
Fuel Cell Assembly Process
Flow for High Productivity

Problem Presenter

Ram Ramanan
Bloom Energy

Problem Participants

Ibrahim Diakite, University of Texas, Arlington
Tyson DiLorenzo, Rensselaer Polytechnic Institute

David A. Edwards, University of Delaware
Brooks Emerick, University of Delaware

Rui Fang, University of Delaware
Fangxu Jing, Georgia Institute of Technology

Longfei Li, University of Delaware
Jennifer Miller, University of Delaware

Mark Panaggio, Northwestern University
Angela Peace, Arizona State University

Christopher Raymond, University of Delaware
Yu Sun, University of Delaware

Esther Wolff, Rensselaer Polytechnic Institute
Matt Zumbrum, University of Delaware

and others...

Twenty-Eighth Annual Workshop on Mathematical Problems in Industry
June 11–15, 2012

University of Delaware

Section 1: Introduction
Bloom Energy manufactures power modules based on fuel cell technology. These are

built up in a modular fashion from basic components that are supplied to Bloom by several
vendors. The basic components that Bloom receives from its vendors are not necessarily
perfect, but vary from component to component. Each basic component has a number
of physical properties which would each ideally take on a fixed value, but in reality can
come from a range of values. For best performance, these properties should be matched
for the components within a power module, subject to a number of rules which Bloom
has developed, both through basic modeling and through manufacturing experience. In
addition, a few components have properties which limit their possible placement within a
cell assembly.

Currently, these rules for assembling the basic components are implemented by hand
by experienced personnel: given a list of components currently in stock, which includes
information about the characteristics of each, a production schedule (a plan for how to
assemble the current stock of components into power modules) is designed which attempts
to maximize the use of the available components. The production schedule is designed
more or less by hand. Bloom’s production has grown rapidly, and this strategy, which
worked well initially when dealing with a small number of components, is becoming less
workable when dealing with a stock of tens of thousands of components at any particular
time. Bloom expects steady growth, and continuing to depend on a production schedule
generated by hand is projected to quickly become infeasible.

Bloom would like to maximize productivity and minimize the number of “delayed”
components (currently about 10–15% when the schedule is designed by hand), while main-
taining the performance and reliability of their final product. In this manuscript we use
the term “delayed” to refer to components that cannot be assembled under the existing
schedule. Hence these components must be held in inventory until new components arrive,
which slows down production and incurs associated costs.

Bloom came to the MPI 2012 workshop with several questions related to potential
modifications of the assembly rules currently in use, as well as the question of how to
forecast the number of completed power modules based on the number of incoming parts.
It became clear early in the week that in order to answer any of these questions, what was
really needed was a way to quickly and automatically generate a production schedule. The
assembly process proceeds in stages: the basic components are assembled into stacks, then
the stacks are assembled into columns, and then the columns are assembled into boxes. At
each stage, Bloom has a set of assembly rules for how the different units can be combined.
In principle, a discrete optimization problem could be posed to maximize the production
of boxes from a given stock of basic components, subject to all the rules in place at each
assembly stage. However, this problem is far too large to tackle directly by computer, even
for current production volumes.

Therefore, most of the participants concentrated on a simplified subproblem, that of
assembling stacks into columns, subject to a subset of the rules actually used by Bloom.

Ramanan et al. 1.2

The hope was that if this simplified problem could be effectively (i.e., quickly and approx-
imately, but to good accuracy) solved, then variations of the same idea could be used for
the other assembly levels. This simplified problem of generating columns from stacks can
in fact be posed as an integer programming problem; unfortunately, even this subprob-
lem turned out to be far too large to attack directly. Therefore, the group split up into
subgroups that tested a variety of approaches for generating columns.

Most of the subgroups worked on strategies for building up columns in an iterative
fashion. The strategies were implemented on real data provided by Bloom. All of these
iterative approaches ran quickly and produced delay rates which were often competitive
with or superior to the benchmark, which we considered to be 15%. None of the heuristic
strategies was clearly superior to all others for all sets of inputs, but since they all run
very quickly, and scale reasonably well with the system size, in principle they could all be
implemented, with the best result chosen for any particular set of inputs; presumably other
heuristic strategies could be implemented as well, and similar strategies implemented for
the other assembly levels.

An outline of the rest of the report follows. Section 2 discusses terminology and
outlines the assembly rules that Bloom actually uses. Section 3 discusses some of the
underlying ideas common to all the heuristic assembly strategies that were implemented.
We note in particular that all of these heuristic strategies are deterministic. Section 4
compares and contrasts the different deterministic strategies for combining stacks to build
columns. Sections 5 and 6 outline the results of those deterministic strategies. Section 7
presents the linear programming framework in which the problem can be posed. Section
8 presents results from a random assembly procedure, which explored the configuration
space randomly, rather than deterministically. Section 9 discusses various postprocessing
strategies, in particular the use of a genetic algorithm strategy to improve results. Finally,
we conclude with some general observations about the results so far and the work that
remains to be done.

Section 2: Preliminaries

s=8
7
6
5
4
3
2
1

Figure 2.1. Schematic of eight-stack column assembly.

In order to simplify later presentation, we begin by presenting some definitions used
to characterize Bloom’s technology. The piece of equipment that Bloom actually ships is
called a box. Each box contains c columns where the power generation takes place. (In
current designs, c = 8.) The columns themselves are assembled from s stacks. (With
current technology, s, the column height, is 8 or 10.) Each stack in the column is assigned
a position number, with 1 being at the bottom and s being at the top. The case with eight
stacks is shown in Fig. 2.1.

Basics of SOFC’s and nomenclature

Confidential 3

Interconnects, (IC)
Cells with anode and cathode (E)
Stack = a fixed number of repeat units (10<N<50)

Figure 2.2. Schematic of stack assembly.

Each stack is made up of R repeating units, which are made up of an interconnect
(IC) and a cell (see Fig. 2.2). (With current technology, R can range from 10–50.) Only
the ICs are characterized in ways that affect the assembly.

Ramanan et al. 2.2

Each shipment of ICs from a vendor is identified with a value of the parameter A (A1
in Bloom’s parlance), which is related to the area of the pores in the IC. Different vendors
ship ICs with different values of A, which can range between 0.14 and 0.24. The value of A
given by the vendor for any shipment is the median value of all the ICs in that shipment.
Hence it is impossible to know the value of A for any particular IC. Depending on the
value of A, Bloom identifies the shipment with a bin. Currently, the bins are numbered
from 0 to 9 using the following rule:

A ∈ (0.14 + 0.01M, 0.15 + 0.01M) =⇒ shipment in bin M. (2.1)

The vendors also provide another measurement (A2) characterizing the ICs, but we were
told to ignore it for the purposes of this project.

The goal of the project is to minimize the number of delayed stacks in the assem-
bly process. Here “delayed stacks” means those components (repeating units, stacks, or
columns) that cannot immediately be used in a box, but must wait until a future shipment
arrives in order to be used.

