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Abstract:

In this paper we give methods to find characteristic circulation patterns which are con-
nected to local extreme temperature anomalies. Two data reduction techniques are ap-
plied: Legendre polynomial fitting and watershedding. For polynomial fitting a clear
trend is found with respect to local temperatures. However, the trend is not distinc-
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knowledge, however, is needed to model these main features as predictors.
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Figure 2.1: Upper panel: time series of maximum daily temperatures of the months july
and august in the years 1958-2000; left panel - circulation pattern that relates to a local
extreme temperature in 1975; right panel - circulation pattern that relates to a local
extreme temperature in 1983

2.1 Introduction

Meteorological events such as severe storms, heavy rains, cold surges or drought which

occur locally are usually connected to circulation structures of much larger scale in the

atmosphere. In this paper we study the relation between local extreme temperatures and

circulation patterns in the atmosphere. In meteorology it can be observed that extreme

temperatures (temperature anomalies) appear for several different states of atmosphere

circulation. For example, in 1975 a high pressure anomaly was located above Scandinavia

leading to advection of warm, dry, continental air into the Netherlands by easterly winds

and local extreme heat. Eight years later, a high pressure anomaly was located right above

the Netherlands with clear skies, no wind, an abundance of sunshine and as a result,

extreme high temperatures. Figure 2.1 shows these two different circulation patterns

which caused local temperature extremes.

The concept of weather regimes was considered by Michelangeli et al. [1]. The authors

compared two different definitions of weather regimes. The first definition treats weather
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regimes as the states of the atmosphere with the highest probability of occurrence. In the

second case weather regimes are defined as the states for which large-scale motion is sta-

tionary in the statistical sense. The authors applied these methods on the same dataset

and they showed that these methods give the same number of weather regimes - four over

the Atlantic sector and three over the Pacific sector. They observed that the patterns

differ significantly and the investigation of the tendency, or drift, of clusters shows that

recurrent flows have a systematic slow evolution, explaining this difference. The patterns

are in agreement with the one obtained from previous studies, but their number differ.

Panja and Selten [2] presented a new method to optimally link local weather extremes

to large scale atmospheric circulation structures. This method objectively identifies, in

a robust manner, the different circulation patterns that favor the occurrence of local

weather extremes and is based on considering linear combinations of the dominant Em-

pirical Orthogonal Functions that maximize a suitable statistical quantity. Moreover,

Salameh and Dobrinski [3] related the occurrence of extreme events (in terms of temper-

ature, precipitation and wind speed) to weather regimes. They evaluated the uncertainty

associated with North Atlantic weather regime clustering with the re-analyses data set

and its impact on the relationship between weather regimes and extreme events over and

around the North Atlantic.

The aim of this paper is to find a method that identifies pressure patterns which lead

to extreme values of temperature in one fixed point and to work out a method to predict

when local temperature extremes occur.

To analyze circulation patterns in relation to extreme temperature anomalies we use

date obtained from the ERA-40 reanalysis dataset. The data of the circulation patterns

contained the pressure field for 1372 grid points which are arranged on 200 N - 900 N

latitude and 600 W - 600 E longitude ( 2.50× 2.50 latitude-longitude grid). A time series

of daily circulation patterns were available for July and August of the years 1958-2000 (all

together 43 years and 2666 time points in total). The local temperature was taken at the

center of the Netherlands (52.5oN, 5oE). The 5 per cent most extreme (positive) anomalies

were taken as extreme values. In this way 133 circulation patterns were connected to local

extreme temperatures. One of the main issues to be dealt with is data reduction. Two

methods are used and explored: 1) Legendre polynomial fitting and 2) watershedding.

2.2 Modelling approaches

The discrete pressure field contains 28 × 49 = 1372 data points. Using this raw data as

an input, the model would have to base its decision (whether the pattern belonged to an

extreme temperature) on a huge amount of data. Directly using these data causes prob-
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lems such as ill-conditioned matrices because of high correlations between grid points and

long computation times. Therefore, first the available data is reduced while retaining the

information before processing it. That can be achieved by fitting Legendre polynomials

to the pressure distribution or by the watershedding technique. As a second step, a con-

nection between the global weather situation and temperature has to be found. In this

work, the method of linking the pressure anomaly patterns with the local temperature

extremes uses empirical data. In order to see whether the method gives correct results,

firstly the patterns belonging to the most extreme temperatures are picked out from the

empirical data. Then this set is split into reference patterns (used for calibrating the

method) and validation patterns (used to check whether the method works correctly).

