in that path is
then registered, thus storing the shortest path, and not only its cost. At some stage in
the computation, the distance reaches its final value, the shortest distance to v. Then,
v is included in the set D of finished vertices. Initially, d(s) = 0, d(v) = oo for
v # s, and D = (). It can be shown that the distance attains its final value once
d(v) = minygev—p d(w). Algorithm 11 presents Dijkstra’s algorithm.

Algorithm 11 Dijkstra’s Algorithm.

Input: Directed graph (V) E) with costs ¢(v,w) > 0 for every edge (v,w) € E,
source vertex s € V.

Output: The cost d(v) for reaching vertex v from s, and a predecessor in a shortest
path to v, forevery v € V.

1: forallv €V do

2: d(v) « o0;

3: pred(v) v

4: d(S) <+~ 0;

5: D« 0

6: while D #V do

7. v < argmin{d(w) : w eV — D};
8: D+ DU {U};

9:  for all w with (v, w) € E do

10: if d(v) 4+ ¢(v,w) < d(w) then
11: d(w) + d(v) + ¢(v,w);

12: pred(w) + v;

The A* algorithm is a more efficient variant of Dijkstra’s algorithm, which makes
use of knowledge about a target vertex ¢ that we want to reach, such as a lower bound
[(v) on the cost of reaching ¢. In our case, we will use the minimum distance to be
covered on a three dimensional grid (see the next section) as a lower bound, ignoring
other costs. The bound is called consistent if I(v) < c¢(v, w)+1(w) forall (v,w) € E.
For our problem, the bound is consistent because ¢(v, w) includes the distance cost of
routing from v to w. Algorithm 11 can be changed from Dijkstra to A* by writing
t ¢ D instead of D # V on line 6 and d(w) + I(w) instead of d(w) on line 7.

2.3 Implementation

Algorithm 12 outlines the heuristic employed by the prototype tool. In the algorithm
we deposit metal of certain colors in order to be able to differentiate between wires
connecting different sets of pins. Two deposited wires that do not share the same
color should always be separated by the minimum separation distance as specified
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by 6. For bounding boxes we use the following notation: if B is a bounding box,
then B'° B" € R? are the lower-left and upper-right corner of the bounding box,
respectively. The layer where the bounding box is present is indicated by B'&°" € N,

Algorithm 12 Discretization and Heuristic Wiring.

Input: Number of layers [ € N, minimum wire separation § € RL , circuit board
bounding box B, solid area bounding boxes S1, Ss, ..., pin bounding boxes P;,
Py, ...

Output: Discretized grid in which the metal depositions have been marked.

1: Let p < grid spacing based on § or a specified resolution;

2: Create three-dimensional grid G of [(B" — B!°)/p] by [ cells;

3: for all solid area bounding boxes .S do

4. Mark all cells lying between | (S' — B'®) /p| and [(Sh — B')/p] in layer S
as inaccessible for all colors;

5: for all pins P do

6:  Mark all cells lying between [ (P — B')/p| and [(PM — B!)/p] in layer
P¥yer a5 metal with color Peor;

7: Mark all cells within distance [dpwe/p] of P as inaccessible, except for color
Pcolor;

8: Sort pins by their color into nets and then the nets by increasing bounding box

volume;

9: for all nets P in which all pins share the same color P°!°" do

10:  Find Py, P, € P such that the distance between the centers of P; and P is

maximal;

11:  Create a cheapest path 7' C G from P; to P; traversing only cells accessible

for color Peoler;

12:  Similarly create cheapest paths from 7" to all P € P not connected to 7" and

add these paths to T;
13:  forallcellsc € T do
14: Mark ¢ as metal with color PPekr;
15: Mark all cells in layer ¢* with distance < [d.=/p] to c as inaccessible, except
for color Peelor;
16: Output G;

To simplify the problem we first discretize it (line 2) to a regular three-dimensional
grid G, with [ layers and spacing p within each layer. G will be the graph in which
we perform Dijkstra’s path-finding algorithm. Cells ¢ € G have three coordinates
(c®,c¥,c*) € 73, where 1 < ¢* < [ is the layer in which the cell resides. To ensure
that we never deposit metal in solid regions, we mark these in G first by discretizing
the bounding boxes and flagging the cells contained in them as inaccessible for metal
from any pin. We then proceed at line 5 to add all pins, marking the cells contained
in them as metal of the pin’s color and ensuring that no metal belonging to pins with
a different color can be deposited near the pin (as this could violate the minimum
separation criterion).

