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1 Introduction

This problem, brought by Prof. Peter Grindrod of Numbercraft!, was concerned with
the population modelling of customers of e.g. telecommunications companies. Such
companies offer a variety of service packages of differing expense. (For example, in
the case of cable companies, customers may choose to subscribe to different bundles of
channels and may also buy phone and internet services.) From time to time, customers
will upgrade to a more expensive package, or possibly downgrade or discontinue their
contract altogether. Numbercraft would like to predict how the number of customers on
each type of contract will change, so that they may forecast companies’ future income,
and also so that they may advise marketing campaigns with maximum timeliness and
effect.

The idealised situation is shown in Figure 1. We suppose that there are n discrete
classes of customer account. In addition, we may have a removed class which corresponds
to customers who discontinue their contracts and from whom no income is derived. We
aim to model the populations and flows between the different customer classes. In the
simplest case, this gives rise to a simple system of ordinary differential equations.

However here we add an extra level of sophistication: we allow customers’ behaviour,
specifically their rates of switching class, to be a function of their residence times in
those classes. For example, in the case of a cable company, after a user has experienced
a satisfactory period on the basic package, they may become increasingly likely to adopt
extra channels and services. A second effect that we might model with this approach is
that of lock-in, where customers sign up for a package for a prescribed minimum period.

Clearly it is no longer sufficient to keep track of the total number of customers u;(t)
in each class 7. Rather, we require variables that describe the residence time structure
of each population. We use u;(s,t) to denote the density of individuals in class i, with
residence time s > 0, at time ¢. The Study Group was asked to develop a model under
the following assumptions:

e At any time, the rate density of individuals changing class does not depend on
the populations of destination classes. In fact, we suppose that the total rate of
customers leaving class 7 is a linear functional of the population of class ¢ itself.

e When individuals change class, they commence in their new class with residence
time zero.

2 Model derivation

We define k;(s) to be the rate density function for customers leaving class i. By this,
we mean that in a small time interval d¢, a total of k;(s)u;(s,t)(0t)(ds) individuals with
residence time between s and s + ds (0s small) will leave class i. It follows that

Js ot
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= —ki(s)uy, s> 0, (1)
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Figure 1: An example of a compartment model of customer populations, which includes
residence time s structure. In this case there are n = 3 classes of customer account, in
addition to a removed class. Possible movements between account types are indicated
by arrows, and a model formula for the flow rate from account class 1 to account class
2 is given.

or in vector form

Ju Ou
ds + ot
where u = (uy, ug, ..., u,) and K = diag(ky, ko, ..., k,). Here the differential operator
on the left hand side states that individuals who do not change class age at rate one.
It is now necessary to consider the destination of those customers who change class.
To this end, we introduce a matrix A(s) with entries a;;(s) which describes how the flow
leaving class ¢ with residence time s is split between the other classes j. Since the key
quantity is ATK, we normalise AT so that each row sums to one, i.e. A is a Markov
matrix.
It follows that, at time ¢, the total flow rate of customers from class i to class j is
I a;j(s)ki(s)ui(s,t) ds. When contributions from all customers of all residence times

0
are considered, we have that the total flow into class ¢ is equal to the sum of contributions

—K(s)u, s >0, (2)
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from all classes j together with a source term for fresh customers, i.e.
Z/ aji(s)k;(s)u;(s,t)ds + g;(t), (3)
j=170
from which we may obtain the s = 0 boundary condition,
w(0,0) = / S ai(s)k(s)us(s, 1) ds + gi(d), (4)
0

or in vector form

a(0,) — /O T AT(K(s)u(s, 1) ds + g(t). (5)

Equations (2) and (5) together define the hyperbolic PDE and boundary conditions
which we consider in the remainder of this report.

3 Initial data

We now consider what initial (in t) data should be prescribed. We take the view that
t = 0 should correspond to an absolute zero time prior to which there are no customers
in the system. It follows from this assumption that any customers starting in the system
at t = 0 must do so with residence time s = 0. Thus we may take initial data

u(s,0) = d(s)uy, (6)

where uy > 0 is the vector of initial populations at s = 0, ¢t = 0, and ¢ is the usual
distribution.

4 Singular solution component

We now consider the solution of the PDE IBVP defined by (2), (5) and (6). First note
that (2) may be re-written as an ODE

u, = —Ku (7)

along the characteristics of the system. Here 7 = s 4+ t. Further the residence time of
customers in the system is less than or equal to the age of the system, so s < t, and
also s > 0,t > 0. Figure 2 depicts the wedge of the s—t plane in which the solution is
defined, as well as the characteristics ¢ — s = constant > 0.