2.2.1 Data Reduction

We have 133 patterns with extreme temperature in one fixed point. Each circulation

pattern can be described as 28 × 49 pressure table where rows represents latitude and

columns longitude. Mathematically speaking, we are looking for a function from the

set of pressure patterns {Z(ti)} to a set of characteristic parameters {C(ti)}, where ti
indicates the point in time at which the pressure measurement was taken. When choosing

the dimension of the space of characteristic parameters much smaller than the dimension

of the patterns’ space, we can store approximately the same amount of information with

much less data.

Legendre Polynomials

The general idea in this approach is a known result from Linear Algebra: a function f

belonging to a finite dimensional space of functions XN (e.g. all polynomials of order N)

can be represented by a linear combination of basis functions Pl ∈ XN , l = 1, . . . , N, N ∈
N:

f(x) =
N
∑

l=1

αlPl(x) ∀x ∈ Dom(f) (2.1)

where Dom(f) denotes the domain of f , i.e. all x for which f is defined. In this work, the

function f is the pressure anomaly distribution along a line in latitudinal or longitudinal

direction. For the purpose of data reduction, the function is represented by a linear

combination of basis elements Pl. Then only the coefficients αl associated with the basis

elements are kept. In nature, the pressure distribution is smooth in any direction, but

contrary to our assumptions above, it is not belonging to a finite dimensional space of

functions. Consequently, we can only try to approximate it by a function f ∈ XN . The
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Figure 2.2: Discrete pressure map (left). The rectangle indicates the sample line in
latitudinal direction (right), along which the polynomial is fitted.

order of accuracy of such an approximation increases with the number of basis functions

N . In the present situation, the given data contains the pressure only at discrete points

on a grid. For fitting a function along a row or column of the pressure distribution, Eq.

(2.1) has to hold for each of the grid points along that line. This leads to a system of

equations from which the coefficients can be computed as follows: Let Z(t) ∈ R28×49 be

the discrete pressure distribution at time t and let Zi,j(t) indicate the evaluation of the

pressure field at the grid point (xi, yj), with i = 1, . . . , 28 and j = 1, . . . , 49. Then we

can solve for α, β ∈ RN











P1(x1) P2(x1) . . . PN(x1)

P1(x2) P2(x2) . . .
...

...
...

. . .
...

P1(x49) . . . . . . PN(x49)





















αi
1(t)
αi
2(t)
...

αi
N(t)











=











Zi,1(t)
Zi,2(t)
...

Zi,49(t)











or in shorthand

(Pl(xk))kl
(

αi
l

)

l
= (Zi,k)k

⇐⇒: P h~αi = ~Zi (2.2)

for fitting a function to each row i. Likewise, we can set up a linear equation system

for fitting a function to each column j, namely

(Pl(yκ))κl
(

βj
l

)

l
= (Zκ,j)κ

⇐⇒: P v~βj = ~Zj (2.3)
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where k = 1, . . . , 49 and κ = 1, . . . , 28 denote the number of columns or rows, respec-

tively, and l = 1, . . . , N denotes the basis polynomials.

Although it is possible to compute the coefficients with Eqs. (2.2) or (2.3), resp.,

the question of choosing the basis polynomials still remains. As the pressure distribution

along a line is continuous, it can be approximated by polynomials. Consequently, the most

obvious choice would be the monomial basis {1, x, x2, . . . }, i.e. Pl(x) = xl−1, l ∈ N.

The resulting matrix would be the so called Vandermonde matrix. However, it is not

suitable for numerical purposes due to its very bad condition number. Choosing Legendre

polynomials as a basis avoids those difficulties. Legendre polynomials can be obtained by

orthonormalization of the monomial basis on the interval [−1, 1], subject to the condition
that Pl(1) = 1 (cf. Fig. 2.3). We obtain:

L1(x) = 1,

L2(x) = x,

L3(x) =
1

2

(

3x2 − 1
)

,

...

LN−1(x) =
1

2NN !

dN

dxN
[

(x2 − 1)N
]

.

