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1 Introdu
tionAlthough the system will eventually 
ater for Bus Eireann, private bus operators and theLUAS, 
urrently the only user of the system is Dublin Bus. Predi
tion times for when abus will arrive at a parti
ular stop are generated by software designed by Init Systems forDublin Bus and forwarded to Dublin City Coun
il. This information is subje
t to 
ertain
onstraints su
h as a look ahead window and a maximum number of buses to re
eive infor-mation for. Currently Dublin Bus has pla
ed a limitation of 550 bus stop `subs
riptions' forthe predi
tions their software generates. It is possible that their servers 
an be upgraded tohandle a thousand subs
riptions but it is un
ertain and the original goal of obtaining fourand a half thousand subs
riptions looks unlikely by this methodCurrently there are 80 physi
al street signs in pla
e in Dublin and a website that providespredi
tions for 550 of the 4500 Dublin Bus bus stops. However, the noisiness and variabilityof predi
tion data has 
onsiderably slowed the progress of the roll-out. Thus DCC haverequested the Study Group to �nd a method to a

urately predi
t the arrival time of a busat any stop (monitored or unmonitored).Dublin City Coun
il also re
eives all of the GPS lo
ation 
o-ordinates of every in-servi
ebus in the Dublin Bus �eet, subje
t to the bandwidth 
onstraints of the Dublin Bus privateradio network. At peak times this amounts to almost 1100 buses. In pra
ti
e we �nd thatthe bandwidth limitation amounts to a lo
ation update for ea
h bus every 30 sec. Thelo
ation is 
al
ulated using di�erential GPS and is said to be a

urate to within 5 meters.Other information provided in
ludes s
hedule deviation, whether a bus is at a stop or notand whether a bus 
onsiders itself to be in 
ongestion or not.Bus arrival time is important information for passengers but providing it is not an easytask. For example, bus arrival time at stops in urban networks are di�
ult to estimatebe
ause travel times on links, dwell times at stops, and delays both at signalized and non-signalized interse
tions �u
tuate both spatially and temporally. A variety of predi
tionmodels for fore
asting tra�
 states su
h as travel time and tra�
 �ow have been developedover the years. The �ve most widely used models in
lude histori
al data based models[Williams and Hoel (2003)℄, time series model [Thomas et al. (2010)℄, regression models[Jeong (2004), Ramakrishna et al. (2006)℄, Kalman �ltering model [Chien et al. (2002),Vanajakshi et al. (2009)℄ and ma
hine learning models [Bin et al. (2006), Yasdi (1999)℄.However, no single predi
tor has yet been developed that presented itself to be universallya

epted as the best, and at all times, an e�e
tive tra�
 state fore
asting model for real-timetra�
 operation.2 Des
ription of the ProblemThe aim of this proje
t is to provide all Publi
 Transport users with high quality reliableinformation, on street and through Web and SMS, see Fig. 1. Hen
e Dublin City Coun
ilis seeking to answer two separate and distin
t but related questions about the system. Inparti
ular, the Study Group was asked the following questions.Assuming it is not possible to provide a

urate predi
tions from just the lo
ation infor-mation stream provided (due to the 
lose proximity of bus stops to one another within a 
ity2



and the infrequen
y of updates), what additional information would be required to deliver asystem that 
an a

urately predi
t the time that a parti
ular bus will arrive at a parti
ularstop? If this additional information were present, what level of 
omplexity or pro
essing
onstraints might be en
ountered for a system attempting to generate predi
tions for 1100buses servi
ing four and a half thousand bus stops?Se
ondly, the stated aim of the NTA for the proje
t is to a
hieve 98% a

ura
y of pre-di
tions for the system. Assuming the lo
ation information to be always a

urate, how
ould Dublin City Coun
il approa
h verifying whether the predi
tions are su�
iently a

u-rate? The 
urrent approa
h is to manually survey sites but this is both time 
onsuming andexpensive.

