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Abstract

The manufacture of polyvinyl (PVC) fascia boards involves the extru-
sion of a pressurized mixture of molten PVC and foaming agents through
a die that is shaped in the exterior of a board; subsequent pressure release
triggers foaming, so that the interior of the board is filled, simultaneously
as the board is cooled. Sometimes, however, the foam does not fill the
interior, leading to undesired voids, especially at corners. We consider a
mathematical model for the foaming process that attempts to account for
the formation of undesired voids. Preliminary model results suggest that
severe temperature gradients through the cross-section are most likely
responsible for void formation; two mechanisms are suggested.
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Figure 1: Side view of the foaming process

1 Introduction

Fascia boards, for use on roofs, are often made from foamed polyvinyl chloride
(PVC). The fabrication process consists of several steps:

1. A mixture of PVC in the form of fine powder, foaming/blowing agents
(azodicarbonamide or oxybis(benzenesulphonylhydrazide) for the the pro-
duction of nitrogen, and sodium carbonate for the production of carbon
dioxide) and sundry lubricants and thermal stabilizers, is heated in a twin-
screw extruder by friction and compression, at a typical pressure of 130
bar, to a temperature of around 175oC.

2. The resulting melted material, which has the consistency of chewing gum,
is forced through a carefully shaped die, as shown schematically in Figures
1 and 2.

3. On exiting the die, the material undergoes a pressure drop - down to
atmospheric pressure - so that the blowing agents which, due to the high
pressure within extruder, are held in solution in the melt, turn into a gas
and cause the PVC melt to become a foam which quickly expands to fill
the void in the centre of the profile.

4. The top of the product is coated with material that gives it a smooth,
glossy and weatherable surface.

5. The PVC is then cooled down to solidify the foam from the outside in-
wards. For the first few centimetres, the outside shape remains in a stain-
less steel calibrator, so that its shape does not change. It then moves
slowly through a cold water bath. Ideally, the foam should completely fill
the space at the end of the process.

In the process, the purpose of foaming is to enable as little PVC to be used
as necessary, thereby reducing cost: the general aim is to produce a lightweight
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Figure 2: Front-on schematic of the foaming process: the grey region marks the
extent of the inlet, and the outer edge of this region coincides with the die shape
and the shape of the final fascia board

Figure 3: Fascia boards with defaults

board that has a typical density of 0.4-0.8 g/cm3. The desired degree of foaming
can, in principle, be achieved by adjusting the amount of foaming agent used;
however, foaming agents are expensive and need to be used sparingly. On the
other hand, the use of insufficient amounts of the foaming agent can lead to
defaults - these often occur at the corners, where air bubbles can form, or in the
central flat part of the board, where the foam layers, as they grow from the top
and bottom molten PVC layers, do not join correctly; various types of defect are
shown in the three photographs in Figure 3. For later reference, Figure 4 shows
the typical foam structure within a manufactured fascia board; evident here is
that the pore sizes are much smaller, and the porosity is much less, towards the
bottom of the photograph, corresponding to the surface that is cooled directly,
than are the pore sizes near the top, which corresponds to the half-width of the
board.

In view of the above discussion, it appears most pertinent to study the
foaming process in detail, i.e. step 3, since this will determine the ultimate
foam structure within the board, and thus whether or not there are defaults;
hence, this study will develop a mathematical model for this process, with a
view to determining how production parameters should be adjusted, in order
to avoid defaults, although without increasing the density of the board. At
the outset, it is worth noting that there are comparatively few models in the
literature on this type of process, and none on this one in particular; of some
use, although limited relevance, are the papers by Choudhary and Kulkarni [1],
Leung et al. [3], Potente et al. [4], and Wang et al. [5].
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Figure 4: Foam structure: there are comparatively fewer bubbles at the bottom
(the cooled surface) than at the top, which is at the half-width.

The outline of this report is as follows. The model equations are presented in
§2, and nondimensionalized in §3, with preliminary results being given in §4. In
§5, an alternative model is proposed qualitatively. In §6, conclusions are drawn
and recommendations for future modelling work are outlined.

2 Modelling

Although the geometry where foaming takes place is three-dimensional, the
fundamentals of the process can be demonstrated with a one-dimensional model.
The actual geometry of interest is that shown in Figure 2, albeit extruded into
the page. If we assume that there is no dependence in the y-direction, then
the problem depends only on x and z. Assuming steady-state operation, we see
that x effectively acts as a time-like variable. Hence, we can consider a one-
dimensional time-dependent model with z as the space variable and t as the
time variable, and with x related to t via x = Uextt, where Uext is the constant
extrusion speed; typically, Uext ∼ 0.02 ms−1. Consequently, the model geometry
that we consider is as in Figure 5, which shows a porous foam that occupies
0 < z < s (t) and whose extent increases with time; ultimately, the foam can
occupy 0 < z < h, where h denotes the half-width of a finished board (see also
Figure 2).