After the solid regions and pins have been marked, we generate paths connecting
all the pins sharing the same color at line 8. First we cluster the pins together such
that we have nets of pins all sharing the same color. Note that the algorithm will yield
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different results if we connect the pins contained in these nets in a different order,
hence we will fix the ordering by sorting the nets of pins of the same color by the
volume of the bounding box containing the pins. This idea originates from the fact
that connecting all the short paths first will lead to less conflicts between paths later
than first connecting all the long paths (which could potentially cut off short paths).

Then we will connect, for each net of pins sharing the same color, the pins belong-
ing to this net. If there are at most two pins in a net, we can directly use Dijkstra’s
algorithm to find the cheapest path connecting them. However, if we have more than
two pins, we need to generate a Steiner tree (see Section 3) connecting all of them. In
our heuristic, this is done by first creating a path between the two pins that are farthest
apart, and then using this long path as a ‘trunk’ to which the remaining, unconnected,
pins connect as branches via Dijkstra’s algorithm (see the right panel of Figure 3). A
path can only be created along cells that are accessible for the particular color of the
current path; this to ensure that the minimum separation distance is always maintained.

Algorithm 13 Routing Cost Function for Dijkstra’s Algorithm.
Input: Neighboring cells c¢_1, ¢g, and ¢; in the grid G where c_1 is the predecessor
of Co.
Output: The cost k to use cell ¢; to continue the path.
1: Initialize k < 0;
2: if ¢; is not marked as metal then
3:  We need to deposit metal: k < k + Jmetal.
4:  if ¢f # c§ then
5 We need to create a via: k < k + k¥,
6: if ||Cl — C_1||2 = 2 then
7
8
9

We turn a corner if we continue this way: k < k + k™

: Output k;

Algorithm 13 gives a simple example cost function for Dijkstra’s algorithm where
we consider continuing an existing path going through cells ... = c_; = ¢g to ¢cg’s
neighbor ¢; (neighbor in the sense that ||c; — ¢o|| = 1). The cost can be influenced by
varying three parameters: k™, ke and kVi2, This allows the designer to indicate
whether he finds minimizing the length of the wires (increasing ™), minimizing the
number of corners (increasing £°°™"), or minimizing the number of vias (increasing
k¥i2) more important. In Figure 1 the colored bars on the left are similar cost modifiers,
from bottom to top: cost to deposit metal, cost to turn a corner, cost to create a via,
cost to run over an existing wire, and cost to run over a solid block. By extending the
cost function and permitting the designers to vary the associated weights, a number
of different routing suggestions is easily obtained from the program. Note that the
multiplicative factors such as k™! can also be made to depend on the position of ¢y
or cq, permitting the designer to make certain layers or certain regions of layers more
or less attractive for the wires to traverse; this and other costs can be added at line 8.

The program prototype has been demonstrated to circuit designers of NXP in Aus-
tria and its source code has been provided to NXP.
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3 Some Ideas for Steiner Trees

As we mentioned above, if we have more than two pins in one net, we cannot just use
Dijkstra’s algorithm to connect them. If we consider the pure problem of only one set
of pins to be connected, this is an instance of the Steiner tree problem. Given a set of
vertices, called terminals (which will be our pins), and another set of vertices, called
Steiner points (grid points that are not blocked), a Steiner tree is any tree that contains
all terminals and (some) Steiner points.

This section will give a brief account of possibilities to find a good Steiner tree
in a grid (with obstacles). In particular this means that here we ignore the fact that it
might not be possible (depending on the layout) to achieve an optimal routing solution
by considering the nets successively. We defer this discussion to the next section.

As is true for most aspects of chip design, it is a computationally hard problem to
find a smallest Steiner tree [7], and there is an abundance of strategies to get reasonably
good approximations in acceptable time [2, 18]; and for more algorithms, see [10, 11,
12, 15]. Here we will restrict our attention to approaches that seem appealing because
of their simple implementability and their compatibility with the strategy we chose for
paths.

Most algorithms we found in the literature deal with the rectilinear version of the
Steiner tree problem, i.e., where all terminals and Steiner points are given in a two-
dimensional rectilinear grid. As we want to find Steiner trees in a three-dimensional
grid (with obstacles), these results are to be taken with some caution, although we
believe that on average they are close to what is to be expected for our setup. The idea
presented in the previous section can be seen as a simplification of ideas from [10],
where it is stated that we will get a tree that is at most a factor of 3/2 away from a
minimal Steiner tree, and on average much closer to it.

It should, however, be mentioned that the authors in [10] consider nets that include
a source. In such a case it is usually desirable to minimize the distance of the other
pins to the source, whereas our focus is more on the total (weighted) wire-length used
in the tree. In the former case one typically gets star-shaped trees, whereas in the latter
a caterpillar-structure is more likely.