Figure 1: Dublin Bus information: street displays or on the web (www.rtpi.ie).Currently there are 80 displays in operation and an additional signi�
ant number of siteshave been identi�ed. However, the 
urrent approa
h has revealed several problems in
luding
• buses arriving at the stop without being on the sign (ghost buses),
• predi
tions 
ounting down without a bus arriving,
• or errors to do with missing data.To minimize the errors asso
iated with the predi
tions, spe
i�
 �ags are now used to indi
atedthe a

ura
y of the predi
tions. In addition, 
ameras are also used to re
ord display signsand bus arrivals.The obje
tive of the Study Group was to develop a dynami
 model that 
an providea

urate predi
tion for the Estimated Time of Arrival of a bus at a given bus stop using theprovided global positioning system (GPS) data and/or the observed travel time data. Inparti
ular, the Group aimed to use the 
urrent available data to provide a model that 
ane�
iently predi
t the arrival times.3 Approa
h I: Average Travel-time ModelThe Study Group investigated a model of predi
ting the arrival time based on the averagetime taken by several buses on the same route. The idea was to use data from buses with3



same inbound/outbound departure times over a 
ertain period of time. The group basedtheir analysis on data for bus number 4 on sele
ted Tuesdays within the period from June -July 2011 with the aim of extending this to 
over all the other routes. Five outbound 4:00 PM� buses on route 4 were sele
ted. The GPS data indi
ated that the route is approximately
23 Km and it will take ea
h bus an average of 78 mins for a single outbound trip. Theaverage travel time of the �ve buses was 
al
ulated using a least square approa
h.3.1 Predi
tion Based on Average TimeHere we predi
ted the arrival time of the 4:00 PM bus on route 4 using the average timetaken by the sele
ted 5 buses. We will refer to this as our simple model. The algorithm isgiven by

tp(k + 1) = tp(k) + ∆tav(k + 1), (1)where tp(k) denote the total predi
ted time to arrive at stop k and ∆tav is the average timetaken by the sele
ted 5 buses to travel between stops k and k + 1. A 
omparison of theobserved arrival time and the predi
ted time is shown in Fig. 2.
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Figure 2: A 
omparison of the arrival times for the simple model.In general, we observe a good �t between the predi
ted time and the a
tual time. How-ever, in some 
ases the predi
ted time is lower than the observed time with errors of up to 5
mins. See the error histogram in Fig. 5. This may not be the most e�
ient way sin
e traveltimes are updated only on
e when the bus leaves the �rst stop. We are likely to see `ghost'buses or `no show' in this setup. Next we re�ne the predi
tions by using the observed timesat the previous stop other than the last predi
tion, i.e.,

tp(k + 1) = ta(k) + ∆tav(k + 1), (2)where ta(k) is the observed time re
orded at stop k. We will refer to this model as themodi�ed simple model. This model requires that the updates be done every time the bus4




lears a bus stop. In addition, predi
tions 
an be done at any number of stops from the
urrent position. The simulations are shown in Fig. 3.
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Figure 3: A 
omparison of the arrival times for the modi�ed simple model.3.2 Predi
tion Based on Kalman AlgorithmIn another approa
h, we follow the work of Vanajakshi et al. (2009) who used an algorithmbased on the Kalman �ltering te
hnique. In their paper, the arrival time for a parti
ular buswas predi
ted using GPS lo
ation of the 
urrent bus and the times predi
ted by two probevehi
les on the same route. Our approa
h is similar to Vanajakshi et al. (2009), but here we
hoose the data for the two `probe' vehi
les from B1, the average of the sele
ted 5 buses andB2, the previous bus - in this 
ase the 3:45 PM bus. The travel time for ea
h kth subse
tionwas estimated from
∆tp(k + 1) = a(k)∆tp(k) + w(k),where a(k) is a parameter asso
iated with bus B1 and w(k) is the disturban
e asso
iatedwith the subse
tion.For 
ompleteness, we outline the steps in the algorithm as follows1. We divide the route into n points with ea
h point representing a bus stop.2. The travel time from B1 was used to 
ompute a(k) via
a(k) =

∆tB1(k + 1)

