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Abstract:

In this paper we develop two methods to calculate thermodynamic properties of mixtures.
Starting point are the basic assumptions that also form the basis for the COSMO-RS
model. In this approach, the individual molecules are represented by their geometrical
shape with an electrical charge density on their surfaces. Next, the surface is split up
into surface segments each with its own charge. In COSMO-RS a strong reduction is
introduced by treating the segments as if they are completely independent. In the present
study we take into account that the coupling between two patches is essentially dependent
on the charge distribution on neighboring segments and on the local geometrical structure
of the surface. Two approaches are followed. The first one points out how the model
equations, which comprise the optimization of the entropy and conservation of internal
energy, can efficiently be solved in general, thus also if the dependency between segments
and the local geometry is included in the expression for the coupling energy between
segments. In the second method the configuration with maximal entropy and prescribed
energy is sought via simulation. Successive molecular configurations of the mixture are
simulated and updated via a genetic algorithm to optimize the entropy. The second
method is more time consuming but very general.
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3.1 Introduction

Thermodynamic properties of a mixture, such as the miscibility of the components and

partial vapor pressures, could in principle be calculated by accounting for all the interac-

tions between the constituting molecules. In practice, however, a rigorous approach along

these lines is only tractable for a highly restricted number of molecules. In view of the

huge number of molecules in a fluid, one has to rely on methods from statistical physics,

in which averaging procedures are applied over possible configurations. Even then one

has to introduce severe assumptions in order to make calculations for realistic mixtures

possible.

In 1995, a promising idea to solve this longstanding problem was worked out by

Andreas Klamt [1, 2, 3]. His approach is referred to as COSMO-RS (COnductor like

Screening MOdel for Realistic Solvents) and has proven to be quite powerful in some

cases. One of the strong points is that the computation times are very modest. The

method has its limitations, since it is based on rules that completely ignore the geometry

of the molecules. The aim of the present project is to reconsider the problem of mixing

anew preferably including the geometrical effects.

We decided to maintain a basic principle of COSMO-RS, namely to represent a

molecule via a rigid shell with an electric charge distribution. This will be explained

in §3.2. This approach assures that long-range interactions and screening effects are

taken into account, but in an averaged manner, and will not lead to unacceptably long

computing times.

We followed two lines of research. One line, presented in §3.3 can be looked upon as
a natural extension of COSMO-RS with now the geometrical features of the molecules

taken into account. In this approach, the optimization the entropy of the mixture under

the condition of conserved energy is appropriately done via a fast numerical scheme.

In the second research line, presented in §3.4, the configuration with maximal entropy
and prescribed energy is sought via simulation. A molecular configuration is represented

in the computer by specifying the positions and orientations of a big number of molecules.

An initial configuration is randomly chosen and gradually updated via a genetic optimiza-

tion algorithm to optimize the entropy.

In §3.5 the results and recommendations are summarized.
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3.2 The COSMO-RS model

Basic ingredients

For a clear understanding of the present project it is necessary to first explain the essential

ingredients of the COSMO-RS model. Lots of details can also be found in [6, 7].

The first step in this model is taking into account long range interactions and screening

effects in an averaged way. To that end the molecule is thought to be embedded in a

cavity located in a perfect conductor, that is a material with an infinitely large dielectric

constant. Since the molecule will in general have a charge distribution and therefore

possess an electric field, it will polarize the embedding medium. That will result in

an electric field that can be thought to stem from a charge distribution on the surface

of the molecular cavity. In the method the molecule is replaced by the surface of the

cavity together with the induced electrical charge distribution. In Figure 3.1 a sketch of

such a surface and its charge distribution is given for a water molecule. Such a charge

distribution is the result of a quantum mechanical calculation and is throughout this

project assumed to be given for each type of molecule in the mixture.

Figure 3.1: The surface of the cavity of a water molecule with its charge distribution.

The next step is to divide the surface up into small segments, each with a fixed amount

of charge. This segmental charge is obtained by integrating the local charge distribution

over the segment. So each molecule is now represented by a number of charged segments

on the surface of its cavity. To keep this approach realistic, the size of these segments

should be large enough to make the concept of individual pairing of segments meaningful.