The Legendre polynomials are orthonormal only on the interval [−1, 1]. Thus the

grid is implicitly assumed to be transformed on [−1, 1]2. For data reduction purposes

the number of basis elements has to be chosen much smaller than the number of grid

points. Thus (2.2) and (2.3) are overdetermined systems of equations and there does not

exist an exact solution. This means that the linear combination of basis elements cannot

represent the discrete pressure distribution exactly. However, we want the function to fit

with an error as small as possible. The resulting coefficients can be obtained by solving

(2.2) and (2.3) by linear regression:

(Lh)TLh~αi = (Lh)T ~Zi

(Lv)TLv~βj = (Lv)T ~Zj

Here the matrices Lh, Lv denote the analogues to the matrices P h, P v in Eq. (2.2) or

(2.3), where the polynomials used for the entries are the Legendre polynomials specified
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Figure 2.3: Legendre basis polynomials up to fifth order.

before. In order to classify a given pattern with less data, we then collect all coefficient

vectors of the pattern:

C = {~α1, . . . , ~α28, ~β1, . . . , ~β49} (2.4)

For a further reduction of data, a function was fitted only to each second row and column

of the discrete pressure field. Moreover, the coefficients belonging to the first two Legendre

polynomials were neglected. This implies that neither the bias nor the tilt of the pressure

distribution are taken into consideration. The reasoning behind this is that a pattern

of pressure anomaly is to a greater extent defined by its spatial oscillations than by its

offset or slope.

Two-dimensional polynomials

A further reduction based on polynomials can be established by fitting a two-dimensional

polynomial. Eqn. (2.1) is extended to:

f(x, y) =
N
∑

l=0

N−l
∑

m=0

αlmPlm(x, y) ∀x, y ∈ Dom(f) (2.5)

In this approach the function f is the pressure anomaly distribution of the surface in

which x represents the longitudinal direction and y the latitudinal direction. Following

35



Proceedings of the 67th European Study Group Mathematics with Industry

Figure 2.4: Pressure field approximation with an ninth order two-dimensional polynomial
function

section 2.2.1 orthonormalization on the domain [-1,1] for both x and y is strongly pre-

ferred. However, because of the restricted amount of time only the monomial basis, i.e.

{1, x, y, x2, xy, y2, x3, . . . } was implemented. In analogy to eqns. (2.3) and (2.2) we can
set up the system:


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Generally, a seventh order polynomial for the two-dimensional case gives a good re-

construction of the surface. The number of parameters to be estimated are in this case

1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. Figure 2.4 shows the approximation for a 9th order

polynomial function.

Watershedding

Watersheds were first used in topography. The main idea consists of geographical regions

that are divided in so-called catchment basins and the division between two regions is
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called the watershed line. Suppose a droplet of water falls down on a surface. This

droplet would run down to the lowest point of the region. Adding more droplets would

immerse the surface to a lake. The lake will continue to fill until this lake start to

flood into a neighbor valley. The line where two valleys, the so-called catchment basins,

come together are called the watershed line. Apart from topography the watershedding

transform is frequently used in image processing. The pressure anomalies considered in

this report can also be viewed as a topographic surface. The watershedding approach is

used as a tool for data reduction by obtaining areas of high and low anomalies.

Many algorithms exist that are based on the watershedding principle. The Matlab R©
implementation which is used in this study is based upon the paper by Vincent and

Soille [4]. The algorithm consist of two steps: sorting and flooding. Let Z(t) ∈ R28×49 be

the discrete pressure distribution at time t and let Zi,j(t) indicate the evaluation of the

pressure field at the grid point (xi, yj), with i = 1, . . . , 28 and j = 1, . . . , 49. Because it is

assumed that high pressure anomalies are equally important as low pressure anomalies,

pressure distribution is transformed such that Z̃(t) = −|Z(t)|. In this way, high pressure
anomalies are regarded as catchment basins. For each time point the watershed transform

is applied to Z̃(t) and result in the watershed matrix W (t). Further details and an exact

description of the algorithm can be found in [4]. An example of a watershed transform is

given in figure 2.5. From the watershed transform W (t) information from the catchment

basins is extracted such as the center and total area. By selecting the p most important

basins, i.e. those with the lowest watershed index or in other words with the largest

pressure anomaly, the number of variables is reduced dramatically.

