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1 Introductioq

Danisco Sugar is the main sugar producer in Denmark. The sugar is extracted
from sugar beets which are harvested during the beet campaign September — De-
cember. The refined sugar is stored in huge silos and withdrawn on a regular,
but not constant, basis for distribution until the next campaign. Danisco Sugar
utilizes several types of silos for the storage of crystalline sugar. They differ in
construction material e.g. concrete or steel plate silos, dimension, design with or
without a central tower and isolation. Various methods of filling and emptying
are utilized, that is first in — last out, or first in — first out. The silos are equipped
with one or more facilities for sugar conditioning. Those includes temperature
control of walls, control of the condition of the air space above sugar, ability to
blow conditioned air through the bulk sugar etc.

A number of problems arise when storing sugar for long periods. Due to dis-
tribution of heat and moisture the sugar can ‘cake’ or harden and moist sugar is
difficult to empty from the silos. The chemical and microbial stability of the su gar
is influenced by the temperature and moisture distribution. On the other hand un-
der very dry conditions there is a risk of dust explosions. The object is to control
the temperature and moisture content within a lower and an upper limit. Danisco
Development Centre wishes to employ mathematical modelling as a tool for un-
derstanding and predicting temperature and moisture distribution in sugar stored
in silos.

In moisture migration the physical processes which have to be taken into account
are diffusion in the porous bulk sugar, natural convection due to temperature gra-
dients, forced convection due to bulk sugar air conditioning, conditioning of the
air above the bulk sugar and migration of moisture through concrete silo walls.
The temperature distribution is influenced by seasonal variations, the tempera-
ture of the air space above the bulk sugar, remixing processes when filling and
emptying silos, air conditioning and others. The following physical properties
are assumed of importance when formulating models to describe the formation of
temperature and moisture gradients: bulk sugar heat capacity, heat conductivity,
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density, porosity, tortuosity and sorption isotherms. Most will vary with the sugar
quality (that is: crystal size, reducing sugar content and ash content), some with
temperature and moisture.

Mathematical models for moisture and heat conduction in stored cereal grains
have previously been developed [1, 2]. In modelling moisture and heat conduction
in sugar our starting point is to use the approach applied in modelling moisture and
heat conduction in grain and adopt the model to the case of stored sugar, including
the possibility of air conditioning.

In our modelling carried out during the week of the Study Group, we used a num-
ber of simplifying assumptions, such as air flow through the sugar being domi-
nated by forced, and constant, convection, and having processes happening fast
enough, so that local equilibrium holds. (Estimates obtained at the time indicated
that the temperature varies very little over the length scale of the sugar grains and
their interstices.)

2 Sorption Isotherms

In the sugar bulk water can either be adsorbed onto the sugar crystalline in form
of liquid water (moisture) or exist as water vapour in the interstitial air. The latent
heat consumed during evaporation of moisture from the sugar to the air is denoted
by £ (J/kg of Hy0). The moisture content Wy in the sugar is defined as the mass
of moisture divided by the mass of dry sugar. The relative humidity & of the
interstitial air is defined as the fraction p,/ps between the partial pressure of water
vapour p, and the saturation pressure of water vapour p;. In equilibrium the
relative humidity and the the moisture content Wy of sugar are related through a
sorption isotherm at fixed temperature T. In mathematical terms we can express
this relation in the form

B, m, M

Ds
where f is a function depending on the moisture content and temperature. The
sorption isotherms are determined from experimental data and are normally pre-
sented as graphs showing W, as function of the relative humidity at different tem-
peratures. A typical example is displayed in Fig.1. We assume in the present
model that the air-vapour mixture behaves as an ideal gas. The ideal gas law for
vapour reads

Dv = PRy T 2)

where p, is the partial pressure of water vapour in air. The density of vapour
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is denoted p, and R, is the vapour gas con- i
stant in units of J/(kg °K). Here R, is re-
lated to the universal gas constant R = 3
8?17 J/(kmol °K) through R = M, R, where |
M, denotes the molar mass of vapour. A sim- &
ilar expression holds for the partial pressure
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The masses m, and m, are the masses of
vapour and dry air, respectively, in a fixed
volume.

Figure 1: Sorption isotherms for equi-
librium moisture relationship for su-
gar.

The sugar bulk is a porous medium which

contains sugar crystals, liquid water, water

vapour and air. The volume fraction of sugar is denoted ¢. This means that
the mass of sugar in a volume Vj of the bulk is ms = ps¢5 Vo, where p; is the
density of sugar. Similarly the volume fractions of water, air and vapour are ¢,
¢, and ¢, respectively. However, the volume fraction of air and vapour is fixed,
and equals the porosity ¢ of the bulk; the fraction ¢y, is believed to be normally
very small.