In practice the segment area is chosen in the range 3–25 (Angstrom)2.

The following step is to realize that in a fluid the molecules are nearly space filling.

Each molecule is thus in touch with a number of neighboring molecules. The consequence

is that most of the time a segment of one molecule is in touch with a segment of another
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molecule. This contact implies a certain amount of energy, depending on the signs and

the values of the segment charges. Segments with opposite charge signs attract each other

and segments with equal charge signs will repel each other. The total amount of internal

energy U is the sum of all the local contributions.

If the mixture would have vanishing temperature, all positions and orientations of

the molecules would be fixed. The system would be frozen in and have maximal order.

In reality we are interested in mixtures at positive temperature. In such a system the

molecules move around and perform so-called Brownian motions and the overall molecular

configuration is varying all the time. Macro properties of the system are then calculated

by averaging either over time or over all possible microstates with appropriate weighting

functions. From statistical mechanics we know that the system most frequently attains

those configurations in which the entropy is maximal. In fact, the preference for these

microstates is so high that we may ignore all the other microstates in the averaging

procedure. That’s why in the following we will concentrate on the calculation of maximum

entropy configurations.

Entropy

Since the number of molecules is in the order of the number of Avogadro (in the order

of 1026), it is completely intractable to compute the time evolution of all individual

molecules, the so-called microstate. Instead, COSMO-RS follows a different approach.

To explain this, we first discuss the labeling of segments. For simplicity, let us assume that

the mixture consists of two components X and Y : a molecule X has NX segments and a

molecule Y has NY segments. Since the molecules of type X are mutually indiscernible

and the same holds for type Y , we meet in this system with N = NX + NY essentially

different segments. In a particular microstate one could count the frequency that a

segment n is coupled to a segment m, and use the frequencies to compute probabilities.

However, in the present approach we prefer an alternative scaling based on surface areas

involved, which will be explained underneath. We shall denote the scaled frequencies,

that do not longer correspond to integers, by pn,m. A macrostate of the system is now

characterized by the values pn,m, n = 1 . . . N,m = n . . . N . It is clear that one macrostate

may be realized by very many different microstates, which in statistical mechanics all

together are referred to as an ensemble. Shannon proved that the appropriate expression

for the entropy S, i.e. of the disorder of such a macrostate, reads as [5]

S = −k
N
∑

i=1

N
∑

j=i

pi,j log pi,j (3.1)
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Figure 3.2: Impression of the surface segments being treated as independent.

Here, k is the Boltzmann constant (∼ 1.3806504 JK−1).

Model equations and modeling assumptions

In this subsection we state the model equations and discuss the assumptions introduced

by COSMO-RS.

In a microstate, two segments are considered to be coupled if they are located next to

each other. A highly restrictive assumption of COSMO-RS is that the spatial embedding

of a segment between its neighboring segments is completely ignored. In fact, all segments

are cut free from their molecules and treated as if they are independent. In this view the

mixture consists of a set of segments that move around independently, as illustrated in

Figure 3.2.

As a consequence of this approximation, the energy involved in coupling segments

n and m is take to be dependent on the charges of these segments only. Denoting the

charge of segment n by σn, the coupling energy En,m is assumed to be of the form

En,m = α (σn + σm)
2 (3.2)

for some positive coefficient α. Note that segments with equal but opposite charges have

zero coupling energy, and segments with equal charges have high coupling energy. Steric

hindering and the multipolar nature of the electric field of a molecule are thus not taken

into account. Obviously, coupling segment n to segment m is equivalent to coupling

segment m to segment n, therefore, both En,m and pn,m are symmetric: Em,n = En,m and

pm,n = pn,m.

The normalization of the pn,m is chosen to follow from considering the relative area
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that is involved in such a coupling. For this normalization we take

∀n :
N
∑

j=1

pn,j + pn,n = [Xn]γn, (3.3)

where [Xn] is the molar fraction of the molecule type segment n belongs to, and γn is

the surface area of segment n. The extra term pn,n stems from the fact that coupling of

segment n with itself requires two segments n.

