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1 Introduction

Although the system will eventually cater for Bus Eireann, private bus operators and the
LUAS, currently the only user of the system is Dublin Bus. Prediction times for when a
bus will arrive at a particular stop are generated by software designed by Init Systems for
Dublin Bus and forwarded to Dublin City Council. This information is subject to certain
constraints such as a look ahead window and a maximum number of buses to receive infor-
mation for. Currently Dublin Bus has placed a limitation of 550 bus stop ‘subscriptions’ for
the predictions their software generates. It is possible that their servers can be upgraded to
handle a thousand subscriptions but it is uncertain and the original goal of obtaining four
and a half thousand subscriptions looks unlikely by this method

Currently there are 80 physical street signs in place in Dublin and a website that provides
predictions for 550 of the 4500 Dublin Bus bus stops. However, the noisiness and variability
of prediction data has considerably slowed the progress of the roll-out. Thus DCC have
requested the Study Group to find a method to accurately predict the arrival time of a bus
at any stop (monitored or unmonitored).

Dublin City Council also receives all of the GPS location co-ordinates of every in-service
bus in the Dublin Bus fleet, subject to the bandwidth constraints of the Dublin Bus private
radio network. At peak times this amounts to almost 1100 buses. In practice we find that
the bandwidth limitation amounts to a location update for each bus every 30 sec. The
location is calculated using differential GPS and is said to be accurate to within 5 meters.
Other information provided includes schedule deviation, whether a bus is at a stop or not
and whether a bus considers itself to be in congestion or not.

Bus arrival time is important information for passengers but providing it is not an easy
task. For example, bus arrival time at stops in urban networks are difficult to estimate
because travel times on links, dwell times at stops, and delays both at signalized and non-
signalized intersections fluctuate both spatially and temporally. A variety of prediction
models for forecasting traffic states such as travel time and traffic flow have been developed
over the years. The five most widely used models include historical data based models
[Williams and Hoel (2003)], time series model [Thomas et al. (2010)], regression models
[Jeong (2004), Ramakrishna et al. (2006)], Kalman filtering model [Chien et al. (2002),
Vanajakshi et al. (2009)] and machine learning models |Bin et al. (2006), Yasdi (1999)).
However, no single predictor has yet been developed that presented itself to be universally
accepted as the best, and at all times, an effective traffic state forecasting model for real-time
traffic operation.

2 Description of the Problem

The aim of this project is to provide all Public Transport users with high quality reliable
information, on street and through Web and SMS, see Fig. 1. Hence Dublin City Council
is seeking to answer two separate and distinct but related questions about the system. In
particular, the Study Group was asked the following questions.

Assuming it is not possible to provide accurate predictions from just the location infor-
mation stream provided (due to the close proximity of bus stops to one another within a city



and the infrequency of updates), what additional information would be required to deliver a
system that can accurately predict the time that a particular bus will arrive at a particular
stop? If this additional information were present, what level of complexity or processing
constraints might be encountered for a system attempting to generate predictions for 1100
buses servicing four and a half thousand bus stops?

Secondly, the stated aim of the NTA for the project is to achieve 98% accuracy of pre-
dictions for the system. Assuming the location information to be always accurate, how
could Dublin City Council approach verifying whether the predictions are sufficiently accu-
rate? The current approach is to manually survey sites but this is both time consuming and
expensive.

Figure 1: Dublin Bus information: street displays or on the web (www.rtpi.ie).

Currently there are 80 displays in operation and an additional significant number of sites
have been identified. However, the current approach has revealed several problems including

e buses arriving at the stop without being on the sign (ghost buses),
e predictions counting down without a bus arriving,

e or errors to do with missing data.

To minimize the errors associated with the predictions, specific flags are now used to indicated
the accuracy of the predictions. In addition, cameras are also used to record display signs
and bus arrivals.

The objective of the Study Group was to develop a dynamic model that can provide
accurate prediction for the Estimated Time of Arrival of a bus at a given bus stop using the
provided global positioning system (GPS) data and/or the observed travel time data. In
particular, the Group aimed to use the current available data to provide a model that can
efficiently predict the arrival times.

