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Abstract

Piped water is used to remove hydration heat from concrete dams
during construction. By examining simple models we obtain an es-
timate for the temperature rise along the pipe network and within
the concrete. To leading order, for practically useful networks, the
temperature distribution is quasi-steady, so that exact analytic solu-
tions are obtained. The temperature in the water increases linearly
with distance along the pipe and varies logarithmically with radial dis-
tance from the pipe in the concrete. Using these results we obtained
estimates for the optimal spacing of pipes and pipe length. Some pre-
liminary work on optimal network design has been done. This is work
in progress.

1 Introduction

During dam construction large slabs of concrete are poured (typically 3m×
10m × 10m). The concrete is made of a mixture of cement (powder) and
water which react to generate heat. The chemical reaction can lead to
temperature rises in excess of 50K and continues for months, indeed years.
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Obviously this can lead to problems due to thermal stress, such as cracking
and resultant structural weakening.

To alleviate the problem pipe networks are included in the block and
chilled water is pumped through the pipes. Later the pipes are filled with
concrete. The aim of this study was to estimate the temperature profile in
the concrete and the effect of pumping water, with the ultimate goal being
to provide a strategy for improved heat removal.

2 Simple energy balance model

We start by considering a simple global energy balance model. This will
give a crude estimate for the effect of water cooling on the temperature rise
in the concrete.

Under steady-state conditions the heat removal rate per unit concrete
volume by circulating water will be Qρwcw(Tout − T0) where T0 is the entry
temperature of the water, Tout is the exit temperature and Q is the volume
flux of water through the concrete, of volume V say. If q represents the rate
at which heat is generated within the slab per unit volume then this must
balance with the heat removed requiring

V q = Qρwcw(Tout − T0) . (2.1)

A crude estimate for the concrete temperature (and water exit temperature)
is thus given by

Tout = T0 +
qV

Qρwcw
(2.2)

Of course this is a crude estimate for a number of reasons. The concrete
temperature is unlikely to be uniform and may not approximately match the
water temperature at exit. The efficiency of heat removal from the concrete
slab decreases as the water temperature increases and no heat transfer from
the slab to the circulating water will occur once the water temperature
reaches that of the slab. Optimistically one might hope that a good pumping
system could, however, perform close to this design limit. Of course efficient
heat removal networks are likely to be expensive (obviously an extensive
network of fine pipes with many individual elements would be efficient)
so that an appropriate balance between thermal efficiency and expense will
need to be struck. Nevertheless in a real sense the above calculation provides
us with an objective measure for the efficiency of practical water network
designs.
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The above discussion assumes the hydration heat release remains fixed
and steady state conditions are realised and appropriate. In fact, the hy-
dration heat release varies with time, so that the aim of the network may
be to simply extract sufficient heat during the significant hydration period
to keep temperature levels within acceptable limits. We now move on to a
more complex, but hopefully more accurate, model.

3 A simple cylindrical model

R

∂Tc

∂r
= 0

Water flux Q

az = 0

z = L

Figure 1: Cylindrical model: water flux Q at temperature T0 through a pipe
cools an insulated concrete cylinder.

We consider a pipe radius a(m) embedded in a long insulated cylindrical
slab of concrete of radius R(m), length L, see Figure 1. The concrete pro-
duces hydration heat at a prescribed rate q per unit volume. Cool water, at
temperature T0, enters the pipe at z = 0 and removes hydration heat from
the slab. The volume flux of water flowing through the pipe is Q. The above
configuration models a section of pipe within a concrete sleeve within the
slab. An insulated boundary condition, ∂Tc

∂r
= 0, is chosen at r = R to take

into account the local periodicity of the pipe network; the situation thus
approximately models a periodic array of pipes with spacing 2R. We will
modify the solutions obtained here to treat the periodic pipe array problem



72 J.P.D. Charpin, T.G. Myers,A.D. Fitt, N.D. Fowkes, Y. Ballim and A.P. Patini

later. Information from this model, and its extensions, will enable us to
estimate the optimal spacing R between elements of the pipe network and
the flux levels Q required to maintain concrete temperature levels within
prescribed bounds. Also we will use the model to estimate the appropriate
length of piping.