The tens of thousands of ICs are assembled into thousands of stacks. When assembling
a stack, choosing ICs with similar values of A optimizes the flow through the fuel cell.
Hence one prefers to use ICs from a single bin and a single vendor. Fortunately, in a
typical month, tens of thousands of ICs arrive to be assembled. Hence it is quite easy to
assemble the ICs into stacks. In particular, if we ignore the “same-vendor” requirement
(which Bloom is known to relax), then the maximum number of delayed ICs is reached if
exactly R− 1 ICs were left in each of the 10 bins. But this corresponds to (at most) a few
percent of the monthly volume. Hence for the purposes of this project we ignored stack
assembly and treated the stack as the lowest-level building block.

Once a stack is assembled, it is assigned a value of A by taking the median value of A
for its component ICs. Then the stack is assigned a bin per (2.1). Note that if the stack
is assembled from ICs from a single bin per the goal, the bin for the stack would be the
same as for each individual IC.

Three additional measurements are taken for each stack:

1. In the vast majority of cases (95%–98%), the stack is within normal operating parame-
ters. However, there are stacks whose shape or electrical properties restrict its position
placement in the column. The variable G (G2 in the Bloom parlance) characterizes
those properties of the stack.

2. T (G1T in the Bloom parlance) is a positive number that characterizes the curvature
of the top of the stack.

3. B is a positive number that characterizes the curvature of the bottom of the stack.
It is denoted as G1B in the Bloom parlance and is negative. However, for algebraic
simplicity we use B = |G1B| instead.

Then the thousands of stacks are assembled into hundreds of columns according the
the following rules:

Assembly Rules.

1. If a stack’s shape property is anomalous, it must be placed in position s.

Ramanan et al. 2.3

2. If a stack’s electrical properties are anomalous, it must be placed in a position less
than or equal to s/2.

3. Denote Tj as the value of T for the stack in position j, and similarly for Bj . Then

Tj +Bj+1 ≤ q, j = 1, 2, . . . , s− 1, (2.2)

where q is a tolerance value (initially taken to be 400). Equation (2.2) ensures that
the sum of the curvatures is small enough so that gas leakage does not occur when
the stacks are joined.

4. Again motivated by flow considerations, the following bin requirements also hold:

(a) The ideal case is for all stacks in a column to be from the same bin; one would
want at least 50% of the columns to be of this type.

(b) Up to 40% of the columns can contain stacks from two bins, as long as the lower
half contains stacks from bin j, and the upper half contain stacks from bin j + 1.

(c) Similarly, up to 10% of the columns can contain stacks from three adjacent bins,
as long as the stacks are ordered in nondecreasing bin number.

Once a column is constructed, it is given a bin value which is the sum of the bin
values of each of its component stacks. Then the hundreds of columns are assembled into
dozens of boxes. The ideal case is for all columns in a box to have the same bin value.
The secondary rule we were given was to have all the columns’ bin values within ±1 of
each other. But this is inconsistent with rule #4 above, which would force the column
bin values to be quantized over larger ranges. Instead, a better rule used is that all the
columns in a box must come from one of the categories in rule #4.

In order to reduce the number of variables under consideration, we made two simpli-
fications. First, we say that

anomalous shape in stack k =⇒ T (k) = Q, Q > q. (2.3a)

With the definition in (2.3a), we see that (2.2) will never be satisfied for any stack with
an anomalous shape. Hence any stack with an anomalous shape will have to be placed at
the top of a column, and (2.3a) makes rule #1 redundant. Similarly, if we define

anomalous electrical property in stack k =⇒ B(k) = Q, (2.3b)

then (2.2) will never be satisfied for any stack with an anomalous electrical property. Hence
stacks with such properties will have to be placed at the bottom of a column. This is more
restrictive than rule #2, but given the small number of stacks with these properties, this
additional restriction should not appreciably affect the larger problem.

With several thousand stacks to consider at any one time, any exhaustive searches of
possible column configurations will be computationally infeasible (for further discussion,
see §7). Therefore, we largely focused on simple and fast algorithms that could yield
nearly-optimal results. When doing so, we found that there were many separate areas to
consider:

1. The pool protocol, which determines the initial set of stacks to assemble.

Ramanan et al. 2.4

2. The size protocol, which dictates how one chooses the sizes of subunits to assemble.
3. The assembly protocol, which dictates how one chooses the next two subunits to as-

semble.
4. The scission (or chopping) protocol, which dictates whether assembled subunits are

broken down into smaller parts.

We will discuss these facets in detail in the following sections.

Section 3: Pool and Size Protocols
Pool Protocols

There are several ways to consider choosing the initial pool of subunits to assemble.
The most obvious is to use one of the bins already identified by Bloom in (2.1) as our
pool. Initially we thought that to reduce the number of delayed stacks, we would have to
do something more complicated. However, when results came in that showed few delayed
stacks using stacks from just one bin (see §§5, 6), this issue took on less importance. For
completeness, we present the ideas discussed.

One idea is to work with ranges of A, rather than bins, which are arbitrarily chosen.
A single bin has width 0.01, and we want to keep that tolerance on A. Hence we could
replace rule #4 with

max
j
Aj −min

j
Aj ≤ 0.01 (3.1)

for any column. (Note that the extrema are taken over positions.) The rule given by (3.1)
is more flexible than the bin-based rule, since it allows the consideration of ranges that
span more than one bin. Hence its results should be comparable to the same-bin rule, and
better than the different-bin rule, given the fact that the A value for any particular IC is
unknown (only the median of a shipment is known).

Suppose we want to select N stacks for our initial pool. The first question is the
selection of the number N itself. Suppose that we have M stacks that satisfy (3.1). We
could select N = M and use the entire pool. However, with a value of A given for each
stack, we can choose different ranges that do not correspond to the bins. Hence it may
be better to start with a smaller number, thinking that any unused stacks from the first
iteration can be combined with stacks from a neighboring range to form a new batch for
column formation.

But if N < M , how small should we make it? The least possible is N = cs, which
corresponds to a single box, after which we could add additional stacks as needed if we
were unable to assemble a full box. Or we could take integer multiples of cs. But which
one? The largest that will fit in the range? N = M/2? Other choices?

Then there is the selection of the range itself. We could start with the range with
the largest M , thinking that any unused stacks could then be incorporated into a new
range later on. Or we could start with the range with the smallest M , thinking that this
somehow would be rate limiting. Or we could start with a range including one of the
endpoints A = 0.15, A = 0.25, since such extremal values of A fit in few ranges.

Size Protocols

Once the assembly process begins, we need to decide what size subunits are available
for assembly at each step of the algorithm. There were two ideas investigated at the
workshop.

Ramanan et al. 3.2

The first was the one-size protocol. In this approach, the assembly process was divided
into phases. In each phase, subunits of identical size were paired up, then removed from
the pool for that phase. At the end of each phase, any unused subunits were discarded and
the remaining joined subunits formed the pool for the next phase. Hence in the simplest
case, the first phase made pairs, the second quartets, and the third octets, which are full
columns if s = 8.