∆tB1(k) , k = 1, · · · , n− 1,where ∆tB1 is the travel time of bus B1 in ea
h k subse
tion.
5
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Figure 4: Comparison of predi
ted time and observed time using the algorithm from [5℄.
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Kalman modelFigure 5: Comparison of the errors in the three models.3. The Kalman algorithm is a predi
tor 
orre
tor method, i.e.,priori estimate ∆t−p (k + 1) = a(k)∆t+p (k)priori error varian
e P−(k + 1) = a(k)P+(k)a(k) +Q(k)Kalman gain K(k + 1) = P−(k + 1)[P−(k + 1) +R(k + 1)]−1posteriori travel time ∆t+p (k + 1) = ∆t−p (k + 1) +K(k + 1)[∆tB2(k + 1)−∆t−p (k + 1)]posteriori error varian
e P+(k + 1) = [I −K(k + 1)]P−(k + 1).Here the supers
ripts `�' denotes the a priori estimate and `+' the posteriori estimate. Thepredi
tion together with the observed travel times are given in Fig. 4. Note, the 
urrent6



model di�ers from Vanajakshi et al. (2009) in several ways. The 
urrent model uses datafrom the average of previous (weeks) buses and the last bus while Vanajakshi et al. (2009)uses data from two previous vehi
les. In addition, no GPS data is required in the 
urrentmodel.In Fig. 5 we 
ompare the e�
ien
y of the three presented models by plotting an errorhistogram for ea
h model. The error in the predi
tions is given in mins and is 
al
ulatedfrom error = ∆tp −∆ta.We observe that while the simple model under-predi
ts the arrival times, the modi�ed simplemodel over-predi
ts the arrival times with the Kalman model falling in between. In general,the Kalman based model signi�
antly outperforms the other two models. In the next se
tionwe present a model whi
h 
onsiders all the buses in operation as a single pro
ess.4 Approa
h II: The Polling-time ModelThis model relies on the polling time of the reporting system Dublin Bus 
urrently use.This polling time is unitary for all operational busses at any parti
ular time of day, so ine�e
t it redu
es a substantial number of virtual `threads' (i.e., systemi
 or parallel pro
essesas in Approa
h I) down to one. For example, if there were 1100 busses in operation, 1100pro
ess 
al
ulations would have to be made in predi
ting average times for all busses. Inthis alternative model, a `number of polls' variable is simply in
remented (one for ea
h bus)subsequent to a report ba
k. For ea
h bus, a new `element' of this variable is 
reated as itgoes from one stage (the `measurement' between two subsequent stops), and the next. Themodel simply a

umulates the di�eren
e between the de-fa
to or expe
ted number of pollsfor a parti
ular stage and the a
tual number of polls for that stage. This di�eren
e for ea
hstage 
alled εi, 
an be negative, null, or positive. That is, the model sums-up these εi for rretrospe
tive stops and proje
ts m stops ahead of the last stop visited. Pro
ess-wise, 1100threads are redu
ed to one.4.1 The ModelIn predi
ting the time of arrival for the next stop, the equation is as follows:
Tn = ∆tn−r−1 + tn + tp

(

r + 1

r

) n−1
∑

i=n−r

εi, r 6= 0, (3)where Tn is the estimated arrival time at stop n, ∆tn−r−1 is the di�eren
e in the a
tual arrivaltime at stop n−r−1 and the de-fa
to arrival time at this stop, tn is the de-fa
to or expe
tedarrival time at stop n, tp is the polling time (time between two subsequent/adja
ent polls),
r is number of pre
eding or retrospe
tive stops we are examining with respe
t to `error' inthe number of polls, and εi is the di�eren
e in the a
tual number of polls and the de-fa
tonumber of polls for a parti
ular stage i (between stop i− 1 and stop i).So,