The heat equations in the concrete and water are, respectively,

ρccc
∂Tc

∂t
= κc∇

2Tc + q , (3.1)

ρwcw

(

∂Tw

∂t
+ u · ∇Tw

)

= κw∇
2Tw , (3.2)

where Tc, Tw are the temperature of the concrete and the water in the pipe, q
is the rate of heat production per unit volume in the concrete, and (ρc, cc, κc),
(ρw, cw, κw) are the density, specific heat and conductivity of concrete and
water respectively. Due to the low kinematic viscosity of water (ν ∼ 10−6),
the Reynolds number is high even for low volume fluxes and so the flow in the
pipe will be turbulent (providing the fluid velocity is greater than 1cm/s).
Under such circumstances the average radial velocity is zero and the mean
flow is in the z-direction, u = (0, w). Since the fluid is incompressible we
can state w = Q/πa2 is constant, where Q is the water volume flux in the
pipe. We may simplify the water heat equation further by considering the
average temperature, since the flow is axisymmetric we may write

Tw =
2π

∫ a

0
Tw rdr

πa2
.

Further, since the flow is turbulent and the fluid well-mixed we expect the r
variation to be small, except perhaps for in a boundary layer near the pipe
wall. Hence, integrating the whole equation, gives

2πρwcw

∫ a

0

(

∂Tw

∂t
+

Q

πa2

∂Tw

∂z

)

rdr = 2πκw

∫ a

0

(

1

r

∂

∂r

(

r
∂Tw

∂r

)

+
∂2Tw

∂z2

)

rdr,

2πρwcw
a2

2

(

∂Tw

∂t
+

Q

πa2

∂Tw

∂z

)

= 2πκw

(

a
∂Tw

∂r

∣

∣

∣

∣

r=a

+
a2

2

∂2Tw

∂z2

)

. (3.3)

At the boundary between the water and concrete, r = a, a standard cooling
condition gives

κw
∂Tw

∂r
= H(Tc − Tw) . (3.4)
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Note, the heat transfer coefficient can include the effect of the pipe wall
through the relation

H = 2πκp
s

a
+ H ′ , (3.5)

where κp, s and H ′ represent the conductivity of the pipe, the pipe thickness
and the heat transfer coefficient of water on the pipe, see Carslaw and Jaeger
(1959). Substituting the boundary condition into equation (3.3) gives the
final form for the dimensional governing equation for heat flow in the water

πρwcwa2

(

∂Tw

∂t
+

Q

πa2

∂Tw

∂z

)

= 2πaH
(

Tc|r=a − Tw

)

+ πκwa2
∂2Tw

∂z2
. (3.6)

Note, since the temperature is constant for a given z, i.e. Tw ∼ Tw is a
function of z alone we have replaced the value of Tw at r = a with the
average value across the flow Tw(a, z, t) ≈ Tw(z, t).

3.1 Dimensional analysis

In the following dimensional analysis we will determine which terms may
be neglected in the governing equations. However, a simple statement of
conservation of energy can provide us with the leading order balance in the
water. Assuming all the energy enters the water through the pipe wall and
is then convected away gives

πa2ρwcww
∂Tw

∂z
= 2πaκ

∂Tc

∂r
= 2πaH(Tc − Tw) .

We expect this same balance to result from the non-dimensionalisation of
the defining equations (2.3, 2.4).