As long as the net contains at most 6 pins, a rectilinear Steiner minimal tree in
an obstacle-free grid can be found by going through all permutations of the order of
pins, connecting them in these orders in the way described in Section 2.3. For larger
nets, this approach will not always produce an optimal tree (not even in this special
case of obstacle-free rectilinear trees), but there are good approximations available
[14]. Still restricted to the rectilinear case, and given that the instances are typically
relatively small in the case of analog chip design, one can also consider computing a
truly minimal Steiner tree, using, e.g., GeoSteiner [19, 20]. For more information, the
paper by Hentschke et al. [11] is a good survey on exact results and approximations
for rectilinear Steiner trees, taking into account different priorities of optimization.

4 Integer Programming and Approximations

In this section we propose a mathematically more rigorous approach, which extends
our heuristic from Section 2 but was too elaborate to incorporate in the prototype tool
during the short time span of the study week.
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This is a column generation approach (which can also be found in [10] in some-
what similar form), an approach that has successfully been applied to different real-
world optimization problems (see [5]). While we give all formulations in terms of
paths between pairs of pins, they work (with one limitation) also for larger nets.

4.1 Column Generation

Let us start with decomposing the problem into two levels. The top (or master) level
is the following: given all nets and for each a pool of paths connecting them (possibly
all such paths), we want to select one path for each net, such that the resulting wiring
satisfies our hard constraints and is of high quality with respect to the optimization
goals.

This is an integer linear program (see precise formulation below), which is known
to be computationally hard to solve to optimality [13]. And while the analog design is
not excessively large, here we get a huge number of variables: one for each pair of a
net and a possible path for this net.

We note here that one can reduce the size of the graph involved by using less vertices
and introducing different weights on the edges depending of the capacity of the space
between the vertices. One could construct such a graph with a Generalized Voronoi
Diagram. This method has been used for path planning in games (see, e.g., [8]), where
characters have to move through a landscape and avoid obstacles. In chip design,
electrons move through the wires and avoid components (except for the locations of
their pins). We can define a Generalized Voronoi Diagram around the components.
The edges in this diagram result in a collection of corridors going through the central
areas of the open space between the components. In this way, they result in edges
for our routing network. For each pin we add an edge representing the shortest line
connecting that pin to the network. In general, this network will be smaller in terms
of vertices and edges than the grid which is attractive from a computational point of
view. Observe that in this setup multiple wires can go through an edge or vertex.
One drawback of this is, however, that the solution is not yet a complete description
of a physical layout. But one could first determine the corridor a net will use, and
then solve sub-problems in this smaller grid. There are some more technicalities to be
considered here, so we will just leave it as a suggestion for further considerations.

In any case, by far not all possible paths are of interest for us. In fact, most are
unnecessarily long or could even include loops.
Thus, we restrict the master problem to a small pool of paths and introduce a
second level, where we try to find good paths outside the pool (using the dual solution
from the restricted problem) to improve the routing.

4.2 Formulation

Let (V, F) be the underlying network, i.e., the grid of Section 2 or an alternative
network. We label the nets by 1,...,m, and denote with P; the set of all possible
paths for net .
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Define further l;, = Zeep le as the length of path p € P; (the lengths [, are the
weights we give the edges, depending on the optimization goals, e.g. according to
Algorithm 13 in Section 2.3), let

0 — 1 if edge e is in path p;
1 0 otherwise,

and define a,, in the same fashion for the vertices that are not in one of the nets.
Finally, we define the edge capacity c<98° as the maximum number of wires routed
over edge e, and similarly ¢/®**** as the maximum number of wires that are allowed
to cross through vertex v. For the grid used in Section 2.3, all values c9&¢ and cyertex
are set to 1.

Our variables are x;;, € {0, 1} where ;, = 1 indicates that path p € P; is selected
for net i. Then our master Integer Linear Program (master ILP) is

m
min E E lip.’L‘ip

i=1 peP;
s.t. inp = 1 (i=1,...,m), (1)
PEP;
m
Z UepTip < codee Ve, 2
1=1 peP;
m
Z QupTip < X Yo not in a net, 3)
=1 peP;
zp € {0,1} 4)

Constraints (1) ensure that exactly one path is selected for every net. Constraints (2)
and (3) ensure that the edge and vertex capacities are respected.