3 Approach I: Average Travel-time Model

The Study Group investigated a model of predicting the arrival time based on the average
time taken by several buses on the same route. The idea was to use data from buses with



same inbound/outbound departure times over a certain period of time. The group based
their analysis on data for bus number 4 on selected Tuesdays within the period from June -
July 2011 with the aim of extending this to cover all the other routes. Five outbound 4:00 PM
— buses on route 4 were selected. The GPS data indicated that the route is approximately
23 Km and it will take each bus an average of 78 mins for a single outbound trip. The
average travel time of the five buses was calculated using a least square approach.

3.1 Prediction Based on Average Time

Here we predicted the arrival time of the 4:00 PM bus on route 4 using the average time
taken by the selected 5 buses. We will refer to this as our simple model. The algorithm is
given by

tp(k+1) =t,(k) + At (E+ 1), (1)

where t,(k) denote the total predicted time to arrive at stop k and At,, is the average time
taken by the selected 5 buses to travel between stops k and k£ + 1. A comparison of the
observed arrival time and the predicted time is shown in Fig. 2.
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Figure 2: A comparison of the arrival times for the simple model.

In general, we observe a good fit between the predicted time and the actual time. How-
ever, in some cases the predicted time is lower than the observed time with errors of up to 5
mins. See the error histogram in Fig. 5. This may not be the most efficient way since travel
times are updated only once when the bus leaves the first stop. We are likely to see ‘ghost’
buses or ‘no show’ in this setup. Next we refine the predictions by using the observed times
at the previous stop other than the last prediction, i.e.,

ty(k+1) =t (k) + At (k+ 1), (2)

where t,(k) is the observed time recorded at stop k. We will refer to this model as the
modified simple model. This model requires that the updates be done every time the bus
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clears a bus stop. In addition, predictions can be done at any number of stops from the
current position. The simulations are shown in Fig. 3.
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Figure 3: A comparison of the arrival times for the modified simple model.

3.2 Prediction Based on Kalman Algorithm

In another approach, we follow the work of Vanajakshi et al. (2009) who used an algorithm
based on the Kalman filtering technique. In their paper, the arrival time for a particular bus
was predicted using GPS location of the current bus and the times predicted by two probe
vehicles on the same route. Our approach is similar to Vanajakshi et al. (2009), but here we
choose the data for the two ‘probe’ vehicles from B1, the average of the selected 5 buses and
B2, the previous bus - in this case the 3:45 PM bus. The travel time for each k™ subsection
was estimated from

Aty (k+1) = a(k)At, (k) +w(k),

where a(k) is a parameter associated with bus B1 and w(k) is the disturbance associated
with the subsection.
For completeness, we outline the steps in the algorithm as follows

1. We divide the route into n points with each point representing a bus stop.
2. The travel time from B1 was used to compute a(k) via

At (k+1)

— -1 n—1
a(k) AtBl(k) Y k Y 7n Y

where Atg, is the travel time of bus Bl in each & subsection.
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Figure 4: Comparison of predicted time and observed time using the algorithm from [5].
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Figure 5: Comparison of the errors in the three models.

3. The Kalman algorithm is a predictor corrector method, i.e.,
priori estimate At (k+ 1) = a(k)At! (k)
priori error variance P~ (k + 1) = a(k)P*(k)a(k) + Q(k)
Kalman gain K(k+1) =P (k+1)[P (k+1) + R(k+1)]*
posteriori travel time At¥(k+1) = At (k+ 1) + K(k + 1)[Atp,(k +1) — At (k+1)]
posteriori error variance Pt(k+1)=[I — K(k+1)]P~(k+1).

Here the superscripts ‘~’ denotes the a priori estimate and ‘+’ the posteriori estimate. The
prediction together with the observed travel times are given in Fig. 4. Note, the current
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model differs from Vanajakshi et al. (2009) in several ways. The current model uses data
from the average of previous (weeks) buses and the last bus while Vanajakshi et al. (2009)
uses data from two previous vehicles. In addition, no GPS data is required in the current
model.

In Fig. 5 we compare the efficiency of the three presented models by plotting an error
histogram for each model. The error in the predictions is given in mins and is calculated
from

error = At, — At,.

We observe that while the simple model under-predicts the arrival times, the modified simple
model over-predicts the arrival times with the Kalman model falling in between. In general,
the Kalman based model significantly outperforms the other two models. In the next section
we present a model which considers all the buses in operation as a single process.