The key to the solution is to note that the distributional initial data (6) will propagate
along the boundary characteristic s = t as a singular distributional solution component,
although it will continuously lose mass via (2) and (5) to the s = 0, ¢ > 0 line: other
t — s = constant > 0 characteristics then propagate this mass forward into the interior
of the wedge-shaped domain. However, the components of the solution along these
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Figure 2: The s-t solution plane and domain of definition, when distributional data is
provided at s = t = 0. Characteristics take the form ¢ — s = constant > 0 and are
drawn as solid lines. A distributional solution component propagates along s = t. The
continuous feedback of all parts of the solution to the s = 0 boundary is indicated by
dotted lines.

characteristics will also lose mass to the s = 0, ¢ > 0 line in a continuous way, from
which new characteristics will fill out the wedge, and so on.
We now write
u(s,t) = Ugng(s,t) + (s, t), (8)

where ugn, is the singular solution component propagating along s = ¢ and (s, t) is the
regular solution component in the interior of the wedge.

Combining (6) with the ODE (7) yields
Wng(5,£) = 3t — $)E(s)up, (9)
where
E(s) i exp <— /OSK(U) da) , (10)
is the evolution operator along characteristics. Note that
r(s) == —E/(s) = K(s)E(s) (11)

gives the vector of switching time density functions, i.e. the probability density functions
of individuals leaving their classes at time s > 0.
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5 Regular solution component
We now proceed from (8) by noting that since ugg satisfies (7), we also have
i, = —Ki. (12)

Thus for s < t, we have
u(s,t) = E(s)u(0,t — s), (13)

using the evolution along characteristics. We now substitute (8) and (9) into the
boundary conditions (5), so that

u(0,t) + 0(t)E(0)uy = /OOO AT(S)K(S) [a(s,t) +6(t — s)E(s)ue] ds + g(t), (14)
and so for ¢t > 0

u(0,t) = /0 AT(s)K(s)u(s,t)ds + AT(OK(E(t)uy, + g(t). (15)

Note that the range of integration is truncated since all solution components are zero for
s > t. We may now substitute (13) into (15) to give

w(0,t) = /0 AT($)K(s)E(s)u(0,t — s)ds + ATOKOE()u + glt).  (16)

We have thus reduced the search for the regular solution component to the solution of
a Volterra integral equation for the solution’s s = 0 boundary data. The distributional
initial data contributes a non-homogeneous term which decays under mild conditions on
the switching rate density functions k;(s).

Note that once boundary data u(0, ) has been found, integration along characteristics
gives the solution u(s,t), s > 0, in the full wedge-shaped domain.

6 Solution by Laplace transforms
Let us use the short-hand f(¢) := 0(0,¢). The Laplace transform of (16) yields
L(f) = LIATKE)L(f) + L(ATKE)u, + £L(g), (17)

so that
L(f) = [I- L(ATKE)] "' [L(ATKE)u, + L(g)], (18)

and in principle f may be found by the inverse transform. This process is tractable when
B(t) .= AT(tH)K(t)E(t) (19)

is purely exponential in time. From (10), we observe that this is only possible if
the switching rate density function is independent of residence time, and provided
A(t) = exp(—tA)Ay, i.e. provided the splitting matrix is purely exponential in time.
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(Since elements of A must be non-negative for all ¢ > 0, it follows that all elements
of diagonal A have non-negative real parts, and all elements of Ay are non-negative.
Further, since A is a Markov matrix, 0 is automatically an eigenvalue.)

Next note that K and exp(—tA) are diagonal and hence commute, so that under the
above conditions

B(t) = AJKexp [-t(K + A)], (20)
and thus
LB)=AK(K+A+pI)™ (21)
Thus (18) yields
L) = [T— ATK(K + A +pI)7'] ' [ATK(K + A + pI)"lug + £(g)] (22)

=[I-A))K+A+pI] K+ A+ [AJK(K + A +pI)"ug + L(g)] . (23)

Only the first term generates poles, and so we may observe that the boundary values of
the solution are exponential in ¢ with exponents given by the eigenvalues of (AJ —I)K—A.
Since A} row sums to one, and K, A are non-negative diagonal matrices, Gerschgorin’s
theorem tells us that the eigenvalues have non-positive real parts, and exponential decay
to a steady state is the only possible dynamics.