2.2.2 Data Processing and Evaluation

Legendre Polynomials

First of all, a temperature threshold Text is defined above which a temperature shall

be regarded as being extreme. Throughout the simulations, the topmost five per cent

of temperature observations were regarded as extreme. As mentioned above, the set

of patterns associated to an ‘extreme’ temperature is then arbitrarily divided into two

disjoint subsets: one for calibrating and one for validating the model:

I = {t | T (t) ≥ Text} := Ical ∪̇ Ival.

That is to say: the model is set up with the patterns associated to Ical, and with the

patterns belonging to Ival, the correctness of the results is checked. Subsequently, for a
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Figure 2.5: A pressure anomaly field and its watershed transform. The x and y axis are
the indices are the i and j indices representing the lattitude/longitude of the anomaly
field

specific time point t0 an error ǫ(t0) is assigned to each pattern Z(t0). This error indicates

how ‘far’ that pattern is away from the patterns {Z(t) | t ∈ Ical} :

ǫ(t0) := min
t∈ Ical

‖C(t0)− C(t)‖ (2.6)

where C(s) denotes the set of characteristic parameters for a pattern Z(s). The error

can be measured in any suitable norm, for example the L2 vector norm.

Two-dimensional polynomials

Although the used data reduction reduction technique is based on the same idea as

the Legendre polynomials, a different evaluation technique was performed for the two-

dimensional polynomial. Here, the evaluation is based on linear regression.

As in section 2.2.2 the extremes are divided in a calibration and validation subset. In

addition, the non-extreme patterns are also divided in a calibration and validation subset.

Therefore, the calibration and validation data sets need to contain an equal amount of

the interesting extremes compared to the much larger amount of non-extreme data.

J = {t | T (t) < Text} := Jcal ∪̇ Jval.
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Hence, the calibration and validation data sets are formulated as:

Γcal = Ical ∪ J cal

Γval = Ival ∪ Jval

A linear model to predict the local temperature based on the polynomial parameters

is proposed:

Tlocal(t) = α(t)γ + e(t)

with α the time dependent polynomial parameters that define the circulation pattern,

γ the model parameters and e(t) the error term. Based on the calibration data set the

model parameters γ are estimated by linear regression.

γ = A+Tlocal

with A+ the pseudo-inverse of [α(t0), α(t1), . . . , α(tn]
T . Both calibration and validation

data sets are used to estimate the local temperature by:

T̂local(t) = α(t)γ̂

Watershedding

Before the catchment basins are projected onto local extremes meteorological information

must be incorporated. The local extreme is a nonlinear function of the catchment basin

and perhaps of the interaction between catchment basins. A first approach was done

by constructing a function based on distance, anomaly and area of the catchment basin.

Let ~Bi(t) a vector with the variables of catchment basin i at time t extracted from the

watershed transform W (t). The local temperature anomaly can be modeled by:

Ta(t) =

p
∑

i=1

δif( ~Bi) + e(t) (2.7)

where f( ~Bi) is a nonlinear function with variables from catchment basin i, δ the

parameter vector and e(t) the error term. The model is linear in its parameters and,

hence, these parameters δ are estimated with an ordinary least squares approach, i.e.

minδ ||e(t)||2 ∀t. Because the system now is largely overdetermined, division into a cali-

bration and validation is not needed. Results are evaluated by comparing the estimated

and measured local temperatures of the total data set. Local extremes are part of the

data and verification is possible.
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2.3 Results

2.3.1 Legendre Polynomials

For testing the L2-norm comparison method, the set of patterns belonging to an extreme

temperature was divided into calibration and validation patterns, analogously to the

explanations above. The set of extreme patterns is divided in several fashions:

half: every second pattern is used for calibration, the other half used for testing/validation.

thirds: every third pattern is used for validations, so that 66% of patterns are used for

calibration.

rand: each extreme pattern gets assigned a random number from a uniform distribution

on the interval [0,1]. For validation, only the patterns with a random number higher

than 2/3 are taken.

Concerning the order of the fitted polynomial, an integer value around 4 was chosen.

This is sensible, as the pressure distribution along one direction usually contains n = 2

to n = 4 major high or low pressure areas. As these areas should correspond to the

extremes of the fitted polynomial, we need a polynomial degree of n− 1. The error was

measured in the standard L2 vector norm. As can be seen from any of the plots in Fig.