We non-dimensionalize the equations using the scales

r = Rr′ , z = z0z
′ , t = τt′ , Tc = T0 + ∆T T ′ , Tw = T0 + ∆Tc T ′

w,

where T0 is the water temperature on entering the pipe, ∆T is a typical
increase in temperature within the concrete and z0, τ are the length-scale
and time scales for significant temperature variations in the pipe; ∆T, τ, z0

are yet to be determined. For ease of notation, from now on we drop the
primes. The heat equation in the concrete becomes

ρccc∆T

τ

∂Tc

∂t
= κc∆T

(

1

R2

1

r

∂

∂r

(

r
∂Tc

∂r

)

+
1

z2
0

∂2Tc

∂z2

)

+ q . (3.7)
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Anticipating the fact that radial diffusion is the dominant method for heat
transferral in the concrete we rearrange this to

ρcccR
2

τκc

∂Tc

∂t
=

1

r

∂

∂r

(

r
∂Tc

∂r

)

+
R2

z2
0

∂2Tc

∂z2
+

qR2

κc∆T
. (3.8)

In the water we expect energy to be carried along with the fluid and so
rearrange the water heat equation accordingly to give

πa2z0

Qτ

∂Tw

∂t
+

∂Tw

∂z
=

2πaHz0

ρwcwQ
(Tc|r=ε − Tw) +

πa2κw

ρwcwz0Q

∂2Tw

∂z2
. (3.9)

Here ε = a/R. The final term on the right hand side of (3.9) is O(10−9),
indicating diffusion does not play a significant role in heat transfer in the
water. This term will be neglected from now on.

There are three unknown scales in equations (3.8, 3.9), the length-scale
z0, the time-scale τ and the temperature scale ∆T . Clearly the temperature
rise is driven by heat production in the concrete, so we choose

∆T = qR2/κc. (3.10)

In the water the temperature rise is due to forced convection at the boundary,
so we choose

z0 = ρwcwQ/2πaH. (3.11)

The time derivatives indicate two distinct time scales. In the concrete

τ = τc = ρcccR
2/κc, (3.12)

in the water

τ = τw = πa2z0/Q . (3.13)

Substituting typical values, as given in Table 1, indicates ∆T ∼ 54.7K,
z0 ∼ 5.35m, τc ∼ 3.8 × 105s ∼ 4.4 days, τw ≈ 52.5s≈ 1min. These scales
indicate a typical temperature rise of 50◦K in the concrete, and also that
the appropriate pipe length should be around 60m, see later. These values
do fit in with engineering practice, which suggests the above scaling and
numbers are correct.
Comment on the two time scales: When the tap is turned on it takes a
time of order 3 minutes (τw) for the cool water to adjust to its immediate
concrete temperature environment. It then takes about 4 days (τc) for the
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concrete to adjust to the presence of the cooling water. Over this period of
time the heat flux into the water increases, leading eventually to a steady
state situation in which the hydration heat supply rate is balanced by the
heat removal rate by the water. The two time-scales allow us to observe the
cooling process from two different viewpoints. Over the water flow time-
scale, τw, the concrete temperature does not vary, over the much longer
time-scale, τc, the concrete temperature will change. We will now briefly
examine the thermal problem over the water time-scale and then move on
to the problem over the longer time-scale, τc, which is our main concern.

3.1.1 Thermal variation over time-scale τw

If we work on the time-scale of the water flow, τ = τw, we can obtain
detailed information about the water temperature profile. This may be
used for example when the tap is initially turned on or in fact at any given
time if we require a more accurate description of the water temperature than
can be obtained from using the time-scale τc.

Setting τ = τw the time derivative in (3.8) is O(104) and the leading or-
der concrete temperature is simply Tc = Tc(r, z). If we consider the start-up
period then the initial concrete temperature must be approximately con-
stant, Tc = Ti. Since Tc is independent of time (to leading order) it will
remain at this temperature for the duration of any calculation on this time-
scale, i.e. for sufficiently short time periods the concrete temperature will
not change due to heat production or loss. The heat equation in the water,
(3.9), reduces to

∂Tw

∂t
+

∂Tw

∂z
=

2πaHz0

ρwcwQ
(Ti − Tw) = (Ti − Tw) . (3.14)

For simplicity we consider the steady-state, which will be achieved after a
few minutes. If the water enters at temperature T0(< Ti) then we obtain
the solution

Tw = Ti − (Ti − T0) exp(−z) .