∆tn−r−1 = T ∗

n−r−1 − tn−r−1, and εi = p∗i − pi,7



where T ∗

n−r−1 is the a
tual arrival time at stop n− r− 1, p∗i is the a
tual number of polls forstage i and pi is the de-fa
to number of polls for stage i and 
an be 
al
ulated as follows
pi =

ti − ti−1

p′
,where ti − ti−1 is the de-fa
to time between stops i− 1 and i and p′ is the polling rate. Forexample, if ti − ti−1 were expressed in minutes, and ea
h bus is polled every 30 sec, then

p′ = 0.5Of 
ourse, if we are 
onsidering the blo
k numeri
 di�eren
e in the number of pollsbetween stop n− r and n− 1, ε, the equation is as follows:
Tn = ∆tn−r−1 + tn + tp

(

r + 1

r

)

ε, r 6= 0.When estimating the time for m stops ahead of the n-1 stop, the equation be
omes
Tn+m−1 = ∆tn−r−1 + tn+m−1 + tp

(

r +m

r

) n−1
∑

i=n−r

εi, r 6= 0,and this should be the general equation in the model, the fore-mentioned equations do nothave to be used.We 
an see that the model is 
entered around tp the polling time, and there is really noin�uential 
hange in this for any 
on
eivable sequen
e of iterations. However, if there werean abrupt 
hange, the model 
an handle this.Also, the term (

r +m

r

) gives quite a smooth or �owing predi
tion or update for ea
h
m stop ahead. This also portrays e�e
tiveness should there be an abrupt 
hange in the timeit took the bus to get to (a) parti
ular stop(s) between n− r and n− 1 stops.In e�e
t, the model 
onsiders a 
ombination of timing between ea
h su

essive stop andthe polling times. The timing between ea
h stop is ex
lusively expressed by the platform
∆tn−r−1 (no summation is required), from whi
h to laun
h the more a

urate polling time
onsiderations, and of 
ourse all 
onsiderations are determined by r. As the polling time isusually less than the stage time, greater a

ura
y is ensured when 
onsidering polling times,and this a

ura
y 
an be �ne-tuned by the 
onsideration of r. Dublin City Coun
il 
anpredetermine r to optimise a

ura
y, and of 
ourse r 
an vary depending on time of day andtra�
 
onditions, and also spe
ial o

asions su
h as St. Patri
k's day parades, et
. Obviously,as the bus is traveling to the �rst `few' stops on its route, r would in
rement progressivelyto a predetermined value. However, predi
ting a 
onsiderable number of stops ahead basedon a relatively small number of initial or retrospe
tive stops is not advisable. There isonly one summation in this model, whi
h e�e
tively 
ontributes to pro
essing resour
es,simpli�
ation, and testing.This model is based on retrospe
tion up to stop n − 1, the last stop. If abruptnesso

urs subsequent to the last stop, no elegant model 
an e�e
tively 
ome up with a

uratepredi
tions. However, a re
ursive approa
h 
an be used with this model � the formulafun
tion 
alling itself, i.e., the segment between where the bus is 
urrently at and the lastbus-stop is broken into a number of sub-stages, whi
h of 
ourse depends on the degree of8



re
ursion we are 
urrently in. A

ura
y in
reases at ea
h degree, and is related to the numberof polls sin
e the last stop. These sub-stages are not pre-determined or pre-�xed, but aredynami
 and related to reported GPS data.Obviously, there is no need for re
ursion if no abruptness o

urred sin
e the last stop.Abruptness 
an be
ome apparent if the bus has not yet rea
hed its desired stop after a
onsiderable number of polls sin
e the last stop. This is very useful in raising an alert.There are additional bene�ts when 
onsidering alerts.1. A high-degree of 
on�den
e in resolving the `
leardown' problem. An alert 
an triggera positional 
he
k, and if a bus is deemed to have already passed the next predi
tedstop, or a series of stops that have not been subje
t to 
leardowns, 
leardowns 
an beevoked. The time to the a
tual next stop, n, 
an now be estimated as follows:
Tn = tl +

(

tx − tl

te − tl

)