With the above notation we can write the absolute moisture content of sugar in
mathematical terms as

W, =M PwPw @

ms . PsPs ,

where m,, is the mass of moisture within the sugar in a given volume Vp of the
bulk and m is the mass of sugar in Vp.

3 The Heat Equation

In the derivation of the equations describing heat conduction and moisture con-
duction, we shall assume thermodynamic equilibrium between the wet sugar and
the surrounding air in the porous media. This implies that the temperature in a
point of the bulk is the same for all phases and that the sorption isotherms can be
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used. Air flowing through the bulk sugar in order to dry or wet the sugar flows
with a velocity u (averaged over a total volume, and not just the pores) and gives
rise to convective transport of heat and moisture. The flow velocity is assumed
here to be constant. We shall assume u to be sufficiently small so that the ther-
modynamic equilibrium is satisfied even in the convective case. This means that
the system must reach equilibrium from an out of equilibrium case much faster
than moisture is transported due to convection. With these assumptions the heat
equation now reads

aT (puwT) 3(paT) (o T)
®sPs CS?)_I— + pwCu autj +eCq aat +eCy avt
_ 0 (w Pw)
4+ V- (0, CyTu) +V - (6pyCyTuw) =V - (kVT) + f-——a;— . 5

The constants Cs, Cy, Cs and C, are the specific heat of sugar, water, air and
vapour, respectively. The constant k is the thermal conductivity of the porous bulk
and it arises as an average of thermal conductivity over all the phases appearing in
the bulk sugar. In the above equation we have used that the volume fractions of air
and vapour are identical and equal to the porosity &. Compared to sugar and water
the heat capacity and volume fraction of air and vapour are so small that we shall
neglect those terms in the first line of Eq.(5). However, we keep the convective
terms. Invoking Eq.(4) the heat equation reduces to

oT o(W,T)
¢spscsa‘ + ¢spstT +&CaV - (pgTuw) + eCyV - (pyTu)

aw,
=V - (kVT) + £osps 8; . (6)

This equation involves four dependent variables, namely temperature T, the ab-
solute moisture content in sugar W;, and the air and vapour densities. From the
ideal gas law these densities can be related to the partial presures of air and vapour.
The partial presures give the relative humidity from which one can calculate the
moisture content W, in air. This is the reason why we need not involve W, in the
dynamical equations.

4 Moisture Migration

The moisture in the sugar does not migrate. The moisture migration takes place
by evaporation and water-vapour diffusion through the air pores and by forced
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convection. Thus in the diffusion and convection equation for moisture migration,
evaporation of water from the sugar acts as a source term and accordingly we have

3 (v pv)
ot

_ 3 (dwpw)

” (7

D,
+ V- (pppopn) =V (_T"V(¢vpv)>

The parameter D, is the diffusion constant of water vapour in air and 7 is the
tortuosity factor of the porous media. Using the fact that the volume fraction of
vapour ¢, equals the porosity & and invoking Eq.(3) together with the ideal gas
law we get o

dupy = E0aWa =& R” 2 ®)
v

Inserting this expression into Eq.(7), neglecting the first term and using Eq.(4)
leads to

oW Pu D, Dy
s L ev. —ev.(22v .
bsps—gmte <R,,Tu> ¢ (r (RUT ®)

In order to use the ideal gas law above, we assume local thermodynamic equilib-
rium of the water vapour. This may not always be a sufficiently good approxima-
tion. The final equation needed is the continuity equation for the air flowing in the
pores. This equation reads

3
—ap;“-+v-(pau)=o. (10)

In the previous section we mentioned that the system is described by four depen-
dent variables. These dependent variables are governed by the heat equation (6),
the moisture migration equation (9), the continuity equation (10) and the sorption
isotherms (1). The forced flow velocity u is determined from Darcy’s law

u=—-uVP — p,gk. 11)

The presure gradient V P is considered an average along the entire height of the
sugar pile in the silo. Accordingly, we calculate an average convection flow w. The
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constant g is the gravitational constant and k is the unit vector directed vertically
upwards. The permeability is denoted by u.