4 Approach II: The Polling-time Model

This model relies on the polling time of the reporting system Dublin Bus currently use.
This polling time is unitary for all operational busses at any particular time of day, so in
effect it reduces a substantial number of virtual ‘threads’ (i.e., systemic or parallel processes
as in Approach I) down to one. For example, if there were 1100 busses in operation, 1100
process calculations would have to be made in predicting average times for all busses. In
this alternative model, a ‘number of polls’ variable is simply incremented (one for each bus)
subsequent to a report back. For each bus, a new ‘element’ of this variable is created as it
goes from one stage (the ‘measurement’ between two subsequent stops), and the next. The
model simply accumulates the difference between the de-facto or expected number of polls
for a particular stage and the actual number of polls for that stage. This difference for each
stage called ¢;, can be negative, null, or positive. That is, the model sums-up these ¢; for r
retrospective stops and projects m stops ahead of the last stop visited. Process-wise, 1100
threads are reduced to one.

4.1 The Model

In predicting the time of arrival for the next stop, the equation is as follows:

n—1
1
Tn = Atnfrfl =+ tn =+ tp (i) Z €iy r 7& 07 (3)
r )

where T, is the estimated arrival time at stop n, At,,_,._ is the difference in the actual arrival
time at stop n—r —1 and the de-facto arrival time at this stop, t,, is the de-facto or expected
arrival time at stop n, t, is the polling time (time between two subsequent/adjacent polls),
r is number of preceding or retrospective stops we are examining with respect to ‘error’ in
the number of polls, and ¢; is the difference in the actual number of polls and the de-facto
number of polls for a particular stage i (between stop i — 1 and stop 7).
So,
Atnfrfl = ;karfl —tp_r_1, and ¢g; = p;k — Dis
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where T, is the actual arrival time at stop n —r — 1, p! is the actual number of polls for

stage ¢ and p; is the de-facto number of polls for stage ¢+ and can be calculated as follows
li —ti1
p/

)

where t; — t;_1 is the de-facto time between stops i — 1 and ¢ and p’ is the polling rate. For
example, if ¢; — t;_; were expressed in minutes, and each bus is polled every 30 sec, then
P =0.5

Of course, if we are considering the block numeric difference in the number of polls
between stop n — r and n — 1, ¢, the equation is as follows:

1
Tn = Atnfol -+ tn —+ tp (—r i > g, T 7£ 0
T

When estimating the time for m stops ahead of the n-1 stop, the equation becomes

n—1
r+m
Tnerfl = Atnfrfl + thym—1 + tp ( > Z €, T 7é 07

r

and this should be the general equation in the model, the fore-mentioned equations do not
have to be used.

We can see that the model is centered around ¢, the polling time, and there is really no
influential change in this for any conceivable sequence of iterations. However, if there were

an abrupt change, the model can handle this.

Also, the term MTm gives quite a smooth or flowing prediction or update for each
m stop ahead. This also portrays effectiveness should there be an abrupt change in the time
it took the bus to get to (a) particular stop(s) between n — r and n — 1 stops.

In effect, the model considers a combination of timing between each successive stop and
the polling times. The timing between each stop is exclusively expressed by the platform
At,_,—1 (no summation is required), from which to launch the more accurate polling time
considerations, and of course all considerations are determined by r. As the polling time is
usually less than the stage time, greater accuracy is ensured when considering polling times,
and this accuracy can be fine-tuned by the consideration of r. Dublin City Council can
predetermine r to optimise accuracy, and of course r can vary depending on time of day and
traffic conditions, and also special occasions such as St. Patrick’s day parades, etc. Obviously,
as the bus is traveling to the first ‘few’ stops on its route, » would increment progressively
to a predetermined value. However, predicting a considerable number of stops ahead based
on a relatively small number of initial or retrospective stops is not advisable. There is
only one summation in this model, which effectively contributes to processing resources,
simplification, and testing.

This model is based on retrospection up to stop n — 1, the last stop. If abruptness
occurs subsequent to the last stop, no elegant model can effectively come up with accurate
predictions. However, a recursive approach can be used with this model — the formula
function calling itself, i.e., the segment between where the bus is currently at and the last
bus-stop is broken into a number of sub-stages, which of course depends on the degree of



recursion we are currently in. Accuracy increases at each degree, and is related to the number
of polls since the last stop. These sub-stages are not pre-determined or pre-fixed, but are
dynamic and related to reported GPS data.

Obviously, there is no need for recursion if no abruptness occurred since the last stop.
Abruptness can become apparent if the bus has not yet reached its desired stop after a
considerable number of polls since the last stop. This is very useful in raising an alert.