The governing equations for 0 < z < s (t) are then as follows. Conservation
of melt gives

∂

∂t

(

ρ(l) (1− α)
)

+
∂

∂z

(

ρ(l)(1− α)w
)

= 0, (2.1)

where ρ(l) is the melt density, α is the gas fraction and w is the z-direction
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Figure 5: Model schematic
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velocity. Conservation of gas gives

∂

∂t

(

ρ(g)α
)

+
∂

∂z

(

ρ(g)αw
)

=
D

d2i
Mα2/3(c−KHp), (2.2)

where ρ(g) is the gas density, M is the molar mass of the gas, c is the concentra-
tion of dissolved gas (mol m−3), p is the gas pressure, KH is Henry’s constant,
D is the effective diffusion coefficient for the gas in the melt phase and di is
the inter-bubble spacing, which is being used here as a diffusion length scale;
an alternative would have to use the bubble size as the diffusion length scale,
in which case α2/3 would have been replaced by α1/3. For ρ(g), we use the ideal
gas law,

ρ(g) =
pM

RT
, (2.3)

where R is the universal gas constant (8.314 J mol−1K−1) and T is the tem-
perature. The term on the right-hand side of equation (2.2) denotes a source
term for the production of gas, with the amount of gas produced being propor-
tional to the shift away from Henry’s law, i.e. when c = KHp. Conservation of
momentum in the z-direction gives

∂

∂z

(

−p+ 2η
∂w

∂z

)

= 0, (2.4)

where η is the melt viscosity; typically, η also will be a function that is strongly
dependent on temperature, e.g. Arrhenius form. For simplicity, we have taken
the melt pressure that appears in equation (2.4) to be same as the gas pressure,
p. Equation (2.4) can be integrated once with respect to z to give

−p+ 2η
∂w

∂z
= −pa, (2.5)

where pa denotes atmospheric pressure. Conservation of dissolved gas in the
melt phase gives

∂

∂t
((1− α)c) +

∂

∂z
((1− α)cw) = −D

d2i
α2/3(c−KHp), (2.6)

where c is the dissolved gas concentration; combining with equation (2.2) then
gives

∂

∂t

(

ρ(g)α+M(1− α)c
)

+
∂

∂z
[
{

ρ(g)α+M(1− α)c
}

w] = 0. (2.7)

Finally, conservation of energy gives

{

ρ(g)C(g)
p α+ ρ(l)C(l)

p (1− α)
}

(

∂T

∂t
+

∂

∂z
(wT )

)

=
∂

∂z

(

[

k(g)α+ k(l) (1− α)
] ∂T

∂z

)

,

(2.8)

where C
(g)
p and C

(l)
p denotes the specific heat capacities of the gas and melt

respectively, and k(g) and k(l) denote the thermal conductivity of the gas and

6



melt, respectively. Note that there may well be a non-negligible heat source/sink
on the right-hand side of equation (2.8), but as we have no way at present to
determine its form or magnitude, we omit any further discussion of it; we also
neglect any possible frictional heating.

The boundary conditions are: at z = 0,

T = Tcold ; (2.9)

at z = s (t) ,

T = T0, w = (1− α)
ds

dt
. (2.10)

The initial conditions are

c = c0, s = s0, T = T0, α = 0, (2.11)

where c0 is the initial dissolved gas concentration and s0 is the width of the
inlet in the z-direction

3 Nondimensionalization

In order to nondimensionalize the equations, we note first that there are three
time scales in the problem. These are the viscous time scale tV , the thermal
conduction time scale tC , and the gas diffusion time scale tD; they are defined
explicitly by

tV =
η0
pa

, tC =
h2

κ
, tD =

d2i
D

, (3.1)

where η0 is the viscosity scale and κ is the thermal diffusivity, k(l)/ρ(l)C
(l)
p .

Using values given in Table 1, some of which have been taken from Leung et al.
[3], we find

tV ∼ 1 s, tC ∼ 250 s, tD ∼ 10 s. (3.2)

7



Symbol Meaning Typical value

c0 initial dissolved gas concentration 10 mol m−3

C
(g)
p gas specific heat capacity 800 J kg−1K−1

C
(l)
p PVC specific heat capacity 900 J kg−1K−1

D effective diffusion coefficient 10−9 m2s−1

di inter-bubble spacing 1× 10−4 m
h sample half-width 5× 10−3 m

k(g) gas thermal conductivity 0.02 Wm−1K−1

k(l) PVC thermal conductivity 0.2 Wm−1K−1

KH Henry’s constant 8.4×10−5 mol N−1m−1

L length of stainless steel calibrator 0.05-0.1 m
M molar mass of gas 0.028/0.044 kg mol−1 (N2/CO2)
pa atmospheric pressure 105 Pa
s0 inlet width in the z-direction 1× 10−3 m