We need to specify initial conditions and proper boundary conditions for our prob-
lem. The boundary condition for the temperature is [4]

aT
ka—n + H(T — Tow) =0, (12)

which states that the heat flow across the silo walls is proportional to the temper-
ature difference between the sugar at the silo surface and the outdoor temperature
Tout- The proportionality constant H is the coefficient of surface heat transfer. The
vector n is the outward unit normal at the surface of the sugar and d/dn denotes
an outward normal derivative. The surface heat-transfer constant will depend on
the the silo wall material, degree of insulation, natural and forced convection. The
boundary condition may also include a black-body radiation term, T*-law. How-
ever, by linearization this effect can be absorbed in adjustments of H.

Boundary conditions for the moisture should also be given. Assuming no migra-
tion of moisture across the silo walls we have

D, o
—(Puvpy) — M- Pyoyu=0. 13)
T on

Moreover, air does not flow across the silo walls and therefore n-u = 0; Eqn.(13)
reduces to

— (o) =0.

T dn

In the case where conditioning air is blown into the sugar pile from below, the
pressure p, can be assumed fixed at the bottom and at the top of the silo of the
stored sugar. From the ideal gas law we can then determine o, at the bottom and
at the top. Furthermore it is expected that the relative humidity of the air blown
into the sugar is known and therefore p, is also known from which p, can be
calculated. In the case where a considerable amount of moisture is transported
through the silo walls, a suitable source term appears on the right-hand side of
(13). At present we will not specify the boundary conditions in further detail as
they will depend on a given silo geometry, construction materials, etc.
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5 Scaling

The heat and the moisture migration equations can be written in dimensionless
variables through the following scaling

x = kiX, y = kY, z =kyZ, t = ki,
T(x,y,2.8) =ke TG, 5. %,0, Wsx,y,2,t) = kus Ws (&, 5, Z, D),

Pa(X,y,2,1) =kpafa(X, .z, D, pu(x,y,2,1)= kpvﬁv(?z, ¥,Z, 1),
Pa(X, }’, Za t) = kpap"a(:ja(ia 29 ;)9 pv(xa y, 29 t) = kpvPNU(—%, 5}‘, Z’ ;)'

(14)

The dimensionless variables are marked by a tilde and the constants have the same
dimension as the original physical variables, that is k, has dimension length, etc.
In normalized variables the ideal gas law (2) for dry air can be written

~ kpa RakT

Da

0aT = paT , (15)
kpa

by choosing the normalization constants in such a way that the factor in front of
p.T equals unity. Out of the three independent normalization constants, we shall
choose ky, and kr according to the values in Table 1. The constant &, is then
calculated from Eq.(15).

kpa = 1.225 kg/m? kr = 298 °K
kpqe = 1.05-10° N/m? ~ 1. atm. | R, = 287 J/(kg °K)

Table 1.

The ideal gas law for the water vapour reads in normalized variables

5 kowRukT . ~ ~
pv=-"L——pT = RpuT . (16)
kpy
In this equation we have chosen k,, = kpa, kpy = kps and introduced the nor-

malized gas constant R, for vapour given by

ﬁ kpva

= Ry . 17
v T an
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Inserting the scaling (14) into the heat equation (6) we obtain

. .. . AW
57 TaV-(p) +mV - (@p,) = VT + 8;. (18)

oT (W, T)
o7 T4

The constants ay, ay and the normalized air flow velocity a are given by

Cy Ca k,oa _ECU kpv 1

ac = —kys, a1 =ée— , a4y =g— =, u=—u, (19)
¢ Cs v Cs psps Cs ¢sps R, ky
and
k C,
k2 = ke, ks = —2kp. 20
X ¢Spscs t ws l T ( )

All normalization constants are thus fixed except the time scaling k;,. The pro-
cesses we are interested in occur over a time scale of order months. Therefore
we choose k; to be 30 days (k; = 2.59 - 10%s). Typical values for the physical
constants entering our problem are stated in Table 2. Some of them are given
by the values found in [1]. As an example the diffusivity of water vapour D, is
calculated from [3]

_9.1.107°7%5

= - 21
v T +245.18 @D

k =0.3J/(s m °K) s =05
ps = 1.610° kg/m3 Cs = 1.2 kJ/(kg °K)
Ry = 462 J/(kg °K) C. = 1.01 kJ/(kg °K)
Cy =1.88kl/(kg °K) | Cy, = 4.18 kJ/(kg °K)
e =04 [ = 2440 kJ/kg

Dy =2.57-10%m?/s | t = 1.53

Table 2.