There are additional benefits when considering alerts.

1. A high-degree of confidence in resolving the ‘cleardown’ problem. An alert can trigger
a positional check, and if a bus is deemed to have already passed the next predicted
stop, or a series of stops that have not been subject to cleardowns, cleardowns can be
evoked. The time to the actual next stop, n, can now be estimated as follows:

t, —t
Tn:tl+< l>(tn_tl)7

te _tl

where t; is the actual time of arrival at the last stop to be registered by the system,
t, is the actual time of the positional check, ¢, is the expected or de-facto time for the
bus to be at the location of the positional check, and can be calculated as follows:

d
te=ti+ 2= (tn =), din # 0,
l,n
where d; , is the distance from stop 1 to the location of the positional check and d;,, is
the distance from stop 1 to stop n.

No doubt the present system uses software to calculate these distances.

Basically this equation is just a linear equation, the graph of which is suspended on two
axis, expected/de-facto times (x—axis) and actual times (y—axis), ¢; being the origin
and we are projecting up from ¢, and across to get 7T,

As a matter of fact, this linear equation can be used as a coarse alternative to the
‘polling time’ model entirely, we are just basing our estimation on two known points,
and ¢; does not have to be the last stop - just a prior positional check, the appropriate
selection of which is important for optimisation.

However, in regard to missed clear-downs, each ¢; for these stops can be estimated
by projecting back/leftwards on the linear equation to determine an estimation for
the actual time of arrival for these stops, and therefore the ‘polling time’ model can
be re-implemented to determine greater accuracy and continuity in the process sys-
tem/algorithm. This of course assumes that the reason why an alert was triggered
was due to clear-down skips, and not due to abruptness in which case the recursion
suggestion may be viable.

Another viable suggestion regarding abruptness would be to use the ‘least square fit-
tings’ method on a series of positional checks during the abruptness to obtain a line
for projecting forward, similar to the linear equation fix.

As abruptness is normally severe, estimations based on the ‘polling time’ model are
based on stops prior to the abruptness and this model would have to be suspended if



the platform for predictions is from the last stop. After abruptness, the ‘polling time’
model would be re-engaged and r re-initialised.

2. An alert can alert a radio operator in Dublin Bus who can ask the driver for an update.

3. An alert can focus DCC’s traffic monitoring system to a particular location.

Other considerations would be to incorporate output from DCC’s traffic management
system into the new model, i.e. iterations of cycle-times can be added or subtracted for each
iterative stage (between adjacent stops), and incorporated into formula.

If quick-fire or global error analysis or results are required at a meeting for example, the
least-squares fitting (aka, best-fit line) approach can be used. The de-facto line would be
plotted on a z — y graph for a particular route or segment in a route, and a scattering of
points from actual or accumulated information would be plotted alongside. The least-squares
method would be used to get the best straight line which suits these points. The ‘quick-fire’
or ‘meeting-friendly’ error (numerically and visually [comparisons can be made with other
graphs, for different routes or times, say|) is proportional to the angle between the two lines
on the graph, it is actually proportional to the tan of the angle. So if the two lines were the
same, the angle and the error would be zero.

4.2 Simulations

This model was tested with data from the Southbound 16:45 Dublin Bus on Route No. 4.
This particular time was chosen because it is immediately prior to the Dublin rush-hour,
and thus it was felt that most scenarios would be naturally included in the testing. Initially
the polling-time model envisaged a de-facto or standard time-table or stop-schedule for each
planned journey. Such schedules can be evolved stepwise through time to determine the most
appropriate and accurate schedule for a particular journey, i.e., yearly or seasonal evaluations
could be made.

No scheduling data was at-hand at the time of testing, however such a requirement could
be considered to be somewhat redundant as it would suppress the need to evolve a de-facto
timetable during the limited time of testing. Data for five adjacent Tuesdays spanning June
and July 2011 was available, and as such an initial timetable could be developed. However,
data for three Tuesdays in June was exclusively used as it was determined that inconsistencies
in bus-stop identifiers would be minimised. This was not seen as an impedance as randomness
was introduced into the testing during the later stages.

In determining a de-facto timetable based on actual journey information, three ap-
proaches were taken.

1. A timetable was built based on the average intervals between each successive stop.
These intervals were then added to the base time of 16:45.