(tn − tl) ,where tl is the a
tual time of arrival at the last stop to be registered by the system,
tx is the a
tual time of the positional 
he
k, te is the expe
ted or de-fa
to time for thebus to be at the lo
ation of the positional 
he
k, and 
an be 
al
ulated as follows:

te = tl +
dl,x

dl,n
(tn − tl) , dl,n 6= 0,where dl,x is the distan
e from stop 1 to the lo
ation of the positional 
he
k and dl,n isthe distan
e from stop 1 to stop n.No doubt the present system uses software to 
al
ulate these distan
es.Basi
ally this equation is just a linear equation, the graph of whi
h is suspended on twoaxis, expe
ted/de-fa
to times (x−axis) and a
tual times (y−axis), tl being the originand we are proje
ting up from tn and a
ross to get TnAs a matter of fa
t, this linear equation 
an be used as a 
oarse alternative to the`polling time' model entirely, we are just basing our estimation on two known points,and tl does not have to be the last stop - just a prior positional 
he
k, the appropriatesele
tion of whi
h is important for optimisation.However, in regard to missed 
lear-downs, ea
h εi for these stops 
an be estimatedby proje
ting ba
k/leftwards on the linear equation to determine an estimation forthe a
tual time of arrival for these stops, and therefore the `polling time' model 
anbe re-implemented to determine greater a

ura
y and 
ontinuity in the pro
ess sys-tem/algorithm. This of 
ourse assumes that the reason why an alert was triggeredwas due to 
lear-down skips, and not due to abruptness in whi
h 
ase the re
ursionsuggestion may be viable.Another viable suggestion regarding abruptness would be to use the `least square �t-tings' method on a series of positional 
he
ks during the abruptness to obtain a linefor proje
ting forward, similar to the linear equation �x.As abruptness is normally severe, estimations based on the `polling time' model arebased on stops prior to the abruptness and this model would have to be suspended if9



the platform for predi
tions is from the last stop. After abruptness, the `polling time'model would be re-engaged and r re-initialised.2. An alert 
an alert a radio operator in Dublin Bus who 
an ask the driver for an update.3. An alert 
an fo
us DCC's tra�
 monitoring system to a parti
ular lo
ation.Other 
onsiderations would be to in
orporate output from DCC's tra�
 managementsystem into the new model, i.e. iterations of 
y
le-times 
an be added or subtra
ted for ea
hiterative stage (between adja
ent stops), and in
orporated into formula.If qui
k-�re or global error analysis or results are required at a meeting for example, theleast-squares �tting (aka, best-�t line) approa
h 
an be used. The de-fa
to line would beplotted on a x − y graph for a parti
ular route or segment in a route, and a s
attering ofpoints from a
tual or a

umulated information would be plotted alongside. The least-squaresmethod would be used to get the best straight line whi
h suits these points. The `qui
k-�re'or `meeting-friendly' error (numeri
ally and visually [
omparisons 
an be made with othergraphs, for di�erent routes or times, say℄) is proportional to the angle between the two lineson the graph, it is a
tually proportional to the tan of the angle. So if the two lines were thesame, the angle and the error would be zero.4.2 SimulationsThis model was tested with data from the Southbound 16:45 Dublin Bus on Route No. 4.This parti
ular time was 
hosen be
ause it is immediately prior to the Dublin rush-hour,and thus it was felt that most s
enarios would be naturally in
luded in the testing. Initiallythe polling-time model envisaged a de-fa
to or standard time-table or stop-s
hedule for ea
hplanned journey. Su
h s
hedules 
an be evolved stepwise through time to determine the mostappropriate and a

urate s
hedule for a parti
ular journey, i.e., yearly or seasonal evaluations
ould be made.No s
heduling data was at-hand at the time of testing, however su
h a requirement 
ouldbe 
onsidered to be somewhat redundant as it would suppress the need to evolve a de-fa
totimetable during the limited time of testing. Data for �ve adja
ent Tuesdays spanning Juneand July 2011 was available, and as su
h an initial timetable 
ould be developed. However,data for three Tuesdays in June was ex
lusively used as it was determined that in
onsisten
iesin bus-stop identi�ers would be minimised. This was not seen as an impedan
e as randomnesswas introdu
ed into the testing during the later stages.In determining a de-fa
to timetable based on a
tual journey information, three ap-proa
hes were taken.1. A timetable was built based on the average intervals between ea
h su

essive stop.These intervals were then added to the base time of 16:45.2. A timetable was 
al
ulated based on averaging ea
h time of day a bus was at a parti
-ular stop on the route.
10