Tcold cooling temperature 300 K
T0 initial PVC melt temperature 450 K
η0 viscosity 105 Pa s

κ
(

k(l)/ρ(l)C
(l)
p

)

PVC thermal diffusivity 10−7 m2s−1

ρg gas density 1 kg m−3

ρ(l) PVC density 1000 kg m−3

Table 1: Model parameters

We nondimensionalise by setting

t̃ =
t

tV
, z̃ =

z

h
, p̃ =

p

pa
, s̃ =

s

h
,

T̃ =
T

T0
, w̃ =

w

h/tV
, c̃ =

c

c0
, η̃ =

η

η0
.

Dropping the tildes, we can write the dimensionless equations describing the
system in the form

p = 1 + 2ηwz, (3.3)

−αt + [(1− α)w]z = 0, (3.4)

Tt + (wT )z =
1

Pe
Tzz, (3.5)

[αp

T
+ λ(1 − α)c

]

t
+
[{αp

T
+ λ(1 − α)c

}

w
]

z
= 0, (3.6)

(αp

T

)

t
+
(αpw

T

)

z
= Λα2/3(c− µp); (3.7)

in order to enable later analytical development, we have used the fact that

k(g)/k(l) � 1, ρg/ρ
(l) � 1, C(g)

p /C(l)
p ∼ 1,
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where ρg = Mpa/RT0, to simplify equation (2.8) to a form where, on neglecting
the (1− α) dependence on both sides, we obtain equation (3.5). The nondimen-
sional parameters in equations (3.3)-(3.7) are defined by

Pe =
tC
tV

∼ 250, λ =
Mc0
ρg

∼ O(1), Λ =
λtV
tD

∼ 0.1, µ =
KHpa
c0

∼ 0.1.

(3.8)
It follows from these, that since c = 1, α = 0, p = 1 at t = 0, then

c = 1− αp

λT (1− α)
. (3.9)

With Λ � 1, it is appropriate to rescale the variables by putting

p = 1 + ΛP, w ∼ Λ, t ∼ 1

Λ
, (3.10)

and with this the equations can be approximated as

αt + wαz = (1− α)wz , (3.11)

Tt + (wT )z =
1

Pe
Tzz, (3.12)

(α

T

)

t
+
(αw

T

)

z
= α2/3

(

1− µ− α

λ(1 − α)T

)

. (3.13)

The Péclet number Pe ∼ 250 is large, and the temperature will be isother-
mal, thus T ≈ 1, except in a thin thermal boundary layer near the base z = 0,
and with this assumption, the model reduces to

αt + (wα)z = g (α) ≡ α2/3

(

1− µ− α

λ(1 − α)

)

= wz , (3.14)

together with
α = 0 at t = 0, w = 0 on z = 0. (3.15)

The solution is α = α(t) given by

t =

∫ α

0

dα

g(α)
, (3.16)

and then it follows from the kinematic condition at z = s (t) that

ṡ =
g(α)s

1− α
; (3.17)

together with s = s0 at t = 0 (s0 ≈ 0.2), we find s = s0/(1 − α), and the
maximum thickness of the half-width foam layer is

smax = s0[1 + λ(1 − µ)]. (3.18)

Values of λ & 5 lead to filling of the interior with foam, as desired.
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However, the above does not take into account the effect of cooling; in re-
ality, the temperature in the developing foam is not uniform, because of the
application of a cooling temperature at the exterior surface of the foam, i.e.
z = 0. Because the Péclet number is relatively high, it is appropriate to rescale
the variables in a boundary layer adjoining the base, and we therefore write

z =
Z√
Pe

, w =
W√
Pe

, (3.19)

and equations (3.11)-(3.13) then become

αt +WαZ = (1− α)WZ , (3.20)

Tt + (WT )Z = TZZ , (3.21)
(α

T

)

t
+
(

W
α

T

)

Z
= α2/3

(

1− µ− α

λ(1 − α)T

)

, (3.22)

respectively; they are supplemented by the conditions

α = 0, T = 1 at t = 0, (3.23)

W = 0, T = 0 at Z = 0. (3.24)

4 Results

In general, these equations require numerical solution, but a simplification en-
sues when we apply the condition that W decreases at low temperatures due to
the rapid increase of viscosity at lower temperatures. A simple formulation of
this prescribes W = 0 when T < T ∗, and then the temperature simply satisfies
the diffusion equation for T < T ∗. If T ∗ is close to 1, as is reasonable since the
viscosity varies strongly with temperature, then we have approximately

T ≈ erf

(

Z

2
√
t

)

, (4.1)

while the outer solution can be applied for T > T ∗. If we define ζ∗ by

erf ζ∗ = T ∗, (4.2)

then the outer solution applies for

z > zf =
2ζ∗

√
t√

Pe
, (4.3)

with, however, w = 0 on z = zf ; a qualitative schematic of the temperature
profile through a cross-section of the board is given in Figure 6.