2. A timetable was calculated based on averaging each time of day a bus was at a partic-
ular stop on the route.
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3. The third approach is the most radical and is based on a synthesis of the previous two.
It is suggested that Dublin Bus relegate timetable information and adopt de-facto in-
terval data in preference. As there is a greater likelihood of inconsistency in the times
a particular bus starts its journey, i.e., leaves a terminus, due to human and system-
atic error, building a specific or unique timetable for each journey based on de-facto
interval information is a suggested strategy. Such a timetable can be build when the
bus has left its second stop on the journey. In this sense, it is inescapable that the bus
is in progression. Also, this approach aids Dublin Bus in their requirement to supply
dynamic and live web-based information to their customers. In relation to technologi-
cal advancement, using periodic polling-times is an effective way to update customers,
whether via web-page or RSS feeds to hand-held devices. If such a consideration has
never been previously envisaged, it may be an advancement for Dublin Bus to progres-
sively update subscribed customers of when the next bus is due at a particular stop,
and to give him /her prior notification regarding the last bus. To return to the interval
approach, should any abruptness occur during a particular journey, interval based data
can quickly be used in recovery once such abruptness has terminated. Furthermore,
de-facto interval information fits into the wider picture when route diversions occur. In
relation to the polling-time model, it was determined that a ‘mathematical conceptual
dimension’ is reduced with this approach (in comparison to the first two approaches),
thereby contributing to its effectiveness.

Testing for all three approaches was undertaking. In each case, various values were given
to r and m in the model. i.e., predicting the arrival time m stops ahead based on polling
counts of r prior or retrospective stops. The polling time between 16:00 and 18:00 was found
to be very consistent at 21 sec. Testing is by no means complete, however an advantage
of the polling-time model is that values for » and m can be evolved to best-fit particular
criteria. In conjunction with the interval approach, either by synthesis or opting in and out,
an appropriate system can be imaged.

4.2.1 Test 1: Timetable determined by average intervals added to an accepted
base-time

From Fig. 6, it can be determined that for small values of r, successive predictions to a distant
pre-determined stop are more likely to be erratic. This is unacceptable when customers
are to be progressively updated. For large values or r, the erratic nature diminishes and
updates are more congenial. For this particular data-set, the differences between the current
prediction and the previous prediction were summed. When the summation exceeded 45
sec, the summation was reinitialised. In the case of r = 5, 6 initialisations occurred. For
r = 20, there were no initialisations. It can also be seen that for » = 20, the initial error is
the smallest, i.e., 90 sec. When the bus is approximately 8 stops away from the object stop,
predictions for » = 15 are the more accurate, and are less than 45 sec in error. The actual
travel time from the start of predictions to the desired stop is slightly less than 10 mins.
Fig. 7 displays predictions for a fixed value of m, i.e., a predetermined number of stops
ahead from the start of the journey. Predicting to a particular stop does not occur here, but
rather to a sequence of stops determined by m. As expected, predictions are more accurate
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for shorter distances ahead. However, an appropriate value of r, determined by route, traffic
conditions, and time of day can be determined for optimisation. As this figure expresses
predictions for the entire route, the value of » had to be counted up from 1 at the start of
the route to its predetermined state, this explains the ‘tails’ for » = 1 on the extreme left of
each graph. The plot settles at r = 3.
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Figure 6: Successive bus-stop-wise predictions to a specific stop initially twenty stops ahead
(m=20).
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Figure 7: Predictions based on predetermined values for r» and m.
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4.2.2 Test 2: Timetable built exclusively on averaging arrival times for each
stop

In this approach, a de-facto timetable is exclusively built by determining the average time
for each stop on the route. No intervals are consciously added to a predetermined base time.
Although mathematically there is effectively no difference between the timetable determined
in ‘Test 1’ and the one in this approach as the intervals are the same, by chance the same
bus journey data used in ‘Test 1’ produces a slightly more erratic graph in “Test 2’. This
underlines the rationale of applying de-facto intervals to determine a busses unique schedule
or timetable once it has started its journey.

17:10:00
17:05:0C .
17:00:0¢ .
(O]
£
|—
m=1, r=10
——m=5, r=10
16:50:0¢ ——m=10, r=15]
—&-m=15, r=20
6 0 ‘ ‘ ‘ ‘ ‘ ‘ m=20, r=20
16:45: % 5 10 15 20 25 30 35 40

Bus stops

Figure 8: Predictions based on predetermined values for r and m (Average arrival times
approach in timetable).