3. The third approa
h is the most radi
al and is based on a synthesis of the previous two.It is suggested that Dublin Bus relegate timetable information and adopt de-fa
to in-terval data in preferen
e. As there is a greater likelihood of in
onsisten
y in the timesa parti
ular bus starts its journey, i.e., leaves a terminus, due to human and system-ati
 error, building a spe
i�
 or unique timetable for ea
h journey based on de-fa
tointerval information is a suggested strategy. Su
h a timetable 
an be build when thebus has left its se
ond stop on the journey. In this sense, it is ines
apable that the busis in progression. Also, this approa
h aids Dublin Bus in their requirement to supplydynami
 and live web-based information to their 
ustomers. In relation to te
hnologi-
al advan
ement, using periodi
 polling-times is an e�e
tive way to update 
ustomers,whether via web-page or RSS feeds to hand-held devi
es. If su
h a 
onsideration hasnever been previously envisaged, it may be an advan
ement for Dublin Bus to progres-sively update subs
ribed 
ustomers of when the next bus is due at a parti
ular stop,and to give him/her prior noti�
ation regarding the last bus. To return to the intervalapproa
h, should any abruptness o

ur during a parti
ular journey, interval based data
an qui
kly be used in re
overy on
e su
h abruptness has terminated. Furthermore,de-fa
to interval information �ts into the wider pi
ture when route diversions o

ur. Inrelation to the polling-time model, it was determined that a `mathemati
al 
on
eptualdimension' is redu
ed with this approa
h (in 
omparison to the �rst two approa
hes),thereby 
ontributing to its e�e
tiveness.Testing for all three approa
hes was undertaking. In ea
h 
ase, various values were givento r and m in the model. i.e., predi
ting the arrival time m stops ahead based on polling
ounts of r prior or retrospe
tive stops. The polling time between 16:00 and 18:00 was foundto be very 
onsistent at 21 sec. Testing is by no means 
omplete, however an advantageof the polling-time model is that values for r and m 
an be evolved to best-�t parti
ular
riteria. In 
onjun
tion with the interval approa
h, either by synthesis or opting in and out,an appropriate system 
an be imaged.4.2.1 Test 1: Timetable determined by average intervals added to an a

eptedbase-timeFrom Fig. 6, it 
an be determined that for small values of r, su

essive predi
tions to a distantpre-determined stop are more likely to be errati
. This is una

eptable when 
ustomersare to be progressively updated. For large values or r, the errati
 nature diminishes andupdates are more 
ongenial. For this parti
ular data-set, the di�eren
es between the 
urrentpredi
tion and the previous predi
tion were summed. When the summation ex
eeded 45
sec, the summation was reinitialised. In the 
ase of r = 5, 6 initialisations o

urred. For
r = 20, there were no initialisations. It 
an also be seen that for r = 20, the initial error isthe smallest, i.e., 90 sec. When the bus is approximately 8 stops away from the obje
t stop,predi
tions for r = 15 are the more a

urate, and are less than 45 sec in error. The a
tualtravel time from the start of predi
tions to the desired stop is slightly less than 10 mins.Fig. 7 displays predi
tions for a �xed value of m, i.e., a predetermined number of stopsahead from the start of the journey. Predi
ting to a parti
ular stop does not o

ur here, butrather to a sequen
e of stops determined by m. As expe
ted, predi
tions are more a

urate11



for shorter distan
es ahead. However, an appropriate value of r, determined by route, tra�

onditions, and time of day 
an be determined for optimisation. As this �gure expressespredi
tions for the entire route, the value of r had to be 
ounted up from 1 at the start ofthe route to its predetermined state, this explains the `tails' for r = 1 on the extreme left ofea
h graph. The plot settles at r = 3.
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essive bus-stop-wise predi
tions to a spe
i�
 stop initially twenty stops ahead(m=20).
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Figure 7: Predi
tions based on predetermined values for r and m.
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4.2.2 Test 2: Timetable built ex
lusively on averaging arrival times for ea
hstopIn this approa
h, a de-fa
to timetable is ex
lusively built by determining the average timefor ea
h stop on the route. No intervals are 
ons
iously added to a predetermined base time.Although mathemati
ally there is e�e
tively no di�eren
e between the timetable determinedin `Test 1' and the one in this approa
h as the intervals are the same, by 
han
e the samebus journey data used in `Test 1' produ
es a slightly more errati
 graph in `Test 2'. Thisunderlines the rationale of applying de-fa
to intervals to determine a busses unique s
heduleor timetable on
e it has started its journey.
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m=20, r=20Figure 8: Predi
tions based on predetermined values for r and m (Average arrival timesapproa
h in timetable).4.2.3 Test 3: De fa
to Interval Approa
hThis approa
h is based on 
reating a new timetable for any parti
ular bus ea
h time ithas been undoubtedly established that it has started its route. The timetable is built fromexisting de-fa
to bus-stop time intervals for that parti
ular planned route. A reservoir ofde fa
to intervals 
ould be held for any planned route, and the appropriate one applied tobuild a timetable. The range of timetables in the reservoir may be 
ategorised under weather
onditions, holiday season, spe
i�
 publi
 holidays, time of year, et
.As with the �rst two approa
hes, the same bus data was applied to the initial testing ofthis approa
h. A graph of whi
h is displayed below, Fig. 9. In this approa
h and in `Test2', the absolute or positive value was summed for the di�eren
e between the expe
ted anda
tual arrival time of every stop on the route. The summation amounted to 29 mins 8 secin `Test 2', while with this approa
h the sum is 25 mins 43 sec. When the di�eren
e in thesesums with respe
t to ea
h sum is 
onsidered, a signi�
an
e 
an be understood in relation toerrors in stop arrival times. 13
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m=20, r=20Figure 9: Predi
tions based on predetermined values for r and m (De fa
to intervals).4.2.4 RandomisingRandom delays ranging between one and 70 sec were a

umulated to the expe
ted arrivaltimes at ea
h stop. Given that the average de-fa
to interval between any two adja
ent stopsis 24 sec, su
h delays and their errati
 nature are very unlikely. However, this simulation 
anbe suggestive of snow or i
y 
onditions, or were there are large numbers of people embarkingand disembarking.Fig. 10 below is a display of this unlikely s
enario. It 
an see that the model works wellfor m = 15, i.e. predi
ting �fteen stops ahead, on
e the 
onsideration of r retrospe
tivestops has rea
hed or ex
eed 10. Considering that the journey time has more than doubled,the model is favorable to this situation.Fig. 11 displays the output when an additional 3 mins was added to the `a
tual arrivaltime' of `Stop 15'. Predi
ting 10 stops ahead seems to bu�er this anomaly.Fig. 12 highlights data when three 3 minute delays are added to a series of arrival times.As well as sele
ting appropriate values for r and m, strategies dis
ussed in the se
tion on`abruptness' may need to be 
onsidered.Fig. 13 shows a pro�le of progressively predi
ting to a parti
ular stop on the data thatwas used in Fig. 12. The value r = 20 seems to give the smoothest transition.4.3 Further ConsiderationThis model, as with all viable models, is based on a de-fa
to Dublin Bus timetable/intervaldata, whi
h determines expe
ted arrival times at all stops for all busses. Obviously, progres-sively this information would be re�ned, as is the 
ase with all organi
 systems. Perhapswhen publishing hard-
opy or web-page standardised timetables, a number of standardisedtimetables 
ould be used throughout the year, depending on the `season'. i.e., s
hool holidaytimes, 
hara
teristi
 weather 
onditions, day-light hours, et
. Furthermore, say for examplefour timetables were used, the expe
ted arrival times at a parti
ular stop 
an be posted on14
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Figure 10: Random delays of between 1 and 70 sec a