Solving the equations as before leads to the prescription for the foam bound-
ary,

ṡ =

[

s− 2ζ∗
√
t√

Pe

]

g(α)

1− α
,
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Figure 6: Qualitative schematic of the temperature profile through a cross-
section of the board

with α still given by (3.16). A plot of this is given in Figure 7, and shows that
α rapidly approaches a steady state value of λ (1− µ) / (1 + λ (1− µ)) ≈ 0.47.
The evolution of s with t for different values of ζ∗ is given in Figure 8 and
the variation of s(∞) with ζ∗ is shown in Figure 9. The latter shows that the
maximum foam penetration is sensitively dependent on the value of ζ∗: thus,
cooling has a significant effect on the foaming process.

5 Discussion

In the above, the gases (N2 or CO2) were assumed to be already dissolved within
the pressurized molten PVC; pressure release leads to the exsolution of the gases.
Consequently, the above model is only able indirectly, via the prescription of
c0, to take account of what would happen if the amount of foaming agent used
were changed. Hence, the model does not take into account how much foaming
agent is actually present, or how much gas it is able to produce.

However, there is an alternative interpretation as to what happens. An al-
ternative model would append a conservation equation for the concentration of
foaming agent and would explicitly model its consumption; furthermore, one
would not need to assume that there was any dissolved gas at all prior to exit
from the extruder. Although we do not write down corresponding equations for
this model here, it is evident that, qualitatively at least, a similar conclusion to
that of the first model will be obtained. First of all, if the temperature were uni-
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Figure 8: s vs. t for different values of ζ∗; the curves, uppermost to lowermost,
are for increasing values of ζ∗.
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form across the cross-section, i.e. at around 450 K, then the temperature would
be sufficiently high everywhere for the foaming agent to decompose throughout
and to produce gas. In practice, the temperature is not uniform, but is much
lower near z = 0. Consequently, this will mean that the gas-producing reaction
will proceed very slowly, if at all, near z = 0, resulting in unspent foaming
agent, as well as a denser foam, since comparatively little gas is produced there.
These comments appear to tie in with ad hoc observations that not all of the
foaming agent is consumed in the process, as well as with the foam structure
shown in Figure 4. Of course, what exactly happens is open to speculation, in
view of the complexities associated with the foaming agents: the N2-producing
foaming agent is, by itself stable at 450 K, but requires additives to activate it at
temperatures lower than this, whereas the CO2-producing foaming agent reacts
at temperatures as low as 400 K; the N2-producing foaming agent decomposes
more quickly than the CO2-producing foaming agent; and the latter produces
a coarser cell structure than the former.

6 Conclusions

The aim of this report has been to develop a mathematical model that explains
the formation of undesired voids that occur during the manufacture of PVC
fascia boards. Although the overall process consists of several steps, the key
one appears to be the foaming process, during which a pressurized mixture of
molten PVC and foaming agents are extruded through a die that is shaped in
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the exterior of a board; subsequent pressure release triggers foaming, so that
the interior of the board is filled, simultaneously as the board is cooled. Two
alternative interpretations were considered:

1. the pressure release enables gases that were already dissolved in the molten
PVC to exsolve, thereby creating the foam;

2. the pressure release enables the foaming agents to react and produce gas.

In the first case, the fact that the board is being cooled at one surface means
that there is a thermal boundary layer there, in which the viscosity is high,
so that there is little expansion there; this results in a board with a void. In
the second case, the self-same thermal boundary layer means that the foaming
reaction cannot occur there as desired, since the temperature is lower than that
required for the foaming agents to decompose; consequently, foaming agent goes
unused, once again resulting in a board with a void in its centre. In either case,
it is evident that the strong temperature dependence of both the viscosity and
the reaction rate are decisive: a 5 K decrease in temperature roughly doubles
the viscosity and halves the reaction rate (Collins [2]).

Specific recommendations for future theoretical work would be to:

• develop further the 1D time-dependent model for case 1 that was initiated
here - there still remain uncertainties about parameter values and the
actual temperature dependence of both the viscosity and the reaction rate;

• develop a parallel model for case 2;

• consider the possible effect of the heat of reaction which, whilst not af-
fecting the homogeneity of the temperature, will affect the temperature
as function of time;

• continue to exploit possible simplifications through scaling and nondimen-
sionalization, as has already been shown for case 1.

Once such models have been derived, they can be extended to at least 2D,
to describe more realistically what actually happens at corners, which is where
the most serious voids appear to occur.
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