4.2.3 Test 3: De facto Interval Approach

This approach is based on creating a new timetable for any particular bus each time it
has been undoubtedly established that it has started its route. The timetable is built from
existing de-facto bus-stop time intervals for that particular planned route. A reservoir of
de facto intervals could be held for any planned route, and the appropriate one applied to
build a timetable. The range of timetables in the reservoir may be categorised under weather
conditions, holiday season, specific public holidays, time of year, etc.

As with the first two approaches, the same bus data was applied to the initial testing of
this approach. A graph of which is displayed below, Fig. 9. In this approach and in ‘Test
2’, the absolute or positive value was summed for the difference between the expected and
actual arrival time of every stop on the route. The summation amounted to 29 mins 8 sec
in ‘Test 2’, while with this approach the sum is 25 mins 43 sec. When the difference in these
sums with respect to each sum is considered, a significance can be understood in relation to
errors in stop arrival times.
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Figure 9: Predictions based on predetermined values for r and m (De facto intervals).

4.2.4 Randomising

Random delays ranging between one and 70 sec were accumulated to the expected arrival
times at each stop. Given that the average de-facto interval between any two adjacent stops
is 24 sec, such delays and their erratic nature are very unlikely. However, this simulation can
be suggestive of snow or icy conditions, or were there are large numbers of people embarking
and disembarking.

Fig. 10 below is a display of this unlikely scenario. It can see that the model works well
for m = 15, i.e. predicting fifteen stops ahead, once the consideration of r retrospective
stops has reached or exceed 10. Considering that the journey time has more than doubled,
the model is favorable to this situation.

Fig. 11 displays the output when an additional 3 mins was added to the ‘actual arrival
time’ of ‘Stop 15’. Predicting 10 stops ahead seems to buffer this anomaly.

Fig. 12 highlights data when three 3 minute delays are added to a series of arrival times.
As well as selecting appropriate values for » and m, strategies discussed in the section on
‘abruptness’ may need to be considered.

Fig. 13 shows a profile of progressively predicting to a particular stop on the data that
was used in Fig. 12. The value r = 20 seems to give the smoothest transition.

4.3 Further Consideration

This model, as with all viable models, is based on a de-facto Dublin Bus timetable/interval
data, which determines expected arrival times at all stops for all busses. Obviously, progres-
sively this information would be refined, as is the case with all organic systems. Perhaps
when publishing hard-copy or web-page standardised timetables, a number of standardised
timetables could be used throughout the year, depending on the ‘season’. i.e., school holiday
times, characteristic weather conditions, day-light hours, etc. Furthermore, say for example
four timetables were used, the expected arrival times at a particular stop can be posted on
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Figure 10: Random delays of between 1 and 70 sec accumulatively added to ‘actual arrival
time’ of each stop.
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Figure 11: Additional 3 mins added to arrival time at stop 15.

that bus-stop, this is globally generic. However Dublin Bus can use the advertising edge or
gimmick to impress and socialise passengers that they factor seasonal conditions into their
timetables, and that the set of four timetables do not change for a ‘block’ number of years.
This set of four timetables for a particular bus route can be posted on the web, and for stops
where there are a limited number of ‘bus-routes’ stopping (as in most suburban areas), the
‘set of four’ timetable can be posted without need to change from season to season, or year to
year. Also, when a timetable is being updated for a particular season based on retrospective
experience, there is a nine month to one year buffer in which to do so.
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Figure 12: Delays at Stops 15, 22, and 29 are 3:10, 3:34, and 3:10.
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Figure 13: Progressively predicting to a particular stop initially 20 stops ahead. Stop No.
19 is the initial stop in this test, and its ‘profile’ can be seen in Fig. 12.

5 Conclusions and Future Work

This report outlines two approaches in predicting bus arrival times for DCC. In particular,
we aimed to use the currently available data and minimise errors associated with the current
predictions. In section 3 we reviewed some models in the literature and tested them using
the current data. The key result of this section being that the classical Kalman algorithm
outperforms the other presented sub-models. In section 4 we presented a polling-time model
which reduces the need for parallel process for each bus in operation to just one process.
The model was validated by comparison with existing data from Dublin Bus network.
Future work will link models to the average number of passengers waiting for a specific
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bus, change in conditions, e.g., accident, demand surge, road works, etc.
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