The second was the all-size protocol. In this approach, assembly took place in one
phase. Once two subunits were combined, the resulting larger subunit remained in the
pool to be joined again. Hence at any point subunits of various sizes were available to
be combined. The only time a subunit was removed from the pool was when it formed a
column.

Section 4: Deterministic Assembly Protocols
Both T and B can vary from stack to stack. In particular, they can be modeled as

independent variables taken from a normal distribution. Some characteristic values are

T ∼ N (215, 50), B ∼ N (180, 70). (4.1)

Under these circumstances, the default tolerance of q = 400 in (2.2) is extremely tight,
and in the next section we will discuss the sensitivity of the number of delayed stacks to
adjustments in the tolerance.

Given this tight tolerance, we want to optimize the assembly of the columns. However,
with scores of stacks available from each bin, an exhaustive search was found to be very
time-consuming. Therefore, we came up with several ideas on how to assemble the subunits
efficiently (though perhaps not completely optimally). In this section, we discuss only
deterministic assembly algorithms; the discussion of random assembly algorithms is delayed
until §8.

Single-Step Algorithm

Several groups used single-step algorithms. These algorithms simply attempt to find
the best match for a particular subunit. They do not consider whether the resulting larger
subunit would be easy or hard to join together in the next step. These algorithms have the
advantage of being fast, but may not achieve the true minimum number of delayed stacks.
However, if it is an improvement to the manual system currently in use, it will be useful.

The algorithm proceeds as follows. We assume that we are given N stacks initially,
and let S = {1, 2, . . . , N}. For each element k ∈ S, define a triple {T (k), B(k), L(k)}. Here
L(k) will denote the length of element k, and initially all the elements are single stacks.
We considered two possible ways to do the assembly.
Top Step. Define the element index t− as follows:

T (t−) = min
S
T (k). (4.2)

We then define SB to be the set of all possible stacks that can bind with stack t− and still
satisfy the tolerance:

SB = {k ∈ S : B(k) + T (t−) ≤ q, k 6= t−}.

It is most desirable for later stages to match elements with large values of B to those with
small values of T . Hence we define the element index b+ as follows:

B(b+) = max
SB

B(k). (4.3)

Ramanan et al. 4.2

old element b+

old element t−

new element b+

element t− destroyed

T (b+)

B(b+) T (b+)

B(t−)
T (t−)

B(t−)

Figure 4.1. Combining of two stacks using top method.

(In other words, b+ has the largest value of B of any subunit which can be combined with
t− and still meet the tolerance.) Then join subunit b+ and t− together (see Fig. 4.1).

Mathematically, we remove t− from S and redefine the triplet corresponding to b+ as
follows:

{T (b+), B(t−), L(t−) + L(b+)}.

(In practice, some of the codes may have removed b+ instead.)
The other way to do the assembly was using the Bottom Step method, which simply

switches the roles of top and bottom from the top step. In particular, we have

B(b−) = min
S
B(k), ST = {k ∈ S : T (k) +B(b−) ≤ q, k 6= b−}, T (t+) = max

ST

T (k).

In other words, one finds the stack with the largest value of T that can be combined with
b− and still meet the tolerance.

These two methods actually provide four separate single-step assembly options. One
can assemble the stacks using only the top method, only the bottom method, or alternating
the two, with either the top or bottom method going first. Given the fast computation
times involved, several codes used all four of these methods and returned the solution that
used the most stacks.

Two-Step Algorithm

Several groups worked on implementing a two-step method. This method tried to
optimize the above algorithm to create subunits which would be easier to bind at the next
level.

There were several algorithms under consideration. In one, we replace the definition
of b+ in (4.3) with

T (b+) = min
SB

T (k).

In other words, we look at all the elements which can be feasibly joined with t−. Since
smaller values of T can bind with more elements at the next step, we choose to assemble
t− with that element in SB which will produce that minimal value of T .

In another, the subunits were initially classified into quadrants by using (B(k) −
q/2, T (k)− q/2) as Cartesian coordinates (see Fig. 4.2). Subunits in Quadrant I have the

Ramanan et al. 4.3

Quadrant I:
High T, B

Quadrant II:
High T,
Low B

Quadrant III:
Low T, B

Quadrant IV:
Low T,
High B

B-q/2

T-q/2

Figure 4.2. Segmentation of S in two-step method.

largest values which are hardest to fit, while those in Quadrant III have the smallest values
which are easier to fit. Quadrants II and IV contain subunits with one “good” and one
“bad” measurement.

Let SI be the set of all subunits in Quadrant I, etc. Then the algorithm proceeded as
follows:

1. Compute the distance between all pairs of subunits in Quadrants I and III:

d(kI, kIII) =
√

[T (kI)− T (kIII)]2 + [B(kI)−B(kIII)]2 ∀ kI ∈ SI, kIII ∈ SIII. (4.4)

2. If binding between the two subunits corresponding to the largest value of d is allowed,
then join those two subunits and remove them from the pool for this phase (so this
algorithm works only with the one-size protocol).

3. Repeat step #2 for the next-largest value of d until all possible matchings have been
made.

4. Then repeat steps #1–#3 for Quadrants II and IV. Note that in this case it is most
likely that subunits in Quadrant II will stack on top of subunits in Quadrant IV, which
would produce subunits for the next phase in Quadrant I.

5. After steps #1–#4, there may still be unused subunits in each quadrant. So then
repeat steps #1–#3 for the remaining pairs of quadrants in this order: I–IV, I–II,
II–III, III–IV.

Section 5: Results without Scission
When s = 8, the one-size phased approach will find columns of the proper size without

scission. Hence we present results from codes using this algorithm before launching into a
discussion of the scission methods.

Table 1. Comparison of algorithms for various bins, q = 400.

Bin Description

1 Top step only worked best.
2 All methods the same.
3 Top step, then bottom step worked worst.
4 Bottom step only worked best.
5 Top step only worked best.
6 Top step, then bottom step (or vice versa) worked best.
7 Top step only worked best.
8 Top step, then bottom step or top step only worked best.
9 Top step only or bottom step only worked best.

In the first set of codes, each pool was a separate bin. The assembly protocol was the
single-step algorithm outlined in §4. All four permutations of the top and bottom steps
were used, since the code ran very quickly. Depending on the bin, different permutations
worked better (see Tab. 1). Due to an oversight, none of the deterministic algorithms
analyzed bin 0.

In Fig. 5.1 we plot the percentage of delayed stacks as a function of the tolerance for
each bin. Note that at the default level of q = 400, the number of delayed stacks varies
widely by bin, with bins 7 and 9 having a 30% delay rate, while bin 5 has less than a 2%
delay rate. (The percentage of delayed stacks is somewhat misleading, since several of the
bin sizes were quite small; some discussion of this is contained in §8.) Note that except for
bins 7 and 9, the algorithm beats the desired standard of 15% delayed stacks.