Given these normalizations, the internal energy of the mixture U is easily expressed

in terms of the frequencies pn,m and the energies En,m:

∑

i

∑

j≥i

pi,jEi,j = U. (3.4)

The COSMO-RS model formally involves the optimization of the entropy as a function

of the variables pn,m, n = 1 . . . N,m = n . . . N under the condition that the pn,m are

normalized and that the internal energy equals some prescribed value U . In formulae,

the required macrostate will be the solution of the following constrained optimization

problem:







































max S({pi,j}) = −k
N
∑

i=1

N
∑

j≥i

pi,j log pi,j

under the conditions that ∀n :
∑

j

pn,j + pn,n = [Xn]γn

and the condition
∑

i

∑

j≥i

pi,jEi,j = U

(3.5)

Formally, only pn,m with m ≥ n are part of the problem. If in the following m < n, pn,m

is considered to be shorthand notation for pm,n. Although this might seem artificial at

first, it makes formulas involving sums easier to read and understand.

The value of U is determined by the external conditions of the system. In practice,

one often fixes the temperature T of the mixture. As discussed later on, the value of U

is then an outcome, rather than an input of the system. The roles of U and T are in fact

interchangeable in the procedure.

3.3 Extended COSMO-RS model

The assumption of independency of segments allows for an explicit solution of this prob-

lem along combinatorial lines using the notion of partition function. For this derivation,

see Appendix I in [4]. This reduction is a great advantage from a computational point
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of view. However, this assumption forms a weak point, since it makes the model quite

unrealistic, e.g., to deal with irregularly shaped molecules that give rise to steric hinder-

ing. In the present approach we want to get rid of this assumption. The consequence is

that we have to face the original optimization problem (3.5). It also implies that (3.2)

is no longer applicable. The energy involved in coupling two segments should be made

to depend on the neighboring segments, too. In the next subsection this point will be

touched. For the present procedure we propose for solving (3.5) it is only relevant that

some (nonnegative) expression for the coupling energy En,m is available.

A general method to solve the constrained maximization problem (3.5) is to make use

of Lagrange multipliers. For that purpose we form the Lagrangian

L({pn,m}, {λn}, µ) =− k

N
∑

i=1

N
∑

j≥i

pi,j log pi,j +
N
∑

i=1

λi

(

N
∑

j=1

pi,j + pi,i − [Xi]γi

)

+ µ

(

N
∑

i=1

∑

j≥i

pi,jEi,j − U

)

= −k
N
∑

i=1

N
∑

j=i

pi,j log pi,j +
N
∑

i=1

N
∑

j=i

(λi + λj)pi,j −
N
∑

i=1

λi[Xi]γi

+ µ

(

N
∑

i=1

∑

j≥i

pi,jEi,j − U

)

(3.6)

This Lagrangian has as variables the frequencies pn,m, n = 1 . . . N , m = n . . . N and

the Lagrange multipliers λn, i = n . . . N and µ. For the second identity, the convention

pm,n = pn,m has been used in order to eliminate any pn,m with m < n. All other quantities

such as the internal energy U and the coupling energies Em,n act as parameters. The

term containing λi+λj follows by replacing pi,j with pj,i whenever i < j, and rearranging

the double sum:

N
∑

i=1

λi

i
∑

j=1

pi,j =
N
∑

j=1

N
∑

i=j

λipi,j =
N
∑

i=1

N
∑

j=i

λjpj,i =
N
∑

i=1

N
∑

j=i

λjpi,j (3.7)

Note that the Lagrangian does not include the kinetic energy, since in a fluid the

molecules motions are quite slow, so that the total energy is completely dominated by

the potential (internal) energy.

Standard theory tells us that the solution of (3.5) is also the solution of the set of

equations obtained by setting the derivatives of the Lagrangian with respect to each of
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its variables equal to zero. So, (3.5) is equivalent to solving the system











−k(log pn,m + 1) + (λn + λm) + µEn,m = 0, ∀n, ∀m ≥ n
∑

j pn,j + pn,n = [Xn]γn, ∀n
∑

i

∑

j≥i pi,jEi,j = U.

(3.8)

The term (λn + λm) follows from the second equality in (3.6).

A result from thermodynamics states that the Lagrange multiplier µ is related to the

absolute temperature via

µ = − 1

T
.