The above procedure is rather disappointing as it does not give explicit progress in
the case where the switching rate density K has non-trivial dependence on residence
time s. However, explicit progress can be made if K is constant, but the splitting matrix
A is time periodic (i.e. all entries of A are purely imaginary or zero), which might be
used to model seasonal variation in customer behaviour.

Of course, it may well be the case that evaluating and inverting Laplace transforms
numerically gives an efficient computational procedure for solving (16): however, we
have not investigated this idea in detail.

7 Steady states

Steady state solutions u* > 0 of (16) might be recovered if we set sources g = 0, and
if the limit ¢ — oo is taken, so that the inhomogeneous term due to initial data uy is
forgotten by the system. This loss of memory occurs if all k; are strictly positive and
bounded away from zero, so that E decays exponentially or faster. Clearly then

u' = [/ AT (5)K(s)E(s)ds| u*, (24)
0
and thus a necessary condition for such a solution is that AT(s)K(s)E(s) € L(0,0).

Since A is bounded, this can be guaranteed if all k; are strictly positive, bounded away
from zero, and bounded from above, so that K(s)E(s) decays exponentially.

8 Some constant coefficient examples

Under the conditions on switching rate densities described in the previous section, the
dynamics of (16), and consequently the dynamics of (2), (5) are rather uninteresting, as

D-7



equilibration to a steady state is inevitable. In this section, we examine the time scale of
this equilibration. Further, we examine whether equilibration is necessarily monotone, or
whether it can contain an oscillatory component. For reasons of simplicity, we suppose
that the splitting matrix A and switching rate density K are constant. Thus, by (23),
solutions are exponential in time with exponents given by the eigenvalues of (AT —T)K.

Example 1. We consider the scalar case n = 1. This might model the population
holding a certain credit card, and having one’s residence time reset to zero corresponds
to being issued with a replacement card, either due to theft or to expiry. We have
AT — 1= (0), so that boundary data u(0,t) is steady for ¢ > 0.

Using the theory of Sections 4, 5 and 6 we may construct the explicit solution

u(s,t) = [kexp(—ks)xpu(s) + (t) exp(—kt)] uo, (25)
where y is the indicator function defined by
1 0<s<t
— = ’ 26
X0 () { 0 otherwise. (26)

Thus the initial cluster of customers ages at rate one, whilst losing mass, and sweeps out
the eventual steady profile u(s) = kexp(—ks)uy behind it.

Example 2. We consider a system with n = 2 components, and we attempt to generate
oscillatory decay by using the splitting matrix

Ao (g’ é), (27)

which ‘cycles customers’ between the two states. In this case (AT —I)K has eigenvalues
of 0 (corresponding to the steady state) and —(k; + ko), which is real, and so only
monotone decay is possible. Interestingly, the decay rate is the sum of the individual
switching rate components, i.e. the system relaxes faster than one might expect.

Example 3. We now consider a system with n = 3 components, and we use the
splitting matrix

0 01
A=1|100 (28)
010
Thus
—]Cl ‘f‘kg 0
A" -DK=[ 0 —k +ks|. (29)
+k’1 0 —k’g
As always, we find an eigenvalue = 0, in addition to two more, which satisfy
,u2 + (k1 + ko + ks)pu + (krka + k1ks + kaoks) = 0. (30)

Two extreme cases are worth mention: (i) 0 < ko, k3 < ki, in which case we obtain a
pair of real eigenvalues (and hence monotone decay); and (ii) k; = ko = k3, in which case
we obtain eigenvalues with non-zero imaginary parts, so that oscillatory decay occurs.
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9 Piecewise constant functions

Given our explicit progress with constant switching rate densities and constant splitting
coefficients, the next possibility (which we have not investigated fully) would appear to
be the use of piecewise constant switching rates. A first investigation might involve

K, < s,
K(s):{ 0<s<s (31)
Kj 5> s*,

where K, Kz and s* are constant. In this case it is readily shown that
—sK, 0<s<s™,
E(s) exp (—sK,) s<s (32)
exp (+s* (Kg — K,)) exp (—sKjp) s> s,

and the Laplace transform of AT(s)K(s)E(s) may be calculated explicitly if A is purely
exponential and if the range of integration is partitioned at s = s*.