In general, the delay rate decays as a function of increasing tolerance. There is one
exception for bin #6 with the tolerance equal to 410. This would be due to some anomalous
combination of the assembly algorithm and the data. With the tolerance increased to 405,
the algorithm beats the 15% standard for every bin. The default tolerance of q = 400
was arrived at heuristically, given the distributions in (4.1). The results in Fig. 5.1 (and
similar subsequent results) show that increasing the tolerance by only a small amount (just
over 1%) can substantially reduce the number of delayed stacks. Hence it is worthwhile
for Bloom to investigate how much the tolerance can be reduced without degrading device
performance.

One group also used the two-step algorithm described in §4 along with the phased
one-size approach. The results are shown in Fig. 5.2. Note that in many cases the results
compare favorably to the single-step approach.

In all of the previous discussion, we have ignored the problem of forming columns

Ramanan et al. 5.2

390 395 400 405 410 415 420
0

5

10

15

20

25

30

35

40

45

50

tolerance

%
 s

ta
ck

s
de

la
ye

d

Delayed stacks vs. tolerance for various bins, 8-stack columns only

 !

Bin 1
Bin 2
Bin 3
Bin 4
Bin 5
Bin 6
Bin 7
Bin 8
Bin 9

Figure 5.1. Delayed stacks as a function of tolerance for 8-stack single-bin assembly, one-
step algorithm, one-size protocol.

390 395 400 405
t

410 415 4200!!!

!!!!5

10!!

!!15

20!!!

!!25

30!!!

!!35

40!

!!45

olerance

%
 s

ta
ck

s
de

la
ye

d

Delayed stacks vs. tolerance for various bins, 8-stack columns only

 !

Bin 1
Bin 2
Bin 3
Bin 4
Bin 5
Bin 6
Bin 7
Bin 8
Bin 9

Figure 5.2. Delayed stacks as a function of tolerance for eight-column stacks, two-step
algorithm, one-size protocol, single bins used.

into boxes. Unless the number of columns produced is a multiple of c, there will be spare
columns in inventory until new shipments of ICs arrive. Previously, we assumed that this
wouldn’t be a problem if we could improve the assembly efficiency enough of single-bin
columns. However, this is exactly why the additional categories were specified in assembly
rule #4—to use up spare columns.

Ramanan et al. 5.3

Therefore, as a next step we tried to assemble additional 8-stack columns as follows:

1. We used the single-step algorithm to create 4-stack subunits. We did this separately
for two bins with adjacent numbers.

2. We then combined all the 4-stack subunits from both bins into a single pool and
assembled them into 8-stack units following assembly rule #4(a), (b) (namely, that in
a mixed-unit column, the higher-value bin is placed on top).

390 395 400 405 410 415 420
0

10

20

30

40

50

60

70

80

90

100

tolerance

%
 s

ta
ck

s
de

la
ye

d

Delayed stacks vs. tolerance for various bin pairs, 4-stack matching

 !

Bins 1 and 2
Bins 2 and 3
Bins 3 and 4
Bins 4 and 5
Bins 5 and 6
Bins 6 and 7
Bins 7 and 8
Bins 8 and 9

Figure 5.3. Delayed stacks as a function of tolerance for 4-stack assembly procedure.

The results are shown in Fig. 5.3. Once again, the percentage of delayed stacks is
small. However, only occasionally did we get more than c = 8 columns of mixed type,
which would be the goal in order to assemble more boxes.

Section 6: Results with Scission
If s is not a multiple of two, then the one-size assembly methods will not naturally

build columns unless the subunits are broken into different sizes. Similarly, in the all-size
assembly methods, it is probable that subunits with more than s stacks can be built.
Hence it is necessary to derive scission protocols that detail how to break apart assembled
subunits.

Suppose that a superunit has been formed of length s + se, where the “e” denotes
“extra.” The protocols had to address two questions:

1. Size of subunits. There are two ways that the se extra stacks were placed back into
the pool:

(a) The subunit of length se is retained as a single subunit. (Note that se < s, since
otherwise a full column would have been removed at an earlier step.)

(b) The subunit of length se is broken down into se separate stacks.

2. Scission location. One can remove the subunit from either the top or the bottom
of the superunit. There are several different ways to make the decision about which
to choose:

(a) (Used with both options in #1.) The stacks are always removed from the top of
the superunit.

(b) (Used with both options in #1.) The stacks are always removed from the bottom
of the superunit.

(c) (Used with #1(a).) When the subunit is removed as a single piece, it will have
the following end values:

{B1, Tse} (removed from bottom) or {Bs+1, Ts+se} (removed from top).

Remove that subunit which has the smallest end value, on the hypothesis that
this will be easiest to join together in a later step.

(d) (Used with #1(b).) In this case, there is a candidate stack for removal at the top
and bottom of the superunit. For each, compute the following quantity:

dj =

√[
Bj − B̄
σ(B)

]2
+

[
Tj − T̄
σ(T)

]2
, (6.1)

where B̄ and σ(B) are the mean and standard deviation of B, respectively, and
similarly for T . Hence d as described here measures (in a normalized sense) how
extreme the values of Bj and Tj are compared to their distributions. For example,
at the first step one would compute d1 (bottom) and ds+se (top). Remove that
stack which has the smaller value of dj , on the hypothesis that this stack will be
easier to join together in a later step (as its end values are closer to the mean).
Repeat this step for each of the se stacks that must be removed.

Ramanan et al. 6.2

We present the results from two groups that attempted scission. As noted above,
when s is not a power of two, the one-size algorithm must be modified by a scission step.
In order to compute the case s = 10, the following approach was tried. It is not the most
elegant approach, but it could be easily implemented with the existing code.

1. Use the normal one-step algorithm to form columns of size 16. The unused subunits
from the final step will be eight-stack columns; these will be saved as currently the
factory produces both 8- and 10-stack columns.

2. Remove six stacks as a single subunit from one end of each of the 16-stack columns
using location algorithm 2(c). This will make columns of size 10.

3. Create a new pool with the six-stack subunits. Match these to form ten-stack columns,
again by trimming two stacks from the results using location algorithm 2(c).

The advantage of this approach is that one is always working with a population of
similarly-sized stacks, so the one-size algorithm is applicable. However, there are two
main drawbacks. By constructing columns larger than needed, one reduces the number
of subunits available for assembly. Hence the number of additional combinations is small.
Thus, on many trials the number of 10-stack columns was only one or two more than the
number of 16-stack columns.

390 395 400 405 410 415 420
0

10

20

30

40

50

60

70

80

90

100

tolerance

%
 s

ta
ck

s
de

la
ye

d

Delayed stacks vs. tolerance for various bins, 10- and 8-stack columns

 !

Bin 1
Bin 2
Bin 3
Bin 4
Bin 5
Bin 6
Bin 7
Bin 8
Bin 9

Figure 6.1. Delayed stacks as a function of tolerance for 16-stack to 10-stack one-size algorithm.