umulatively added to `a
tual arrivaltime' of ea
h stop.
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Figure 11: Additional 3 mins added to arrival time at stop 15.that bus-stop, this is globally generi
. However Dublin Bus 
an use the advertising edge orgimmi
k to impress and so
ialise passengers that they fa
tor seasonal 
onditions into theirtimetables, and that the set of four timetables do not 
hange for a `blo
k' number of years.This set of four timetables for a parti
ular bus route 
an be posted on the web, and for stopswhere there are a limited number of `bus-routes' stopping (as in most suburban areas), the'set of four' timetable 
an be posted without need to 
hange from season to season, or year toyear. Also, when a timetable is being updated for a parti
ular season based on retrospe
tiveexperien
e, there is a nine month to one year bu�er in whi
h to do so.
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Figure 12: Delays at Stops 15, 22, and 29 are 3:10, 3:34, and 3:10.
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r=20Figure 13: Progressively predi
ting to a parti
ular stop initially 20 stops ahead. Stop No.19 is the initial stop in this test, and its `pro�le' 
an be seen in Fig. 12.5 Con
lusions and Future WorkThis report outlines two approa
hes in predi
ting bus arrival times for DCC. In parti
ular,we aimed to use the 
urrently available data and minimise errors asso
iated with the 
urrentpredi
tions. In se
tion 3 we reviewed some models in the literature and tested them usingthe 
urrent data. The key result of this se
tion being that the 
lassi
al Kalman algorithmoutperforms the other presented sub-models. In se
tion 4 we presented a polling-time modelwhi
h redu
es the need for parallel pro
ess for ea
h bus in operation to just one pro
ess.The model was validated by 
omparison with existing data from Dublin Bus network.Future work will link models to the average number of passengers waiting for a spe
i�
16



bus, 
hange in 
onditions, e.g., a

ident, demand surge, road works, et
.A
knowledgementsAll 
ontributors would like to thank Brian Carrig from Dublin City Coun
il for introdu
ingthe problem and answering questions during the entire week.We a
knowledge the support of the Mathemati
s Appli
ations Consortium for S
ien
e andIndustry (www.ma
si.ul.ie) funded by the S
ien
e Foundation Ireland mathemati
s initiativegrant 06/MI/005.Referen
es[1℄ B. Williams and L. Hoel. Modeling and fore
asting vehi
ular tra�
 �ow as a seasonalARIMA pro
ess: Theoreti
al basis and empiri
al results. Journal of TransportationEngineering (ASCE), 129(6):664�672.[2℄ S. Chien, Y. Ding, and C. Wei. Dynami
 bus arrival time predi
tion with arti�
ialneural networks. Journal of Transportation Engineering (ASCE), 128(5):429�438.[3℄ Y. Bin, Y. Zhongzhen, and Y. Baozhen. Bus arrival time predi
tion using support ve
torma
hines. Journal of Intelligent Transportation Systems, 10(4):151�158, 2006.[4℄ R. Yasdi. Predi
tion of road tra�
 using a neural network approa
h. Neural Computing& Appli
ations, 8(2):135�142, 1999.[5℄ L. Vanajakshi, S. Subramania, and R. Sivanandan. Travel time predi
tion under hetero-geneous tra�
 
onditions using global positioning system data from buses. IET. Intell.Transp. Syst., 3(1):1�9, 2009.

17

http://ascelibrary.org/teo/
http://ascelibrary.org/teo/
http://www.tandf.co.uk/journals/titles/15472450.asp
http://www.springer.com/computer/theoretical+computer+science/journal/521
http://scitation.aip.org/IET-ITS

	Introduction
	Description of the Problem
	Approach I: Average Travel-time Model
	Prediction Based on Average Time
	Prediction Based on Kalman Algorithm

	Approach II: The Polling-time Model
	The Model
	Simulations
	Test 1: Timetable determined by average intervals added to an accepted base-time
	Test 2: Timetable built exclusively on averaging arrival times for each stop
	Test 3: De facto Interval Approach
	Randomising

	Further Consideration

	Conclusions and Future Work