In dimensional form this is

Tw = Ti − (Ti − T0) exp(−z/z0) ,

= Ti − (Ti − T0) exp(−2πaHz/ρwcwQ) . (3.15)

So, the water temperature increases exponentially along the pipe. As it
nears the end the exponential decay means that the temperature increases
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ρc 2350 kg/m3 cc 880 J/kg ◦C
ρw 1000 kg/m3 cw 4200 J/kg ◦C
κc 1.37 W/m ◦C R 0.5 m
q 300 W/m3 H 1000 W/m2 ◦C
Q 2× 10−4 m3/s a 0.025 m
κw 0.59 kg/m3

Table 1: Parameter values

more slowly, i.e. the water is less efficient at removing heat from the concrete
as it becomes hotter itself. The factors affecting the water temperature can
be seen from equation (3.15). The water temperature increases more slowly
with a decrease in heat transfer coefficient or pipe radius or an increase in
the flux. Obviously colder water at the inlet results in colder water at the
outlet.

In general our interest lies with the concrete temperature and this is best
examined by working on the time-scale τc.

3.1.2 Thermal variation over time-scale τc

Note that when we work with this time scale, the time derivative term in
(3.9) is O(10−4) and may be neglected throughout the calculation.

We assume (sensibly) that the pipe-spacing is considerably smaller than
the pipe-length R � L and so denote δ = R/L � 1. The leading order heat
equations in the concrete and water may now be written

∂Tc

∂t
=

1

r

∂

∂r

(

r
∂Tc

∂r

)

+ 1, (3.16)

∂Tw

∂z
= Tc|r=ε − Tw . (3.17)

The neglect of the term involving Tc,zz indicates that diffusion in the z-
direction is small. However, this is the largest term so far neglected, so a
more accurate solution could be determined by including this term in an
asymptotic expansion in powers of δ2 (in fact the solution obtained below is
accurate to order δ2).

The problem has now reduced to solving equations (3.16, 3.17). The
water enters the pipe at a dimensional temperature T0 which means (3.17)
must be solved subject to Tw = 0 at z = 0. At the pipe boundary, r = ε =
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a/R, a cooling condition applies to the concrete

∂Tc

∂r
= ξ(Tc − Tw), (3.18)

where

ξ = HR/κc . (3.19)

Note the heat transfer H enters the equations through the dimensionless pa-
rameter ξ. Halfway between the current pipe and the next, r = 1, symmetry
requires that the temperature gradient must be zero:

∂Tc

∂r
= 0 . (3.20)

To simplify the calculations we will now consider the steady-state solu-
tion. Since changes in the concrete temperature occur over a time-scale of
τc = 4 days which is much less than the time span (weeks) of interest this
makes sense (in practice the hydration heat input varies with time; the so-
lutions obtained below really represent a quasi-steady state approximation).
Under steady-state conditions equation (3.16) may be integrated to give

Tc = −
r2

4
+ A log r + B , (3.21)

where A and B may be functions of z. Applying the condition (3.20) gives
A = 1/2. Applying (3.18) gives

B = Tw +
1

ξ

(

−
ε

2
+

1

2ε

)

+
ε2

4
−

1

2
log ε , (3.22)

that is B depends on the water temperature. Substituting for Tc in equation
(3.17) leads to

∂Tw

∂z
=

1

ξ

(

−
ε

2
+

1

2ε

)

. (3.23)

The temperature in the water and concrete is therefore

Tw =
1

ξ

(

−
ε

2
+

1

2ε

)

z, (3.24)

Tc = −
r2

4
+

1

2
log r +

1

ξ

(

−
ε

2
+

1

2ε

)