Moreover, there is an inherent lower bound on the delayed stacks in this method.
Suppose the first step of the method works at maximal efficiency. Then all the stacks
would initially be put into 16-stack columns. For every two 16-stack columns, a continued
perfect matching would create three 10-stack columns and two delayed stacks, for a lower
bound of 1/16. The inferiority of the results are shown in Fig. 6.1.

Another group implemented the all-size protocol, which necessarily requires scission.
In the end the code written by this group compared the results of 28 possible assembly

Ramanan et al. 6.3

protocols, returning the results from the best. These protocols were:

For assembly, use either the top step or bottom step exclusively. For scission, use
all four combinations of #1 and #2(a),(b), as well as the combination of #1(b) with
#2(d). This yields ten methods.
For assembly, use one of the two combination methods (top-bottom or bottom-top).
For scission, use two location methods in order. #2(a) and #2(b) can be used repeat-
edly or alternately, so that yields eight scission methods for each assembly method.
A ninth scission method is given by using #2(d) repeatedly with #1(b). Using these
nine scission methods with both assembly methods yields an additional eighteen com-
binations.

390 395 400 405 410 415 420
0

10

20

30

40

50

60

70
8-Stack Column: Delayed Stacks vs. Tolerance!

tolerance

%
 s

ta
ck

s
de

la
ye

d

 !

Bin 1
Bin 2
Bin 3
Bin 4
Bin 5
Bin 6
Bin 7
Bin 8
Bin 9

Figure 6.2. Delayed stacks as a function of tolerance for 8-stack all-size algorithm.

Running the Matlab code with all 28 combinations for all the bins took about 45
seconds on a standard laptop; the results for 8-stack columns are shown in Fig. 6.2. Note
that the results compare favorably with those presented in Figs. 5.1 and 5.2 for the same
8-stack column assembly.

Moreover, this algorithm is flexible enough to handle columns with any value of s.
Results for s = 10 are shown in Fig. 6.3. Note that the results are clearly superior to those
shown in Fig. 6.1.

Ramanan et al. 6.4

390 395 400 405 410 415 420
0

10

20

30

40

50

60

70

80
10-Stack Column: Delayed Stacks vs. Tolerance!

tolerance

%
 s

ta
ck

s
de

la
ye

d

 !

Bin 1
Bin 2
Bin 3
Bin 4
Bin 5
Bin 6
Bin 7
Bin 8
Bin 9

Figure 6.3. Delayed stacks as a function of tolerance for 10-stack all-size algorithm.

Section 7: Linear Programming Formulation
Our problem can also be expressed in the linear programming context. Consider a

pool of N subunits. Define the feasibility matrix F ∈ RN×N as follows:

fik =

{
1, if i 6= k and T (i) +B(k) < q,
0, else.

In other words, fik = 1 if it is feasible for subunit i to be stacked under subunit k. We
track whether that actually occurs through the variable xik:

xik =

{
1, if subunit i is stacked under subunit k,
0, else.

Then the goal is to maximize

H =
∑
i,k

xik (7.1)

given the following constraints. First, binding can occur only if it is feasible, so

xik ≤ fik for all i, k. (7.2a)

Moreover, subunit i can bind with at most one other element, so we have∑
k

xik + xki ≤ 1 for all i. (7.2b)

Here the first sum counts bindings where i is on the bottom, while the second sum counts
bindings where i is on the top.

Here the xik are either 0 or 1, so this is really an integer programming problem. It is
quite similar to the marriage problem (Strang, p. 426). However, in some cases (network
flows), it can be shown that the solution to the linear programming problem is always
integral (Franklin, p. 139). Though we are not sure if that holds in this case, we used the
Matlab binary optimization algorithm bintprog, which always yields binary results.

In practice, the number of constraints becomes large very quickly. Equation (7.2a)
provides N2 conditions, while (7.2b) provides 2N conditions. The Matlab optimization
ran on a laptop with N = 167, but it took about 5 minutes. (The other algorithms
mentioned in this report were much faster.) Moreover, we found that when we used an
odd number of units (thus guaranteeing that there would not be complete matching), the
linear programming code took longer than when we used an even number of units.

The group that did the linear programming approach used the one-size method. In
other words, they solved the system to make pairs out of individual stacks, then ran it
again to make quartets, etc. However, this is not necessary, as the size of the individual

Ramanan et al. 7.2

subunits doesn’t figure into the analysis. So it could be used to assemble stacks of any
size.

There was some discussion about using this approach to join more than one subunit
together at once. In particular, if we define

xikl =

{
1, if subunit i is stacked under subunit k under subunit l,
0, else,

then the goal is to maximize

H =
∑
i,k,l

xikl. (7.3)

The binding constraint then becomes

xikl ≤ fikfkl for all i, k, l, (7.4a)

since both merges have to be allowable. In addition, the single-binding rule becomes∑
k,l

xikl + xkil + xkli ≤ 1 for all i. (7.4b)

The problem is that we now have O(N3) constraints from (7.4a), which is quite large, and
will only get larger as production ramps up and bins become larger. In general, to combine
M stacks at once would take O(NM) constraints.

When solving a linear programming problem, one starts from a feasible solution and
works around the edge of the simplex until an optimal solution is found. Hence permuting
the data would still lead to the same number of pairings, but the pairings would be different.
It was quickly shown with a small set of eight stacks (chosen with pathological B and T
values) that with the stacks ordered one way, a column of eight could be formed, while
with the stacks ordered another way, the best one could do was four pairs.

Hence there are cases where, though the linear programming method finds an optimal
solution for the first phase, the resulting pairs are totally unsuited to be assembled in
the next phase. Thus the linear programming method would do worse than the previously
discussed two-step algorithms, which attempted to match extremal end values to maximize
the number of stacks which could be feasibly assembled in the next phase.

This anomaly motivated the consideration of extending the two-step method to the
linear programming problem. For instance, suppose that the condition in (7.1) were re-
placed by maximizing

HB =
∑
i,k

[q −B(i)]xik. (7.5a)

In other words, the value of a pairing is increased if it has a lower value of B to take
into the next step. When a subgroup tried this approach, they quickly found that q − Bi
was so large that the weighting coefficients dominated the function HB , leading to fewer
matchings. It was then suggested to try

HBT =
∑
i,k

[
1− B(i)

q

] [
1− T (k)

q

]
xik. (7.5b)

Ramanan et al. 7.3

This then reduced the weightings to the interval [0, 1] while also including the effect of the
T value to be carried into the next round. Using this new value did not seem to affect the
results appreciably.

Another idea suggested was to express the problem as a variant of the optimal as-
signment problem (Franklin, p. 145). In this case, one removes the constraint (7.2a) that
grows quadratically with size. By doing this, you basically force a complete matching of
the items. How then, does one enforce the condition that you can’t have a matching if the
curvatures exceed the tolerance?

Replace H with

HF =
∑
i,k

fikxik, (7.6)

where fik is related to the feasibility matrix:

fik =


[
1− B(i)

q

] [
1− T (k)

q

]
, if i 6= k and T (i) +B(k) < q,

−999, else.