We might use the above approach to model lock-in periods by setting some
components of K, to zero. However, zero components of Kz correspond to absorbing
classes (effectively removed classes) which customers do not leave after s*. If the graph
whose edges are defined by the non-zero elements of A is well-connected, then all
customers will end up in an absorbing class as t — oo. If there is more than one
such absorbing class, then there will be non-unique steady states as t — oc.

10 Distributional coefficients

In all cases considered so far, solutions have decayed to steady states as ¢ — oo. However,
this need not be the case if we allow distributional switching rate density functions. For
example, if we take a two component system with splitting matrix given by (27) and use
switching rate density functions

k1(s) = d(s1) and  kao(s) = d(s2), (33)

where sy, so > 0, then we will obtain solutions of period s; + s where customers are
cycled between the two classes.

An interesting conjecture is that regular switching rate density functions can never
produce this periodic behaviour: most likely this conjecture can be proven by deriving
asymptotics for the poles of the Laplace transform (18) of boundary data.

Interesting analysis could be carried out on regular, but very spikey (‘almost ¢’)
switching rate density functions. We would expect to see something like periodic
behaviour, but which must decay to a steady state as t — oo. Most likely the solutions
will exhibit such decay only over very long time scales, which might also be obtained
from asymptotics of the Laplace transform.
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11 Nonlinear model extensions?

An interesting extension to this modelling would be to consider switching rate density
functions which depended on customer populations themselves. For example, word-of-
mouth advertising from satisfied customers of a particular package may result in a very
rapid take up of that package by others. Similarly, a company may not be able to service
adequately customers of an over-subscribed package, which may lead to a large switching
rate out of that account class.

Note that only the right hand side of PDE (2) is changed, so that characteristics
remain ¢t — s = constant. However, integration along characteristics now involves solving
nonlinear (albeit scalar) ODEs. Furthermore, the boundary feedback (5) will also become
nonlinear, although in principle one can produce a nonlinear integral equation analagous
to (16) which also involves the evolution operator E(t) of the nonlinear ODE problem.
One would have to resort to numerics, and it would seem advisable to have specific
examples in mind before proceeding.

12 User variability

We now add an extra level of complexity to the modelling, by supposing that not only
are there several discrete classes of customer account, but also that there are different
types of individual customer with different switching rate density functions.

One modelling approach is to suppose that there are m discrete types of customer,
and since all interactions are linear, we may thus create m disjoint copies of the PDE
system discussed earlier.

Similarly, we might suppose that customer type is parametrised by a continuous
variable 6 (or a collection of continuous variables #). We then have density functions
u(s,t,0), switching rate densities K(s, ) and splitting matrices A(s,6). However, the
basic PDE model (2) and boundary conditions (5) are unaltered as there is as yet
no mechanism for producing derivatives such as du/d6. It is possible to attempt an
averaging over 6; this will lead to models whose modified coefficients contain 6 derivatives
of K(s,6) and A(s,#). No new dynamics are introduced by this idea.

However, if we suppose that a customer’s type itself changes slowly in time, our
models contain Taylor diffusion. This may be seen formally if we consider a conservation
law for class i of customers of type 6 (assumed scalar for simplicity) at time ¢ and
residence time s. We may write

wi(s,t + 0t,0) = (1 — k;0t)u;(s — 6t t — dt, 0)
+ adt [u;(s — ot,t — 6t,0 + 56) — 2u;(s — 0t,t — 6t,0) + u;(s — o, t — ot,0 — 60)], (34)

where the second line of terms models slow drift in #. Expanding under appropriate
scaling yields the modified PDE

ou; N ou; kw4 0282u,~
Js o " 002"

2Some of the ideas in this section were investigated briefly by David Parker (Edinburgh) and Jeff
Dewynne (OCIAM).

(35)
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We have yet to analyse this type of model in detail.

13 Future work

The next step of this work should involve a numerical solver for the Volterra integral
equation (16). Unfortunately, solving crudely up to time ty. will take O(#2,,)
operations, as at each time step an integral from 0 to ¢t must be performed. This is
unsurprising considering that we are effectively solving a PDE on the two-dimensional
wedge of Figure 2. However for large t, the contributions to the integral for sufficiently
large s are small, if E(s) is exponentially decaying. It is possible that a smart remeshing
scheme can take advantage of this fact by using a coarser mesh for large s and so saving
operations.

A second possibility for numerical work is that one attempt the calculation and
inversion of the Laplace transform (18) numerically.

Finally, one should perhaps consider some real examples of customer account
structure, preferably with data on switching rate densities, and try to fit some of the
models discussed throughout this report.
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