The moisture migration equation (9) written in terms of the normalized variables
becomes
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W, 7 b
S BV <~£§) = b, V2 (@) , (22)
at T T
and here we have introduced the constants
ek ek Dyk
bi=—"2 and b, = £ : (23)
! G5 pskws Rykr ¢spskwsk;%TRva
In normalized coordinates the continuity equation for air reads
35 -
B V. (Ba) =0, (24)
ot
and the sorption isotherms are described by
bv=bu(W;, 7). (25)

With &, equal 30 days the spatial scaling factor k, takes the value 0.901 m using
the physical variables stated in Table 1 and 2. As the size of a silo is large com-
pared with k,, this means that spatial dependencies of the temperature, humidity,
etc. are predominant at the boundaries of the silo and accordingly we expect that
the model can be treated as a boundary layer problem.

The distance scaling indicated by (20) comes from balancing heat conduction with
rate of change of the temperature. It also gives a similar balance in the water
equation, e.g. (22). Over the lengths comparable with larger silos (say height or
radius of the order of 10 m), these terms cannot balance — except in boundary
layers, for instance near the silo wall. However, it is found, for speeds of flow
used in forced convection, that the convective term (in the upward, z, direction)
still balances the time rate of change in (22). Thus, returning to dimensional
variables, away from the boundary layer(s) temperature T is constant (to leading
order) while water content satisfies, approximately,

oW 0 Dy
= =0,
bsps = +eus (R,,T)

with p, and W being related through the relevant sorption isotherm; this is a
nonlinear, first-order, hyperbolic equation. (With & and u being constant, u is
constant and directed vertically upwards, the z direction.) In the boundary layer
near the silo wall the diffusive terms in the horizontal, say x, direction (normal to
the wall) now play a role and the two-dimensional problem,

aT 8T AW, E] (p,,) eD, 32 (pu>

Corm =12 i
GutsCogr kg s by ot T \RoT T 02 \R, T




46 DANISCO: Temperature and Moisture Gradients in Sugar Silos

has to be solved. (The space variables x and z should be scaled differently from
cach other in the nondimensional problem.) It is seen that T is independent of
z (away from any boundary layers near the top and bottom of the sugar) and, as
it satisfies the linear heat equation, can be determined explicitly. The remaining
problem for the moisture is then a nonlinear convection diffusion equation (the
two transport mechanisms take place in different directions). It is also inhomoge-
neous due to the presence of T (x, 1).

Tt should be noted that the other terms, including the effects of latent heat and of
specific heat of adsorbed moisture, were found, on carrying out the scaling, to be
negligible.

In solving the coupled equations (18, 22, 24, 25, 15) more generally, for a given
silo geometry, a numerical approach seems to be the only adequate way to arrive
at a useful and practical solution. A simple and also reliable method is the method
of lines. Here the space is discretized according to x = idx,i =0,1,..,ny,
and similarly for the y- and z-directions. All the dependent variables are defined
at discrete points (i, j, k). Spatial derivatives are replaced by central differences
of second order in the discretization lengths dx, dy and dz, and inserted into
the governing system of partial differential equations. The resulting system of
coupled ordinary differential equations (ODEs) can now be solved numerically
by using standard ode solvers. Alternative methods are e.g. the finite element
method which is particularly suitable for silos with complex geometry. In refer-
ence [1] a control volume discretization procedure has been employed in order to
solve moisture migration in stored grain. This approach could be adopted to our
problem and formulated in such a way that silos with complex geometry can be
handled.

Concerning equation (25) we need an analytical function of the sugar moisture
content and temperature which approximates the sorption isotherms shown in
Fig.1. For grain an example is presented in [1].

6 Concluding Remarks

The main result of the above work is the derivation of a mathematical model for
moisture migration through stored sugar. The model includes air conditioning of
the sugar. We have assumed thermodynamic equilibrium between the water in
the sugar and the vapour in the interstitial air described by the sorption isotherms.
This assumption may be invalid if air conditioning is employed with a high flow
velocity, due to the time necessary to equilibrate. The flow of the conditioning
air is determined from Darcy’s law. This equation can be solved in conjunction
with the heat and moisture equations. However, it is believed that the air flow is
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approximately constant, and accordingly Darcy’s law is used to calculate a uni-
form flow velocity from the bottom to the top of the silo. Scaling of the governing
equations indicates that the problem has at least one boundary layer.

The next step is to solve the model equations. For practical and realistic situations
we should apply numerical methods in computer simulations. A number of meth-
ods are available. We have mentioned three of which the method of lines may be
the fastest and most easy to implement on a computer. This method is suitable
for silo geometries which are not too complex. Otherwise one could use the finite
element method or a finite volume method for more complex geometries. The
content of sugar in a silo is lovered through the year and the top surface of the
sugar pile may be rather irregular.
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