Note this gives a small bonus for matching up values with good values for the next step (the
two-step part), while giving a significant penalty when the algorithm makes a matching
that isn’t allowed physically. The idea was that this penalty would minimize the unphysical
matchings, which could be classified as delayed stacks in postprocessing.

Unfortunately, none of the linear programming approaches reduced the delayed stacks
nearly as much as the algorithms in the previous sections, and none came close to the 15%
delay threshold.

Section 8: Random Assembly
One method of finding possible arrangements for columns (optimized or not) is to

arrange the stacks randomly. To accomplish this, a column is formed one stack at a time.
The code created to form a column begins by grouping all possible stacks that may be
placed at the top of the stack. Note that this does not include stacks with anomalous
electrical properties. A stack from this group is selected at random. Next, a group is made
of all stacks that may be placed below this top stack following the criteria in (2.2) and
(2.3). Of the possible stacks that match these criteria, one is selected at random. Another
group is created of all stacks that satisfy the conditions to be in the third position, and the
stacking is repeated until the column is constructed. Following this pattern, the algorithm
essentially “draws names out of a hat” of all acceptable stacks for each position in sequence.

Once a column has been formed, it is removed from the pool, and the entire assembly
process is repeated until all possible columns have been formed. Because this algorithm has
no restrictions on the arrangement of stacks other than meeting the established criteria,
the algorithm could list all possible arrangements for each bin value, given enough time.
Thus the only restriction to this code finding the exact optimal arrangement is runtime.
This is different from the other codes, which require only a limited number of time to find
a near-optimal solution but by their design they may bypass a better arrangement that
does not satisfy the greedy algorithm.

The main argument behind looking for arrangements randomly relates to the expec-
tation of frequently occurring optimal solutions. In all but one case, there will never be
exactly one optimal solution. For example, a bin with 64 stacks has the possibility of cre-
ating exactly 8 columns. However, since the order of the 8 columns does not matter, there
are actually 8! different arrangements that are optimal. Furthermore, if any two stacks of
these 64 can switch places, or if any one difference at all can occur, then there are another
8! different arrangements of these columns that are also optimal for each of the differences.
While this may still be a small fraction of the 64! total possible arrangements, one must
remember that only a fraction of the 64! will actually be formed, because the stacks may
only be arranged to fit the criteria set in place. With this in mind one may hypothesize
that there is a significant probability of a feasible solution being optimal. Hence attempt-
ing to find an optimal or near-optimal arrangement randomly carries far better odds than
originally expected.

Of course, time is restricted and so a random assembly will not assuredly find the
optimal solution in the allotted time. In consultation with the industry representative,
we determined that the maximum amount of time the random assembly code would be
allowed to run was 63 hours (Friday at 5 pm to Monday at 8 am). A better run time would
be 15 hours (5 pm one day to 8 am the next). This allows employees of Bloom Energy
to run the code for a relatively large amount of time without tying up computing power
during business hours. The code was written in the Visual Basic component of Microsoft
Excel, which is more widely known among Bloom Energy employees than other computing
systems like Matlab (in which the other algorithms were written).

Ramanan et al. 8.2

With these considerations, randomly assembling columns stands as a good way to
measure the effectiveness of the other greedy algorithms. Thus, this method of arrange-
ment will work as a control group in a scientific study: as a way to ask “how much better
is this algorithm than randomly arranging the stacks?” Knowing that another algorithm
outperforms random assembly suggests that algorithm might be a step in the right di-
rection to finding the optimal solution. Likewise, if randomly assembling stacks creates
fewer delayed stacks than another algorithm, then that algorithm likely creates suboptimal
solutions.

To obtain the results, the same data was used by random assembly as by the other
greedy algorithms. Since time is the only issue for random assembly, the total compu-
tation time was kept below the maximum and computers of varying performances were
used. 5000 simulations were run over a total computing time of roughly 60 hours on 10
different computers. A key benefit to being restricted only by computation time is that
the actual elapsed time may be reduced by simply running the code on multiple machines
simultaneously. The random number generator was confirmed not to repeat when the code
was restarted so the use of multiple computers and multiple restarts is possible.

It is important to reiterate that the argument here is not that there are only a few
possible arrangements in total (in this case, using random assembly to find the optimal
solution is akin to buying more lottery tickets to improve one’s chances of winning). The
argument is that, of the arrangements found randomly, highly efficient arrangements will
be present and will occur multiple times, suggesting that finding near-optimal solutions is
likely even without an algorithm designed to assemble stacks efficiently.

The figures below show the number of times arrangements with different percentage
of delayed stacks were found. In each case, columns of length 8 were made, so the total
stacks used will always be divisible by 8. The figures are labeled in terms of how many
stacks were used to make columns. All of the greedy algorithms were tested by counting
how many columns were created instead of the number of boxes created; thus the random
assembly was measured in the same way.

Figs. 8.1 and 8.2 give an idea of how often an arrangement using a given number of
stacks will occur. After 5000 iterations, some delay percentages still do not occur and
suggest their rarity (or impossibility). For instance, consider bin 0, which with 37 stacks
would have theoretical upper bound of four columns. However, observation of the stacks in
this bin shows that the top and bottom values of many of these stacks are over q/2 = 200
each, and so assembling more than one column may well be impossible. However, a single
column was found many times and stands as a perfect example of the occurrence of optimal
solutions. With bin 0 specifically, we can expect each algorithm to create a single column
and should take notice if an algorithm does not. Likewise, we should be wary if any greedy
algorithm creates an arrangement worse than the worst found randomly.

To summarize the effectiveness of the greedy algorithms, their efficiencies (in terms of
number of columns created) were compared to the best solution found by random assembly.
Note that random assembly underperformed for some bins, and outperformed for others.
The results are summarized in Fig. 8.3. Here if the plot has a positive y-value, the greedy
algorithm outperformed the random algorithm. As discussed in §5, the greedy algorithms
did not analyze bin 0, so it does not appear in the analysis. Because of the long run time

Ramanan et al. 8.3

Figure 8.1. Results from random assembly for bins 0–5, q = 400. The horizontal axis
corresponds to number of columns formed.

involved, we were able to test only the default tolerance value of q = 400 against the greedy
algorithms.

Note that for bin 9 each greedy algorithm underperformed random assembly. This
may be an example of a case where the optimal solution does not follow the generally
believed rules of an efficient arrangement.

More generally, the results show that arrangements from the random assembly method
were within a column or two from those generated by the greedy algorithms. (The differ-
ence seems so large from bin 3 because the number of stacks there is so small; a one-column

Ramanan et al. 8.4

Figure 8.2. Results from random assembly for bins 6–9, q = 400. The horizontal axis
corresponds to number of columns formed.

difference causes 14% delayed stacks.) Given that no training would be required to im-
plement the random assembly’s Visual Basic code (and that the optimality would likely
increase with more processors), these results might be good enough for Bloom to pursue
the random assembly strategy.