(z + 1) +
ε2

4
−

1

2
log ε, (3.25)

= Tw(z) +

[

−
r2

4
+

1

2
log

r

ε

]

+

[

1

ξ

(

−
ε

2
+

1

2ε

)

+
ε2

4

]

. (3.26)
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The maximum temperature in the water is of course reached at the exit
z = L/z0 and in the concrete is reached at the edge of the domain at the
exit, that is at (r, z) = (1, L/z0). These are given to order ε by

Twmax =
1

2εξ
(
L

z0

), Tcmax =
1

2εξ
(
L

z0

+ 1) −
1

4
−

1

2
log ε, (3.27)

which in dimensional form are

Twmax = T0 +
πR2Lq

Qρwcw

≡ T0 +
V q

Qρwcw

, (3.28)

where V is the volume of the cylinder, and

Tcmax = T0 +
qR2

κc

[

−
1

4
+

κc

HR

(

R

a

)

−
1

2
log(a/R)

]

. (3.29)
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Figure 2: Temperature profile in concrete

Figures (2 a,b) show the temperature profile in the concrete at three
different z locations, z = 0, 25, 50, where the length-scale L = 50m. Water
is pumped in at a temperature of 5◦C. Figure (2a) shows the profile for
r ∈ [a,R] and clearly the temperature increases away from the pipe in each
case. The lowest profile represents the temperature at z = 0, the highest at
z = 50. Figure (2b) shows a close-up of the region near the pipe wall. From
this it is clear that as the water flows through the pipe it is heating up and
consequently the concrete temperature next to the pipe must also increase.
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3.1.3 Observations

It is interesting to note that the water temperature increases linearly with
distance along the pipe. The explanation is straightforward. Since we ignore
axial diffusion then, under steady conditions, all the locally (i.e. at the z
location) released hydration heat must be locally absorbed by the flowing
water; the water temperature thus increases linearly along the pipe’s length
as in (3.24), emerging at a temperature Tw(L/z0). More surprising perhaps
is that the temperature of the water at each position z along the pipe does
not depend on the efficiency of the heat transfer from the concrete into the
water as reflected in H, as can best be seen from (3.28); again this is a
consequence of the steady state. Of course if the heat transfer process is
inefficient (H small) then the temperature in the concrete will need to be
high to drive the required heat flux into the water, see later (also if H is small
then the time required to reach steady state will be large). Note that the
result (3.28) coincides with that obtained using the simple energy balance
model of section 2, see (2.1). The simple model however fails to determine
the concrete temperature; the assumption that the concrete temperature is
the same as that of the exit water temperature is not good. Further, this
result is not inconsistent with that obtained over the time-scale τw. With the
current scaling the factor which appears in the exponential term of equation
(3.15) is significantly smaller and so the exponential is approximately linear.

The concrete temperature form is quite special; it consists of separated
and added r and z pieces, see (3.26). The r portion of the solution exhibits
the typical logarithmic behaviour close to the pipe associated with a line
sink, with a quadratic modification further away. The z portion consists of
a constant temperature jump,

Tc(ε, z) − Tw(z) =
1

2εξ
(1 − ε2) ,

across the pipe skin which simply adds onto the water temperature Tw(z).
Note that the size of the jump depends on the transfer coefficient as reflected
in ξ and the surface area of the pipe as reflected in ε. We can think of this
term simply as the pipe resistance to heat flow.

3.1.4 Design implications

Recall again that the primary issue for the engineer is to reduce the maxi-
mum temperature in the concrete to an acceptable level using water cooling,
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and using a minimal (least costly) network1. To a very limited extent one
may improve the efficiency of the cooling system by reducing the pipe resis-
tance to heat flow as defined above, for example by increasing ξ (changing
the conductivity of the pipe, or pipe diameter) or ε (increasing the pipe
diameter). As we have seen above the effect of such a change will be to
change the temperature throughout the slab by 1

2εξ
(1 − ε2)∆T in dimen-

sional terms. The effect of reducing the input water temperature T0 will
also be to uniformly reduce the temperature of the concrete slab. However,
it is in the design of the network as a whole (that is the choice R,L and
Q for our simple model) that most gains can be made, and the scales ob-
tained above provide the qualitative answers. When supplemented with the
solutions above quantitative answers result.