Since the temperature of the mixture can be controlled, µ will from now on be considered

as a parameter. This implies that we only need to solve the equations in the first two

lines of (3.8) for the variables pn,m, n = 1 . . . N , m = n . . . N and λn, n = 1 . . . N . The

equation in the third line will be used afterwards to calculate the internal energy U .

Solving the first equation in (3.8) for pn,m and substituting in the second one, we

obtain the following set of equations:

{

pn,m = e−1+
λn+λm+µEn,m

k ∀n, ∀m ≥ n
∑

j e
−1+

λn+λj+µEn,j
k + e−1+

2λn+µEn,n
k = [Xn]γn ∀n

(3.9)

To rewrite these equations in a more tractable form we introduce the vector

Λn := eλn/k, n = 1 . . . N

and the matrix

Fn,m := eµEn,m/k + δn,me
µEn,n/k

with the Kronecker delta as is usual defined as δn,m = 1 if n = m and δn,m = 0 if n 6= m.

The last equation of (3.9) can then be written as

∀n : Λn

∑

j

Fn,jΛj = e[Xn]γn =: αn (3.10)

The right hand sides and the matrix Fn,m are known. So, we arrive upon a set of N

quadratic equations for the unknowns Λn, n = 1 . . . N . This system is not simple to solve

explicitly, but it has a pretty nice form for numerical evaluation. The Jacobian matrix of

the set of equations (3.10) is easy to obtain explicitly. So, we resort to a numerical, and

thus iterative approach and need therefore an initial guess for the Λn. To that end we

observe that the exponentials in Fn,m are expected to be close to one, since the coupling
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energies En,m are small. Setting Fn,m = 1 for all n 6= m and Fn,n = 2 for all n, we obtain

the approximating equation

Λ2
n + Λn

∑

j

Λj = αn.

Neglecting the first term Λ2
n since it is expected to be small compared to the sum in the

second term, we find as initial guess

Λ0
n :=

αn
√

∑

j αj

.

Once the Λn are known, the values of the variables pn,m follow from

pn,m = e−1+
λn+λm+µEn,m

k = ΛnΛme
−1+

µEn,m
k (3.11)

Example

To solve Λn from (3.10), we choose as iterative scheme the Newton-Raphson method. As

a toy model we consider a fluid with only one molecule type with N = 4 segments of

equal size. Furthermore, we use γn = 1 for all n. Taking for the En,m matrix

En,m =









4 0 4 0
0 4 0 4
4 0 4 0
0 4 0 4









,

representing charges of equal size, but opposite sign, we found for the pn,m matrix

pn,m =









0.0945 0.3583 0.0945 0.3583
0.3583 0.0945 0.3583 0.0945
0.0945 0.3583 0.0945 0.3583
0.3583 0.0945 0.3583 0.0945









at T = 300 K. This clearly shows that segments with opposite charges tend to attract

each other, whereas segments with charges of equal signs repel each other. As expected,

the lower the temperature, the stronger the influence of the energy. The convergence

appeared to be very fast, thanks to the system being quadratic.

In Figure 3.3 it is illustrated that some couplings are geometrically impossible. In

a second example we illustrate how to deal with such a situation. In the example we

consider again the fluid in the example above, but now we assume that segments one and
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+ −

Figure 3.3: Sketch of a situation in which a coupling is geometrically impossible, although
the involved charges would favor it.

two cannot touch each other. two. This can be taken into account by a very high entry

in the energy matrix, say E1,2 = 20:

En,m =









4 20 4 0
20 4 0 4
4 0 4 0
0 4 0 4









,

The coupling frequencies now become

pn,m =









0.2073 0.0010 0.1219 0.4625
0.0010 0.2073 0.4625 0.1219
0.1219 0.4625 0.0717 0.2721
0.4625 0.1219 0.2721 0.0717









As expected, the coupling frequency between segments one and two dropped to almost

zero. Note that also the other entries have changed. The highest frequency is now found

between one and four, as was to be expected, since this is energetically speaking the most

favorable coupling.

Choice of coupling energies

Using the above model, the macrostate with the highest entropy can be easily calculated,

provided that the coupling energies En,m are given. It remains to specify them such that

the geometrical effects are accounted for. In the present project we developed some ideas,

which are worth to be worked out. out.

