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Abstract

Neoturf is a Portuguese company working in the area of project, building and
garden’s maintenance. Neoturf would like to have a procedure for scheduling
and routing efficiently the clients from garden maintenance services. The
company has two teams available during the whole year and an additional
team during summer to handle all the maintenance jobs. Each team consists
of two or three employees with a vehicle fully equipped with the tools that
allow to carry out every kind of maintenance service. In the beginning of
each year, the number and frequency of maintenance interventions to con-
duct during the year, on each client, are accorded. Each client is assigned to
the same team and, usually, time windows are established so that visits to
the client should occur only within these periods. As the Neoturf costumers’
are geographically spread over a wide region, the total distance on visiting
clients is a factor that has a heavy weight on the costs of the company. Neo-
turf is concerned with reducing these costs, while satisfying the agreements
with the clients.
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1.1 Introduction

Neoturf is a Portuguese company working in the area of project, building
and garden’s maintenance. One of their services is the maintenance of pri-
vate gardens of residential customers (about 60), whose demands are mainly
periodic short time interventions (usually 1 to 3 hours). In the beginning of
each year, the number and frequency of maintenance interventions to con-
duct during the year are accorded with each client. Thus, a minimum and
maximum periods of time separating two consecutive interventions on the
same client are settled.

The amount of work highly depends on seasonality. The company al-
locates to this service, in almost full-time, two teams (each consists of two
or three employees) in the winter’s period and three teams during summer.
Each team has a van fully equipped with the tools needed to perform the
maintenance jobs. Each client is assigned to the same team and, usually,
time windows were established so that visits to the client should occur only
within these periods. The clients are geographically spread along an area
around Oporto of approximately 10000 km2. In 2011, these teams traveled
more than 60000 km, with a significant impact on the costs.

Neoturf aims at finding a procedure to scheduling and routing clients ef-
ficiently so to reduce costs, while satisfying the agreements with the clients.
The scheduling of clients for each day should be planed on a basis of short pe-
riods of time (say ten consecutive working days), since unforeseeable events
(e.g., rainy days, client not available at the time previously arranged) may
force to postpone planned interventions and to re-settle the designed schedul-
ing.

1.2 Formulation

We propose to address the problem partitioning the year into consecutive
short periods of time (say 10 consecutive working days) and identifying,
for each period, (i) which customers should be served and (ii) how these
costumers should be routed.

We formulate (i) as a 0-1 knapsack problem and (ii) as a multiple time
windows travelling salesman problem.

1.2.1 Identifying clients to visit in each period

The identification of which clients should be served on a given period P ,
of m consecutive days, takes into account the interventions carried out on
previous periods. Clients are classified as

• mandatory, those for which an intervention has to take place during
period P , i.e., the number of days since the last visit till the end of
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period P exceeds the maximum number of consecutive days which can
elapse without any intervention taking place, according to what has
been agreed with the client;

• discarded, those for which no intervention is expected to take place
during period P , i.e., the number of days since the last visit till the
end of period P is lower than the number of consecutive days that
were agreed to elapse before a new intervention takes place;

• admissible, those for which an intervention may or may not take place
during period P .

In order to proceed with the selection of the clients to be visit, besides
the expected time tc for the intervention on every client c, for which reliable
estimates exist, there is need of an estimate ec of the traveling time to arrive
at client c. There are several possibilities for settle ec from the estimates ρuv
of the time to travel directly from location u to v, where u and v represent
either two clients, or one client and the depot (the location where vehicles
are parked, and from where the vehicles depart to daily maintenance services
and return when services are accomplished). A possibility, which may be
reasonable if P is the initial period, or there is lack of information from
the previous periods, is just to define ec as the mean or some quartile of
ρuc, for appropriate u. If several visits to client c have already took place,
then ec could be defined as the mean of the times to arrive at client c from
the clients visited immediately before, on the previous periods. In addition,
let T be the estimate working time for the whole period P , not including
the time of the arrivals at depot, which can be estimated as m times the
estimate of each arrival calculated as for clients.

We first have to check whether T is enough to serve all mandatory clients,
i.e., if the following inequality holds∑

c∈M
tc + ec ≤ T, (1.1)

where M denotes the set of mandatory clients for period P .
In case the inequality is not verified, the current version of our implemen-

tation produces a warn on this fact, and the decision maker should decide
whether to extend period P , or to postpone the interventions on certain
costumers.

If inequality (1.1) is satisfied, admissible clients are selected to fill as
much as possible the time that remains from serving the mandatory clients.
This can be formulated as follows.

Max
∑
c∈A

pcxc, (1.2)
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subject to ∑
c∈A

pcxc ≤ T ′, (1.3)

where A denotes the set of admissible clients, pc = (tc + ec) and T ′ =
T −

∑
c∈M (tc + ec) is an estimate of the time that remains from serving the

mandatory clients.
This problem is known in the literature as the 0-1Knapsack Problem (see,

e.g., [7, 9]). Although the 0-1 knapsack is NP-hard, it is readily computable
for the sizes of sets A that arises on Neoturf’ instances.

In the computational application that we developed the above problem
was coded using Octave and solved to optimality.