Again it is absolutely essential to recognise that we are designing a heat
absorption system, not a water transport system. If the aim was to transport
water, then large diameter (high volume flux) pipes are the answer, whereas
to absorb heat it makes sense to use many small pipes; because the surface
area (for absorption) of such small pipes is much larger than that of the larger
pipe for the same total volume flux. Indeed from a purely heat absorption
point of view very fine pipes are the answer, but the resulting system would
be expensive. This is, however, simplistic; a good design is one in which
the total temperature variation along the pipe is about the same size as
the variation between adjacent pipes (i.e. at r = R), and of course the
maximum concrete temperature must be acceptable; this determines the
spacing R. Our present concern is with the very simple cylindrical network
of Figure 1 with a single pipe running through it, and our aim in this context
is to determine an appropriate flux and pipe radius (Q, a) using all other
parameters as in Table 1.

Thus we have a 250m length of pipe surrounded by a cylindrical sleeve
of concrete radius 0.5m.2 We will parallel observations with calculations to
display the connections. Note:

• Scaling arguments indicated a time scale of order τc = ρcccR
2/κc for

significant temperature changes to be brought about by the circulating
water. We found that, at least for the parameters used earlier, this
gave 4.3 days, which suggests that tuning this time scale is not likely
to be important in practice.

1More correctly the engineer wants to minimise the thermal stress, but one would

expect the maximum temperature to be a good indicator
2This would correspond to a 4m by 10m by 1m slab of concrete with the above pipe

winding back and forward through its centre.
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• We found that radial temperature variations in the concrete are of

order ∆T = qR2

kc

, (see 3.10); note especially that this scales up with
the square of the network pipes separation distance R (equivalently
the sectional area). Using the values in Table 1 we obtain 55◦K.

• The temperature change at the end of the water pipe, see (3.28) is
given by V q/(Qρwcw), and if this is to balance the radial variation
then the required volume flux of water is given by

qR2

kc
= V q/(Qρwcw) ,

which for the specific case described gives Q = 2.56 × 10−3m3/sec,
slightly more than that quoted in Table 1. This flux level could be
realised using a slightly more powerful pump with the 1 inch radius
pipe. Alternatively a larger pipe could be used with a less powerful
pump.

The ultimate aim is to ensure that temperature levels do not exceed
a specified value. To ensure this (3.29) can be used to determine the ap-
propriate spacing R between pipes and then the arguments above can be
employed to determine the required (Q, a). In general terms this is the proce-
dure to be used, but a better network model is required and an optimisation
model is required. The optimal network will balance costs associated with
network construction with expenses (or risks) associated with thermally in-
duced structural problems. We now go on to determine a better network
model.

4 Modelling periodic arrays or networks

The above cylindrical model is inadequate in two ways, both of which are
easily overcome. Firstly the geometry in practice is not cylindrical; a peri-
odic array of pipes is more realistic. The solution obtained for the cylindrical
model, see (3.25, 3.24) can also be thought of as the first term of the steady
state solution corresponding to a uniform hydration heat input together
with a periodic array (size 2) of matching sinks, see Figure 3. The complete
solution is obtained by adding image sinks in each of the neighbouring cells:

Tc(x, y, z) =
1

4
(1 − r2) +

1

2
(ln r +

∑

i,j

ln rij) + TR(z),
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x

y

z

Figure 3: A periodic array model.

where

rij =
√

(x − i)2 + (y − j)2, i, j 6= 0 .