• Include neighboring effects. If two segments couple, also the neighbors come close

together. It depends on the charges on the neighboring segments and their distances

what the effect will be on the energy. A possibility to take this into account is to

choose

En,m = α (σn + σm)
2 + β

∑

in,jm

di,j (σi + σj)
2 ,
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where in runs over all neighbors of segment n and jm runs over all neighbors of

segment m and di,j is some appropriate distance function. The factor β has to be

finetuned in order to get the correct balance between the two terms. In this way

we introduce a penalty if a coupling involves neighbors that repel each other. So

the second term acts as a penalty function. Including higher order neighbor effects

might also be an option.

• An alternative would be to include the local curvatures into En,m, for instance a

term proportional to

(Hn +Hm)
2 ,

where Hn is the (average) mean curvature of the molecule surface around the posi-

tion of segment n. The advantage of this criterion is that it is much less subjective

than defining penalties for individual couplings.

• Forbidden couplings. If illustrated in the example above, if some coupling is physi-

cally infeasible due to the shape of molecules, it can be forbidden simply by assigning

to it a very high energy cost. It is to be expected that this will somewhat reduce

the quality of the initial guess discussed above, which means that the numerical

method will need more time to find the solution.

3.4 Entropy optimization via simulation

In this section we follow an approach that is considerably different from the one presented

in the preceding section. The aim is the same: to find a configuration with maximum

entropy and prescribed energy. The idea is to do perform this via simulation. We focus

on a part of the fluid, a so-called parcel, with a tractable number of molecules. The

rest of the fluid is represented by periodic boundary conditions, as explained below. The

molecular configuration in this fluid parcel is represented in the computer by specifying

the positions and orientations of all molecules in it. An initial configuration is randomly

chosen and gradually updated via a genetic optimization algorithm to optimize the en-

tropy, meanwhile keeping the energy at or close to the prescribed value. This approach

has the complication that randomly placed molecules will in general overlap. So, this

leads to an extra optimization goal: minimization of the overlap.

The present approach has the following features:

• As we already did above in the (extended) COSMO-RS model, we ignore the kinetic

energy. So, our search space is the set of static configurations in the fluid parcel.
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• The surface of the molecule is approximated by segments, each with its own charge.

The geometry of the surface is taken into account, so the segments are connected.

• The state of a molecule consists of is 6 parameters per molecule: 3 coordinates

for the location and 3 angles for the orientation. From these the position of each

segment directly follows.

• In the coupling energy between segments we incorporate the geometry, in the way

discussed in §3.3.

Periodic boundary conditions

In the simulation approach we calculate the properties in a small fluid parcel. this is

based on the assumption that on average the parcel represents the fluid as a whole quite

well. To avoid boundary effects, periodic boundary conditions are applied. This results

in a periodic domain, as illustrated in Figure 3.4. Now, we deal with an infinitely large

domain, but represented with only a finite amount of information because of the repeating

patterns.

Figure 3.4: Left: A small fluid parcel. Right: A periodic domain. A periodic domain has
no boundaries.

Optimization procedure

Let us consider n molecules (maybe of different species) in the fluid parcel. We use the

following noattions:
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state The state x ∈ R6n of the configuration consists of the locations and orientations

of all n molecules;

Energy function The energy function E : R6n → R+ returns the binding energy for

the given state;

Entropy function The entropy function S : R6n → R+ returns the entropy for the

given state;

Overlap function The function V : R6n → R+ returns the amount of space occupied

by two or more molecules at the same time.

For a given target energy Et we have to solve the following optimization problem:

maximize S(x)

under the restrictions that V (x) = 0,

and (E(x)− Et)
2 = 0. (3.12)

3.4.1 Technical details

The optimization problem (3.12) has many local optima. By the way, it is good to realize

that it also has many global optima. For example, if we have an optimal solution and we

shift the whole solution a little bit (and/or rotate it) we again have an optimal solution.

In general, it is typical for many-particles systems that one and the same macro state may

correspond to a huge amount of micro states, all having the same entropy and energy. In

the present approach we need to find only one of the global optima. Since the system has

so many degrees of freedom, optimization may lead to unacceptably long computation

times. The success of the method will therefore heavily depend on how efficiently the

functions E, S and V and their gradients are evaluated. In this section we discuss several

related technical details.