Because of time constraints, we did not analyze the case where columns could stacks
from adjacent bins, as illustrated in Fig. 5.3. However, the current code for random
assembly can be easily modified to build as many columns as possible using assembly rule
4(a) (where all stacks are of the same bin) and then build as many columns possible using
assembly rule 4(b) (where stacks come from adjacent bins). Refining the code in such ways
will give a better idea of how often low-delay arrangements occur.

Of course, this could also be done to find an optimal solution to the full problem. In
particular, the code for finding random arrangements can be easily modified to include
additional constraints (such as the A2 value) or fewer constraints (such as relaxing the
same-bin requirement). An important note is that since additional constraints will decrease
the number of possible arrangements, including them will allow for the code to find a larger
percentage of the total combinations in less time.

Further enhancements to the random assembly code should include the constraint that
8 columns must be identical to be used in a single box, as discussed in §2. Thus, finding
1, 2, or 7 columns is not a valuable achievement, as the stacks used in those columns may

Ramanan et al. 8.5

bin1	
 bin2	
 bin3	
 bin4	
 bin5	
 bin6	
 bin7	
 bin8	
 bin9	
 Avg.	

1-­‐step	
 5%	
 8%	
 0%	
 8%	
 11%	
 14%	
 4%	
 15%	
 -­‐9%	
 6%	

2-­‐step	
 5%	
 4%	
 -­‐14%	
 8%	
 0%	
 0%	
 7%	
 7%	
 -­‐9%	
 1%	

All-­‐Size	
 5%	
 8%	
 14%	
 8%	
 8%	
 9%	
 -­‐4%	
 15%	
 -­‐9%	
 6%	

Avg.	
 5%	
 7%	
 0%	
 8%	
 6%	
 8%	
 2%	
 12%	
 -­‐9%	
 4%	

-­‐20%	

-­‐15%	

-­‐10%	

-­‐5%	

0%	

5%	

10%	

15%	

20%	

%
	
 D
el
ay
ed

	
 S
ta
ck
s	
 L

es
s	
 T

ha
n	

Ra

nd
om

	
 A
ss
em

bl
y	

Codes	
 Compared	
 to	
 Random	
 Assembly	
 by	
 Bin	

Figure 8.3. Comparison of random assembly to greedy algorithms. Here if the data point
corresponding to a greedy algorithm has a positive y-value, it outperformed the random
algorithm. “1-step” is the single-step assembly illustrated in Fig. 5.1. “2-step” is the
two-step algorithm illustrated in Fig. 5.2. “All-size” is the all-size assembly illustrated
in Fig. 6.2: however, the comparison was made before all 28 procedures in the all-size
algorithm were implemented.

help create a complete set of 8 columns elsewhere. Again, updating the current code to
allow only groups of 8 columns to be produced is fairly simple and is already in place, but
was not used for the control test.

Section 9: Postprocessing
Once the assembly process is complete, we can try some postprocessing measures in

order to improve our results further. If we have not used the full pool of available stacks as
our initial S, we can augment S with additional stacks from the pool in order to continue
the algorithm. If the pool is exhausted, one can break any unused subunit with more than
one stack back into its component stacks to see if these smaller stacks can be reassembled
into columns. These ideas were considered, but not implemented.

However, one approach that the group did implement was the use of a genetic algo-
rithm. These sorts of algorithms take ideas from genetics to try to improve the results
from one of our previous algorithms. We define an arrangement U to be the set of columns
and unused subunits (across all bins) generated by one of our previous algorithms. For the
purposes of the genetic algorithm, the unused subunits should all be in individual stacks.

Assume moreover that we are given a set of M different arrangements initially (this
is called the first generation). Note that, as currently implemented:

the simplest one-size algorithm generates four different arrangements
the implemented all-size algorithm generates 28 different arrangements
the random-assembly algorithm could generate as many as desired
in principle, the linear programming algorithm could also generate as many as desired
(by permuting the data)

The algorithm proceeds as follows:

1. Compute P (Ui), the percentage of stacks used in columns in arrangement Ui, and
then compute a reproduction probability pr as follows:

pr(Ui) =
P (Ui)∑
i P (Ui)

.

In other words, the probability that a particular arrangement will be retained for
subsequent generations is proportional to the percentage of stacks it assembles into
columns.

2. Reproduction step. To compute the population for the next generation, select M
arrangements from the previous generation (with replacement), where the probability
distribution is given by pr. Hence it is likely that there will be multiple copies of
certain arrangements, and it is likely that those arrangements will be those that did
the best at reducing the number of delayed stacks.

3. Mutation step. With some probability pµ (the mutation probability parameter),
make a small change in an existing arrangement by exchanging one stack from a
column for an unused stack that satisfies the constraints. In general, pµ is kept small
since useful information (i.e., efficient arrangements) may be lost in the mutation.

4. Additional assembly. Once the mutation step is complete, examine all the unused
stacks to see if they can be assembled into columns using whatever assembly algorithm
is being used.

Ramanan et al. 9.2

5. Crossover step. With some probability pc (the crossover probability parameter),
choose Ui for the crossover step. The crossover step requires two arrangements, so if Ui
is chosen, pick another arrangement from the remaining M −1 with equal probability.
Note that the arrangement is the total set of assemblies for all bins. Hence each
arrangement Ui will have subarrangements Ui,j corresponding to bin j.
Without loss of generality, assume that U1 and U2 are chosen for the crossover step.
We now wish to construct new arrangements (U∗

1 , U
∗
2) for the next generation. To do

so, we will exchange U1,j with U2,j (the crossover) with probability 1/2.
With the reshuffling of subarrangements, there is now a new pool of unused stacks
from which columns can be assembled. However, for assembly purposes the pool
from the new arrangements is distinct (and hence useful) ONLY in the case where
columns can be assembled from stacks from adjacent bins. If instead we require that
each column must be made from stacks from the same bin, this step simply achieves
a reshuffle of the Ui,j , which would then be fed into the reproduction and mutation
steps.
In contrast to the mutation step, in the crossover step efficient subarrangements are
retained, though they may be exchanged between arrangements. Hence the range of
useful pc is larger.

6. Now a new generation has been created, so repeat the process.

The algorithm also has the capability to assemble boxes, though those results are not
presented here.

The results of the genetic algorithm are shown in Fig. 9.1. It shows the delayed-stack
percentage of the best solution after ten generations for M = 30. In this case, the initial
arrangements were generated by a random assembly algorithm quite similar to that in
§8. Since there were only 30 arrangements generated (rather than the 5000 of §8), it is
more unlikely that near-optimal solutions were fed to the genetic algorithm as generation
0. Hence it is no surprise that the results in Fig. 9.1 are worse than those from previous
sections.

Due to their nature, genetic algorithms are highly sensitive to the quality of the first
generation, unless one is willing to invest significant time to allow the mutations to produce
better results. Hence if the arrangements from previous sections had been used as the first
generation for the genetic algorithm, obviously the results would be better than those in
Fig. 9.1.