1.2.2 Routing clients assigned to the same period

The Travelling Salesman Problem (TSP) is described as the problem of find
a minimum-cost route that visits all the cities of a set exactly once. It
was first publicised by Flood [6], but its origins are unclear. Due to its
several applications in people’s daily lives, the study of this problem has
been growing steadily. See Lawler et al [8] for a survey on this matter.

Usually, the spatial routing problem is mixed with the temporal aspect of
scheduling, where the visits to the cities must respect certain time-windows
constraints. This extension of the initial problem is called the Travelling
Salesman Problem with Time Windows (TSPTW), and it is in this variant
that our problem is framed.

As the TSP is NP-hard, so is the TSPTW. Savelsbergh [10] showed
that even the problem of finding a feasible solution for the TSPTW is NP-
complete. However, because of the small sizes of the sets of clients in Neo-
turf’s problem, the TSPTW can be implemented. See, e.g., [2, 5] for some
models of programming.

We based our formulation in the first one given by [4].
Suppose C is the set of clients (assigned to some team) that are to be

routed in a given period of m days. We construct a directed weighted graph
G = (V,A, ρ) as follows. The set of vertices V is equal to C ∪ B, where
vertices of C represent clients and each vertex bi of B, i = 0, · · · ,m, is
the i “day (fictitious) copy” of the depot. There is an arc (u, v) linking
client u to client v if there is any possibility (w.r.t. travelling time between
u and v and time windows) to serve v immediately after visiting u. Arcs
with both directions link each vertex bi, i = 1, · · · ,m− 1, with every client.
Vertex b0 is also incident to every vertex in C, but there will be no arcs
entering b0. Every vertex in C is incident to bm , but no arcs exist leaving
bm. The other arcs in set A are (b0, b1), (b1, b2), · · · , (bm−1, bm), and no more
arcs exist linking pairs of vertices in B. For v ∈ V , we use V +

v and V −
v to

denote the set of vertices leaving and entering vertex v, respectively, i.e.,
V +
v = {u ∈ V : (v, u) ∈ A} and V −

v = {u ∈ V : (u, v) ∈ A}.
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A scheduling of clients will read on graph G as a directed path Q from
b0 to bm, including every other vertex of V exactly once. The clients that
are to be visited on day i are the vertices of C on the subpath of Q linking
bi−1 to bi. The order of vertices on that path specifies the order by which
the corresponding clients should be visited. If arc (bi−1, bi) is included in
path Q it means that no interventions on clients of set C will occur on day
i.

We now define the weights on the arcs of A. The weight ρuv is the time
to travel on arc (u, v) ∈ A, if u and v are both in C, and ρuv = 0, for arcs
(u, v) ∈ A, with u, v ∈ B. If one vertex of arc (u, v) ∈ A is in C and the
other in B, the weight ρuv is the time of traveling along arc (u, v) plus some
large positive constant so that ρuv exceeds the weight of every arc with both
vertices in C.

For each vertex v ∈ C, let T i
v = [eiv, l

i
v] be the i-th time-window of client

v, i = 1, · · · , |Tv|, with eiv < liv < e
(i+1)
v , where eiv and liv are the release time

and the deadline time of the i-th time-window of client v, respectively. For
vertices of B, define T 1

b0
= [ST, ST ] and T 1

bi
= [EN+24(i−1), EN+24(i−1)],

for i = 1, · · · ,m, where ST and EN are, respectively, the daily service start
hour and the daily service end hour.

Recall that, for v ∈ C, tv is the processing time on client v, and set
tb = 0, for every b ∈ B.

To formulate the problem we use the following variables.

• xuv =

{
1, if arc (u, v) ∈ A is selected,
0, otherwise;

• yiv =

{
1, if client v ∈ V is served in the time-window T i

v, with i ≤ |Tv|,
0, otherwise;

• sv ≥ 0 is the start time, i.e., time-instant in which the service starts
at client v ∈ V ;

• wv ≥ 0 is the waiting-time to start the service at client v ∈ C, if the
vehicle arrives early than the release time.

We deem minimise the sum of travel-time and waiting-time on clients.
We thus have the following objective function.

Min
∑

(u,v)∈A

ρuvxuv +
∑
v∈C

wv (1.4)

The following equations∑
u∈V

xvu = 1, ∀v ∈ V \{bm}, (1.5)

∑
u∈V

xuv = 1, ∀v ∈ V \{b0}, (1.6)
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ensure there will be exactly one arc leaving every vertex v 6= bm, and exactly
one arc entering every vertex v 6= b0.

To force that each client is visited exactly in one of its time-windows, we
add equations ∑

i≤|Tv |

yiv = 1, ∀v ∈ V. (1.7)

To guarantee that the start time occurs within the selected time-window
and that vehicle has enough time to travel from u to v, we use the following
constraints ∑

i≤|Tv |

eivy
i
v ≤ sv ≤

∑
i≤|Tv |

livy
i
v, ∀v ∈ V, (1.8)

su + tu + ρuv − (1− xuv)M ≤ sv, ∀(u, v) ∈ A, (1.9)

where M > 0 is large enough to guarantee that the left hand side is non
positive whenever xuv = 0, and thus making constraint (1.9) not active when
xuv = 0.