Efficient evaluation of overlap V

Each molecule may be described as a set of tetrahedra. The overlap in a configuration

can therefore be determined by comparing every one of these tetrahedra to every other

tetrahedron, calculating the volume they share and adding all these overlap volumes. Such

a process is quadratic in the number of tetrahedra in the configuration and would become

prohibitive very quickly when many molecules are to be modelled, or when detailed shapes

are to be used to model them.
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The calculation of the overlap can be sped up considerably by keeping track of the

circumscribed spheres of the molecules, as illustrated in Figure 3.5. This is very simple to

do, because the circumscribed sphere of the molecules does not change when the molecule

is rotated and because its radius only depends on the molecule species. If the circum-

scribed spheres do not intersect, the molecules do not intersect and their tetrahedrons

need not be compared. In this way, every molecule is only seriously compared to the

molecules near it. A similar speed-up may be achieved by comparing the circumscribed

spheres of the individual tetrahedra before calculating their overlap.

A further reduction in the calculation can be achieved using a grid, as illustrated in

Figure 3.6. The domain is split up into grid cells. For every grid cell, a list is made of

all molecules in or near it (i.e. whose center of gravity is in the shaded area). Molecules

near a grid cell boundary may be in more than one list.

In this case the calculation of the overlap consists of the following steps:

1: for all molecules do

2: place it in a list of all grid cells in or near which it is located

3: end for

4:

5: for all molecules M1 do

6: for all molecule M2 in or near the grid cell where molecule M1 is located do

7: compare circumscribed spheres:

8: if spheres do not intersect then

9: Overlap V is zero.

10: else

11: compare all tetrahedra of M1 to all tetrahedra of M2:

12: if there is no intersection then

13: Overlap V is zero.

14: else

15: a detailed calculation is needed

16: end if

17: end if

18: end for

19: end for
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Figure 3.5: A molecule and its circumscribed sphere: molecules do not overlap if their
circumscribed spheres do not do.

Efficient evaluation of coupling frequencies

For the evaluation of the energy and the entropy, it is necessary to determine for every

segment of the molecule shell to which segment(s) it is ’coupled’. A simple way to

determine these couplings is by the overlap calculation of slightly enlarged molecules.

This idea is illustrated in Figure 3.7. The molecules M1 and M2 (dark colors) do not

overlap. The enlarged molecules (lighter colors), however, have some overlap. Segment

A1, or rather the tetrahedron that it is a face of, overlaps with B2 and a little bit with

A2. Hence, we say that A1 is coupled mostly to B2 and a bit to A2 and we let both

couplings contribute to the entropy, but in a weighted fashion.

Smoothing the functions

The overlap-function V and the coupling frequencies (and hence the energy E and entropy

S) are continuous and differentiable functions of the state x. Their derivatives, however,

are not continuous, so the Hessian matrices of the functions V , E and S do not exist.

Since many optimization techniques need Hessian matrices, it is useful to smooth these

functions. A simple way to do this is to ’soften’ the tetrahedra. When doing so, the

original overlap Vij between two tetrahedra i and j is modified to V
′
ij according to

V ′ij :=
V 2
ij

ǫmin(Vi, Vj) + Vij
, (3.13)
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Figure 3.6: The grid used to speed up the calculation of the overlap.

M1

B1

C1
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Figure 3.7: Example for the calculation of the couplings: segment A1 is mostly coupled
to segment B2, and also a little bit to A2.

where Vi and Vj are the volumes of tetrahedra i and j, and ǫ is a ’small’ parameter.

Larger values for ǫ make ’softer’ overlap functions.

3.4.2 Efficient optimization of the configuration

The original optimization problem (3.12) involves a target function and constraints. The

constraints can be incorporated in the target function by giving a penalty for constraint

violation. The modified optimization method is then

maximize S(x)− cV V (x)− cE(E(x)− Et)
2. (3.14)

with cV and cE weighting factors that determine the relative contributions of the two

penalty functions. This optimization problem is standard problem and may be solved

using steepest descent or variations of Newton’s method. In the present context some

problems might be expected:
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• Local optimization methods are very likely to find local optima which are not global

optima.