To deal with the large number of variables, we are going to solve the problem by
column generation. We start with a limited subset of the variables and solve the LP-
relaxation (i.e., x;;, > 0) for this subset only. For example, we could use the solutions
from Section 2. This way we obtain the restricted master LP. Then we solve the pricing
problem, i.e., we look for variables that are not yet included in the restricted master
LP and can improve the solution.

If such variables are found, they are added to the restricted master LP, it is solved
again, after which pricing is performed, and so on. If pricing does not find any new
variables anymore, we know that the master LP has been solved to optimality.

Unfortunately, this solution is not likely to be an integer solution. We discuss
methods for finding an integer solution in Section 4.4.

4.3 The Pricing Problem

From the theory of linear programming it is well-known that for a minimization prob-
lem increasing the value of a variable will improve the current solution if and only
if its reduced cost is negative. The pricing problem then boils down to finding the
variable with minimum reduced cost.
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Let \;, m., and o, be the dual variables of the net, edge capacity, and vertex
capacity constraints, respectively. Now the reduced cost of x;;, is given by

lip — Xi — E OepTe — E QypTy.
e v

We are going to solve the pricing problems for each net separately. Note that a,
and a,,, are the decision variables and that they have to form a path connecting the
net. Clearly, the values a,,;, (the vertices on the path) are determined by the values a.,
(the edges on the path). For each vertex v on the path we have cost —o,. Since on a
path each vertex has degree 2 (except for the first and the last one, but these are in a
net), we can remove the variables a,, from the pricing problem by adding cost — %O’U
to each edge adjacent to v. The reduced cost is now given by

Zaep (le — Mo — Z ;av> — N

veEe

The pricing problem for net ¢ thus reduces to finding a shortest path, where the edge
lengths are modified by the dual variables.

From the theory of linear programming we know that 7. < 0 and o,, < 0. There-
fore, the cost of the edges are non-negative and the pricing problem can be solved by
Dijkstra’s algorithm.

For a net ¢ with more than two pins, the P; are all possible Steiner trees, and hence
at this point of the algorithm we are looking for a Steiner minimal tree. To save CPU-
time, we can approximate the minimal Steiner tree, and only determine the optimal
Steiner tree in case the approximation does not find a solution with negative reduced
cost. If we decide to only approximate, we still have a high probability to find a very
good solution to the LP-relaxation.

4.4 Integer Solutions

As we mentioned in the introduction, this approach also gives us a measure of the
quality of the routing solution, because the solution of the LP-relaxation (which we
solved to optimality) is a lower bound on the costs of the routing. To actually produce
an integer solution, we can apply different strategies, which are only shortly mentioned
here.

e We can perform branch-and-price, i.e., apply branching and proceeding with
column generation (see, e.g., [3]). This will not lead us away from optimality.

* We can apply an ILP solver to the restricted master problem, which in all like-
lihood will have a manageable amount of variables.

e We can apply heuristics based on the LP solution. For example, we can first
fix all paths that were selected with value 1. Then we proceed by selecting one
by one paths with maximal fractional value that fit (in term of vertex and edge
capacities) with the set of paths that were already selected. If we end with a
solution with unconnected pins, we complete the solution using the heuristic
from Section 2.
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As was the case for the heuristic for the prototype tool, this method can also be
applied if part of the routing is fixed, as this is nothing else than removing certain
edges from our grid.

Comparing the ILP method of this section with the heuristic of Section 2, we note
as advantages of ILP that it provides quality guarantees, it can be combined with the
heuristic, and that it can be used on a smaller graph than the grid in the heuristic,
which may save computation time. An advantage of the heuristic is that it is easy to
implement, and that it often gives a fast and satisfactory solution. Summarizing, we
see this ILP method as a natural extension of the heuristic, to be implemented if the
heuristic gets too slow, if the solutions don’t seem adequate, or to determine a quality
measure of the heuristic.

5 Conclusion

Given the limited duration of the study week and the complexity of the problems con-
nected to chip design, we decided to focus on one aspect which we felt could ease the
work of the chip designers at NXP. Hence we tried to find an algorithm for connecting
nets in a predefined layout, which is as flexible and customizable as possible, facil-
itating the designer to choose priorities between the different aspects that should be
optimized, which is stable under local changes (if needed), and which gives reliably
the same answers for identical inputs. We were able to present our algorithm in the
form of a prototype tool (see Section 2.3) which showcases all these aspects. Further-
more, we describe a more generalized approach which provides a quality measure of
the solution and improves our strategy to deal with larger inputs (see Section 4.1).

The study week permitted us to get acquainted with a large branch of new and in-
teresting mathematics, as well as provide NXP with a useful prototype solution (Fig-
ure 4) for their routing problem.
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