2.6, there is no clear visible distinction between the two groups ’errors of non-extreme

patterns’ (plotted in red) and ’errors of validation patterns’ (plotted in green). What

can be seen, however, is the (anticipated) tendency of the ’green mean’ to be below the

’red mean’, i.e. that the patterns belonging to an extreme temperature have on average

a lower error than those arbitrary, non-extreme patterns.

Choosing a higher order of polynomial does improve the distinction between the two

groups. Nevertheless, taking a too high order of polynomial increases the danger of

unnatural oscillatory behavior when fitting the polynomial. Concerning the change of

the fashion of partitioning the validation set, the following can be observed: The two

groups are the more distinct the more patterns for calibration are used. This is a result

one would also expect by common sense.

2.3.2 Two-dimensional polynomial

In figure 2.7 a linear trend is clearly observable. However, it can be clearly seen that

the linear trend bends off in the top right corner, just before the crossing horizontal and
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Figure 2.6: Comparison of different polynomial orders (left column – with validation mode
thirds) and comparison of different validation modes (right column – with polynomial
order 4).

vertical lines. These are the lines that distinguish the ordinary values from the extremes.

This is exactly the part in which we are interested. When we look at the histogram (see
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Figure 2.7: Measured vs. Predicted temperature anomalies from the 2-dimensional poly-
nomial with ’o’ calibration data and ’*’ validation data

figure 2.8 of how the local temperatures are distributed) it is clear that it is right tailed.

In this tail the extremes are defined. Unfortunately, this tail seems hard to predict.

Several procedures have been tried to improve the results, such as a log-transformation

of the local temperatures and a neural network approach to account for nonlinearities.

These procedures did not improve the results visibly (results not shown).

2.3.3 Watershedding

In this specific example five watersheds are taken for each circulation pattern. The func-

tion f(B) from eqn. (2.7) is given by:

f(Bi) =
sin(α) · P · A

dist
+
cosα · P · A

dist

with α the angle between the location of the local measurement and the location of the

center of the watershed; dist the distance between the center of the watershed and the

local measurement; P the maximum pressure anomaly in the watershed; and A the total

area of the watershed. In figure 2.9 a slight linear trend is visible but it is clearly not

sufficient. Local extremes cannot be predicted in the current framework.
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Figure 2.8: Histogram of the measured local temperature anomalies

Figure 2.9: Measured vs. Predicted temperature anomalies from the watershed transform
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2.4 Discussion

In the Legendre polynomial the groups of ’errors of non-extreme patterns’ and ’errors of

validation patterns’ are not clearly distinctive, but we can observe the tendency that the

error-mean of the patterns belonging to the validation set is less than the error-mean of

the patterns belonging to the set of non-extremes. Consequently, the method of L2-norm

comparison can only state whether a (new) pattern is similar to a pattern for which an

extreme temperature has been recorded. Our tests show that it is not possible to state

from just the L2-error of that pattern whether there will be an extreme temperature or

not. The method of comparing the norms can only give a tendency, but not lead to a

decision.

Although the evaluation method differed a similar statement can be made about the

2-dimensional polynomial approach. A linear trend is clearly visible in figure 2.7. Only

twelve out of 133 extremes (from the total data set), however, are predicted as extremes

which is less then 10%. A decision cannot be given based on this relationship.

These results indicate that the local temperature is determined by more than just the

pressure distribution on that particular day. A suggestion for further work might be to

take other factors into account like moisture or cloudiness. An initial idea that has not

been worked out is to use the dynamic changes of the patterns, i.e. subtracting pressure

fields of two successive days.

The watershed procedure showed poor results. The possibilities of using the basins,

however, are very large. In the presented approach only the basins with the largest

absolute anomaly were taken into account. Improvements are likely when additional

information is included. For instance, it is likely that the pressure anomaly above the

local temperature is an important feature. Furthermore, interactions between pressure

systems may be good predictors for local extremes. In conclusion, the watershed approach

is interesting because of its simplicity and by retaining physical interpretability. Due

to this physical interpretability expert knowledge is required to implement a sensible

relationship from the basins to the local temperature.

2.5 Concluding remarks

Three methods for data reduction have been presented in order to predict local extremes

from large scale circulation patterns. Although the results show trends that relate pre-

diction of local extremes with measurements, these trends are not sufficient to reliably

predict typical circulation patterns that cause local extremes. The methods, though, were

not fully explored in this report. Further development of the methods with contribution
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of export knowledge of the application area is needed to improve the results.
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