(More usefully a Fourier expansion could be used). This solution of course
also corresponds to the solution within an insulated cell of width 2 due to
a uniform hydration heat input and with a matching sink located at r = 0.
Note that because heat flux levels are unaffected by a uniform temperature
shift the solution is determined up to an arbitrary ‘constant’ TR which in
our case needs to be adjusted to fit in with the known temperature along
the pipe network. Thus the temperature distribution in the concrete slab is
given locally by

Tc(s, r) = Tw(s) +
1

4
(1 − r2) +

1

2



ln r +
∑

i,j

ln rij



 ,

where Tw(s) = T0 + s
2εξ

s is the temperature of the pipe water at a distance
s measured along the pipe from the inlet.

The second deficiency of the cylindrical model is that in practice the
pipes wind through the slab, and the flow in adjacent pipes will normally
be in opposite directions. The temperature continually increases as one
moves along a continuous pipe; this will tend to make the temperature
distribution in the concrete more uniform. To model this it is useful to notice
that our scaling results strongly suggest that to a high degree of accuracy
the temperature field will be determined by the requirement that all the
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hydration heat will be locally absorbed. The temperature variation along
the pipe will be necessarily linear and the local temperature field within the
concrete must be such that this requirement is satisfied.

4.1 A simple 2D network example

O

Tc(x, z)

Figure 4: A Water Network: The steady state concrete temperature in-
creases linearly in x with superimposed periodic variations due to the piped
water.

In order to clarify the above network issue we will examine the simple 2D
network example illustrated in Figure 4. We have a network of 1D ‘pipes’
embedded in an infinite concrete slab of width L and height h. The water
flux through the network is Q0 per unit depth (into the page). After a
time scale of order t0 = h2/κc a quasi-steady equilibrium will be reached, as
described above, with the hydration heat being completely absorbed by the
network pipes, resulting in a linear increase in temperature along the pipe
from the entry point; thus the temperature along the pipe is determined to
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be:

Tw(1, z) = T0 + αz ,

Tw(2, z) = (T0 + αh) + α(h − z) ,

Tw(3, z) = (T0 + 2αh) + αz ,

· · · = · · ·

Tw(n, z) = (T0 + (n − 1)αh) + α(h − z) , (n even)

Tw(n + 1, z) = (T0 + nαh) + αz ,

where 1 < n < L/h refers to the nth column, see Figure 3. The quasi-steady
state (cell) equation is

Tc,xx = −1 + δ(x),

with quadratic solutions in the n cells given by

Tc(x, z) = Tw(n, z) + (x − n) −
1

2
(x − n)2

for
n − 1 < x < n + 1 .

Figure 4 indicates the form of the temperature profile. The base state is a
linear increase across the block, superimposed on this is quadratic solution
which exhibits peaks in the temperature in the region furthest from the
pipes. Generally speaking this solution will not be in global equilibrium.
Certainly the temperature levels near x = 0 will be less than at x = L.
There will thus normally be a redistribution of heat driven by surface driving
conditions. The time scale for global equilibrium to be reached will be of
order L2/κc � t0. If the slab is insulated the above solution is compatible
with this requirement, so the solution is correct. If the surface temperature
around the block is for example required to be constant then the adjustments
will occur to accommodate this requirement. A perturbation procedure can
be used to determine the transient.

Conclusions

The basic aim of water cooling is to decrease the maximum temperature
reached in the concrete to an acceptable level. For the simple cylindrical
model we have obtained explicit expressions for the maximum concrete tem-
perature in the concrete as a function of the driving parameters, and have
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determined expressions for the pipe length and separation distance required
to limit the temperature rise in the concrete to a prescribed level. Our
calculations give a pipe length of 60m for a typical pipe size, flux level and
slab. The general results obtained for this model will carry through for more
realistic models. Preliminary investigations on more realistic networks have
been carried out and surprisingly analytic results can be obtained. When
combined with a financial model, optimum design parameters can be deter-
mined. This is ongoing work appropriate for a postgraduate student.
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