The algorithm is also highly sensitive to the parameters used: M , pµ, and pc. The
success of the algorithm will depend on those parameters, and the best performance will be
problem-dependent. (More details about genetic algorithms can be found in Michalewicz
(1999).) So some experimentation would be required to implement this efficiently for the
fuel-cell assembly problem.

Nevertheless, the genetic algorithm does have several advantages. Due to its random-
ness, it can explore various areas of arrangement space that the greedy algorithms might
miss. However, it still has a deterministic selection mechanism that focuses its efforts on
regions with high P (U).

Ramanan et al. 9.3

390 395 400 405 410 415 420
10!

20!

30!

40!

50!

60!

70!

80!

90!

!!

Tolerance

%
 s

ta
ck

s
de

la
ye

d

Delayed stacks vs. tolerance for various bins, 8-stack columns only

 !

Bin 1
Bin 2
Bin 3
Bin 4
Bin 5
Bin 6
Bin 7
Bin 8
Bin 9

100!

Figure 9.1. Delayed stacks as a function of tolerance for eight-column stacks, random
assembly, genetic algorithm, ten generations. Here M = 30, pµ = 0.01, and pc = 0.05.

Section 10: Conclusions
and Further Research

Perhaps the main surprise from the week was that the various heuristic algorithms
for building columns from stacks seemed to work so well, given their simplicity. Most of
the algorithms were greedy; that is, they built up columns iteratively by trying to make a
locally optimal choice (chosen differently for the different strategies) at each step. It is well
known that greedy algorithms will generally not find the true optimum; it is also known
that the structure of some problems is such that a greedy algorithm can produce the worst
possible solution! Though a hint of such an anomalous structure was seen in bin 9 (where
all the greedy algorithms underperformed the random-assembly algorithm), in general the
greedy algorithms provided the best solution.

The group attempted one- and two-step assembly methods using one- or multiple-size
building blocks. All of the assembly methods usually came with a column or two of one
another. In general, the multiple-size method worked best, as it has more flexibility in
choosing subunits to assemble as compared with the one-size methods, where subunits are
either matched or discarded in a series of iterative steps. The multiple-size method is also
clearly superior when s is not a power of 2.

Though the greedy algorithms worked well, they were all written in Matlab, with
which few Bloom employees have familiarity. The random-assembly algorithm outlined in
§8 was written in Visual Basic, which is more widely known at Bloom. With the number
of iterations performed for this manuscript, in general the random-assembly method did
not work as well as the greedy algorithms; however, the deficiency was only a column or
two. With the current number of shipments, this deficiency could probably be erased with
additional processors.

The group also formulated the problem in the linear programming context, but found
actual implementation infeasible. The difficulty is that as the number of components
increases, the rate of increase in problem size (and hence run time) is far slower for the
greedy algorithms than for the linear-programming and random-assembly formulations.
Hence it seems quite possible that the greedy-algorithm strategies presented here will be
more useful to Bloom in the long term, and in fact that their utility will improve as
production increases.

One way to merge the two approaches is with a genetic algorithm. Using the results
of a greedy algorithm as a starting point, the genetic algorithm can randomly perform
changes to see if a more optimal arrangement can be found. Given that the results of
the greedy algorithm were commonly within just a few columns of optimality anyway,
the genetic algorithm should work well in determining whether additional columns can be
formed.

One of the questions brought to the workshop by Bloom was how they might modify
the assembly rules currently in use to increase efficiency. Although the group really only
looked at a subset of the real problem, we were able to investigate the dependence of the

Ramanan et al. 10.2

number of delayed stacks on the tolerance q in (2.2). In many cases, as might be expected,
the number of delayed stacks decreased as the tolerance was increased. In particular,
even small changes in q caused great decrease in the delay percentage. There were some
anomalies where the number of delayed stacks increased as tolerance increased, which
would seem to be a defect in the greedy algorithms that were used.

Much work remains to be done. The two most pressing issues are to include the vendor
constraint, and the problem of assembling columns into boxes. One of the assembly rules
that Bloom uses is to attempt to avoid mixing components from different vendors (see
§2). Bloom told the group to ignore this rule for simplicity; currently only the random-
assembly algorithm has the capacity to include this constraint. However, implementing
this rule would seem to require a relatively straightforward modification of the greedy
algorithms; effectively the existing bins of components would be subdivided by vendor,
which would actually decrease the size of the optimization problem (although as noted
above, performance of the greedy algorithms generally seemed to improve with larger data
sets).

The problem of assembling columns into boxes has a slightly different structure than
the problem of assembling stacks into columns. Stacks need to satisfy a tolerance condition
with their nearest neighbors; in contrast, all columns in a box should have an average bin
value which is the same or at least close in value (see §2 for details). If the columns
generated are ranked by average bin value, a constraint of this nature would be easy to
impose. The new wrinkle is that it might make sense to settle for a smaller number of
columns, if their bin values are such that more complete boxes can be assembled. This will
require an algorithm that looks ahead in some way when assembling boxes, in much the
same way that the “two-step” greedy algorithm looked ahead when assembling columns.

Nomenclature

The equation number where a symbol first appears is listed, if appropriate.

A: parameter related to pore area of IC (2.1).
B: absolute value of curvature of bottom of stack.
b: index related to B value (4.3).
c: number of columns in a box.
d: distance metric, variously defined.
F : feasibility matrix for linear programming problem.
G: variable describing abnormality.
H: function to be optimized in linear programming formulation (7.1).
i: integer used to index elements.
j: integer used to index position (2.2).
k: integer used to index elements (2.3a).

L(k): length of element k.
l: integer used to index elements.

M : integer, variously defined.
N : normal distribution (4.1).
N : number of subunits in initial pool.

P (U): percentage of stacks used in columns in arrangement U .
p: probability of event in genetic algorithm.
Q: dummy curvature value given to anomalous stacks (2.3a).
q: tolerance for curvature sum (2.2).
R: number of repeating units in a stack.
S: set of elements in greedy algorithm.
s: number of stacks in a column.
T : curvature of top of stack.
t: index related to T value (4.2).
U : arrangement in the genetic algorithm.
x: variable in linear programming problem.

σ(·): standard deviation of · (6.1).

Other Notation

c: as a subscript on p, used to indicate the crossover step.
e: as a subscript on s, used to indicate extra stacks.
r: as a subscript on p, used to indicate the reproduction step.
µ: as a subscript on p, used to indicate the mutation step.

Ramanan et al. N.2

¯ : used to indicate the mean (6.1).
−: as a superscript, used to indicate minimum (4.2).
+: as a superscript, used to indicate maximum (4.3).
∗: as a superscript, used to indicate a crossover arrangement.

References

Franklin, J. Methods of Mathematical Economics: Linear and Nonlinear Programming,
Fixed-Point Theorems. New York: Springer-Verlag, 1980.

Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs. New York:
Springer-Verlag, 1999.

Strang, G. Linear Algebra and Its Applications, 3rd ed. New York: Harcourt Brace Jo-
vanovich, 1988.