Note that constraints (1.5),(1.6) together with (1.9), ensure that the set
of selected arcs defines a directed path linking b0 to bm, which passes through
every vertex of V exactly once.

The following inequalities define upper bounds on the waiting times on
clients.

wv ≥
∑
i≤|Tv |

eivy
i
v−(su+ tu+ρuv)− (1−xuv)M

′, ∀(u, v) ∈ A, v ∈ C, (1.10)

where M ′ > 0 is large enough to guarantee that the right hand side is non
positive whenever xuv = 0, thus turning the constraint (1.10) redundant
when xuv = 0.

The range of the variables is established as follows.

xuv ∈ {0, 1}, ∀(u, v) ∈ A (1.11)

yiv ∈ {0, 1}, ∀v ∈ V, and i ≤ |Tv| (1.12)

sv ≥ 0, ∀v ∈ V (1.13)

wv ≥ 0, ∀v ∈ C (1.14)

The above model (1.4)-(1.14) gives a mixed integer linear programming
formulation for the problem of routing clients assigned to the same team on a
given period ofm days. Note that weights we assigned to the arcs entering in
the fictitious depots b1, · · · , bm, where some large constant has been added to
the time of traveling along each of these arcs, make these arcs unattractive
for solutions with low values of the objective function. As a result, good
solutions tend to include, as much as possible, arcs (bi−1, bi), which means
not assigning services on day i. Thus, optimal solutions assign services to
clients in the minimum number of days for which feasible schedulings exist.
Clearly, the days for which no interventions were planned will be considered
for the planning of the subsequent period.
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1.3 Implementation details and results

A tester version of the proposed was made during the ESGI’86, in order
to test it with real data kindly provided by Neoturf. On Figure (1.3) a
simplified workflow of the implemented version is presented.

Figure 1.1: Neoturf algorithm workflow.

In a 5-day ESGI context the following assumptions were made:

• The definition of ρ in 1.4 in terms of time instead of distance unit is
justified by the fact that, accordingly with Neoturf, the time unit cost
is higher than the kilometric cost, in this context. As so, although ρuv
is not constant, as it depends on factors like traffic or weather among
others, a rough measure of the time was considered as the preferential
measure.

• The lunch time is not considered explicitly. This is because Neoturf’s
employees have some flexibility regarding that subject. Thus, this
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version was implemented by closing the time-window of the depot one
hour earlier, that is, instead of a 8-hour working day we used a 7-hour
working day.

• All the clients are previously assigned to one of the teams (actually this
really happens for all Neoturf clients except two of them), so routine
runs the algorithm in parallel.

We made a simplified implementation of the workflow presented in Fig-
ure (1.3) using Octave. For the problem adressed in Subsection 1.2.1 we
used a classical Knapsack implementation. In order to have an initial so-
lution for the routing problem our implementation used the Clark-Wright
savings algorithm [3]. The computation time for both problems was in the
order of seconds, for a sample with 64 clients, two teams and periods of
few days with different initial conditions. This was one of the reasons for
the Neoturf satisfaction, because it usually takes one or two days for their
logistic department to get the monthly plan ready.

1.4 Conclusions and recommendations

The Neoturf challenge was successfully completed, although with some sim-
plifications. It is strongly recommended a further development post-ESGI as
future achievements may be completed with a small cost/benefit ratio. Nev-
ertheless, Neoturf may use this first version to test and greatly simplify their
work in planning their team’s schedule. One first change recommendation is
related with an Neoturf internal procedure: At this moment Neoturf does a
primary scheduling at the beginning of every month that is afterwards com-
municated to their clients. Our previous calculations and modelling show
us that, from the optimisation point of view, the scheduling should be done
in shorter periods of time as the frequent imponderables make necessary a
most adaptive procedure. As so, and based on the sample data provided by
Neoturf, a week prior to intervention seems a good compromise between the
client comfort and a Neoturf manageable and optimised scheduling proce-
dure.

Regarding future development on this work, the following points should
be addressed:

• As stated in (1.1), when T is not enough for all the Mandatory-services
the user receives a warning and should decide whether to extend pe-
riod P , or to postpone the interventions at certain costumers. An
interactive procedure with multi-objective (age of the last visit and/or
distance), adaptative or recurrence criteria may be study and imple-
mented.
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• As a consequence of our modelling using the Knapsack, in some days
there is some available time in the end of the day. Neoturf representa-
tive says that it is positive, as the teams must do some maintenance on
the equipment almost every day. Nevertheless, some post-optimisation
may be made. For example, an iterative process to try to include more
clients in the schedule may improve the Neoturf productivity.

• In the case that bigger simulation periods are demanded by Neoturf,
a process that include more than one visit to each client should be
study.

• The company is aware that the solution provided in the computa-
tional implementation is, most certainely, not optimal. However, as
the problem is formulated, an efficient implementation of TSPTWmay
be made with a relative small effort.

The authors would like to thank to all the ESGI86 participants, as their
suggestions and remarks throughout those five days were of major impor-
tance in order to have a first sketch of this solution.
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