• Local search techniques may also converge very slowly. This may happen for in-

stance in configurations with regions that are too crowded and regions which are

too empty. A lot of molecules have to move in order to even this out. They will

moreover have to move in complicated patterns because the target function is not

allowed to increase on the way.

To find a global optimum, additional techniques may be needed. When a local opti-

mum is found or when convergence slows down, the solution has to be ’shaken up’ in order

to move away from a local optimum. Sudden changes which may help are for example

• Some (randomly chosen) molecules may be taken from the most crowded regions

and placed in the emptiest regions;

• Some (randomly chosen) molecules are moved and rotated to a random place and

orientation in the domain.

3.4.3 Preliminary results

The simulation approach requires a lot of programming. Due to time limitations it was not

possible to produce a working molecular simulation model in only a few days. A modest

start in 2D was made, which provides us with some understanding of what is involved in

the calculations. The evaluation of overlap turned out to be not too complicated. The

couplings were evaluated only in a simple way: every segment was considered to couple to

the nearest segment of another molecule. Local search was not yet applied. For purpose of

demonstration, optimization was studied via a simple random search algorithm. In that

approach, a configuration x is chosen entirely randomly, after which the target function

(3.14)is evaluated. The first configuration is saved and a new configuration is randomly

produced. If this configuration turns out to have a higher value of the target function,

then the latter replaces the former. This can be repeated many times. Obviously, this

method has very slow convergence. The results of this procedure are shown in Table

3.1 and Figure 3.8. Two types of molecules are mixed: 18 of one type and 7 of another

type. The dimensions of the molecules, the domain and charges were not realistically

chosen, that’s why no units are shown in the results. The coefficients cV and cE were

set at one and for the target energy we use Et = 40. A thousand configurations were

produced, and 8 times a new ’best sofar’ configuration was encountered. Table 3.1 shows

that in this instance the overlap is indeed minimized, but the entropy and energy are still
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Iteration Overlap Energy Entropy

1 40.7 0.30 4.53
2 38.4 0.36 4.50
4 37.5 0.35 4.44
5 30.2 0.34 4.54
10 27.6 0.39 4.46
31 20.2 0.32 4.52
593 18.3 0.39 4.43
939 17.2 0.41 4.41

Table 3.1: Results when maximizing the target function (3.14)during a random search
approach. The overlap indeed reduces in the course of the time

varying much. The initial and final (after 8 improvement steps) configurations are shown

in Figure 3.8

7 x

18 x

Figure 3.8: First (left) and final (right) configurations in the a simple random search
summarized in Table 3.1.

3.5 Conclusions and Recommendations

We have shown that the COSMO-RS procedure to calculate the properties of mixtures

can be extended to incorporate the geometrical effect of constraints that may drastically

influence the chance that two surface segments of the constituting molecules couple. The

general problem concerns the optimization of the entropy under the condition that the

energy has a prescribed value. To perform this task while accounting for the geometrical

effects, we followed two lines.
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In the first approach, we show that the optimization problem can be very efficiently

solved, by putting it in a form that is appropriate for numerical optimization methods.

The geometrical constraints are included via specification of the energy involved in cou-

pling two segments. We discuss suggestions for the effective choice of these coupling

energies, such that the effect of the local geometry and the local charge distribution is

taken into account.

In the second approach, we tackle the optimization problem via simulation. We focus

on a part of the fluid, a so-called parcel, with a tractable number of molecules. The rest of

the fluid is represented by periodic boundary conditions. The molecular configuration in

this fluid parcel is represented in the computer by specifying the positions and orientations

of all molecules in it. The idea is to start from a randomly chosen configuration, that

is gradually updated via a genetic optimization algorithm. The object function consists

of the entropy together with penalty functions that have to assure that the procedure

converges to a configuration with the correct energy and without overlapping molecules.

A fairly complete image of the computational aspects was obtained from developing a

simple piece of software, that is restricted to 2D.

Our conclusion is that the first approach answers the original specific question quite

efficiently, while the second approach is highly general and could also be applied to answer

many other questions concerning mixtures.
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