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1 Introduction

In this report, we consider the holding problem for a ship with a given arrangement
of thrusters, i. e., how to ensure that a ship, floating on the surface of the ocean,
stays very nearly at rest with respect to the sea bed. The aim is to determine the
region of forces and torques that can be obtained by varying the directions and
powers of the thrusters. In addition, for a given force and torque in this region, we
would like to find, in real time, the directions and powers that should be assigned
to the different thrusters.

It is important to know the holding capability when faced with the task of to keep
a ship, or oil rig, at a fixed position relative to the sea bed. Unless the thrusters
can be arranged such that they cancel the external forces from wind, waves, and
currents, the ship/rig will drift. This can have unfortunate consequences. If an oil
rig, for instance, unexpectedly starts drifting, the pipes might leak oil directly into
the sea. However, knowledge of the holding capability, and the external forces in
different weather conditions, makes it easier to avoid this situation.

In the section 2 we consider the problem as a discretised optimization problem and
outline a procedure which give a solution to the problem. In section 3 we consider
a Lagrangian formulation where we use Lagrangian multipliers to represent the
side conditions. Finally in section 4 we have used Maple® to analyse a slightly
different Lagrangian. ‘ ‘

2 Solving the Problem as a Discretized
Optimization Problem

In the solution described here, we assume that we are given the two components of
the force Fy and Fy and the torque Mz, needed to compensate for external forces
that acts on the ship, from a controller on the ship. We are not able to change the
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sampling period or the used strategy of this controller. We consider the following
two problems:

1. The maximum holding capability problem

2. The dynamical positioning problem

2.1 The proposed solution to the problem

We call the external forces from
wind, current and waves for the

(Fy, Fy) / /\ 7 wind vector and denote it W. The
/ -

vector (Fyx, Fy, MZ)T, describing

(i, Y1) e%—- the two components of the force
! and the torque needed on the boat
is called the force vector and is de-
. f, M
(fixr fiy) \/ \—/ ‘ noted F. A force vector is the sum

. ) ~ of the contributions from all the
Figure 1: T.he required forc.:e and torque are mdl; thrusters on the ship. Here we will
cated by thick arrows, while the arrangement of .1\ 15y the F-space, the space

thrusters are indicated by thin arows. of all possible vectors F. The re-

lation between W and F is nonlin-
ear, but for any given W there corresponds a unique vector F, and to each F it is
possible to determine the possible combinations of the external forces W.

The first problem may be considered as a static optimization problem in the F-
space. This is because the maximum holding capability problem is to determine
the maximum wind that the boat is able to resist keeping a fixed position and
orientation. Because of the nonlinearity between the wind vectors and the force
vectors we prefer to work in F-space. That is, we want to determine the envelope

' Er containing all the force vectors that can be constructed given the limitations
on the thrusters. This is done by discretizing the F-space and for all possible
orientations of the force vectors determine the maximum norm.

The force vector is as mentioned the sum of the contributions from all the thrusters
on the ship. The ith thruster contribute with the force components fi, and fiy
that acts on the ship on the position (x;, y;). Each thruster has a characteristic that
depends upon the orientation of the thruster.

The determination of the maximum length of a force vector in a given direction is
an optimization problem. We have as mentioned the constraints on the thrusters.
Assuming convexity one can directly make use of the Kuhn-Tucker condition for
an extremum and thereby obtain the maximum-force envelope E, see for exam-
ple [1]1. In the case of non-convexity one has to check the value at each extrema.
The latter is what we do.
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Having determined Er one is able to consider the second problem, the dynamical
positioning system. Again this is an optimization problem. If we consider the
case where the thrusters are able to compensate for the applied wind, i.e. we are
inside EF, then we are looking at the following. At a given time ; the controller
compute a force vector F; that is needed to control the position and orientation of
the ship. We look at the related optimization problem:

min y_ (i} + £i3)
i=1

given the constraints on thé n thrusters etc. That is we want to find the most
favorable solution with respect to the consumed energy. Again we are going to
check the value at each extrema that are found by the Kuhn-Tucker conditions.

2.2 Limitations and enhancements

Tn the solution that we have suggested we are solving a discretized optimization
problem. The reason for this is because the characteristic of the thrusters were
discretized. We are able to find the finite set of local extrema by making use of
the Kuhn-Tucker conditions.

Now, it is possible to obtain a continuous description of the characteristics of
the thrusters. Therefore, in this case one might want to consider the continuous
optimization problem instead. It is obviously not the case that it is a convex opti-
mization problem. For example the angular-dependence of the effectiveness of the
thrusters varies, due to jet-streamlines, from about 10% to 100%. To give a rough
estimate on the holding capability, our discretized solution is perhaps sufficient,
but with respect to the viewpoint of control theory, it should be noted, that the en-
velope that we have found is smaller than the actual one due to the discretization.

The strategy of control at the moment is first to keep the orientation correct then
the x-coordinate of the position and finally the y-coordinate, but all these condi-
tions are obtainable when working inside Er. Therefore, it would of course be
useful with more precise values on the maximum norms of the force vectors to
make the control of the ship better.

There are several techniques to solve continuous non convex optimization prob-
lems, see for example [4]. When the problem is to determine Er there are at least
the following two useful methods: simulated annealing and dynamical annealing.
These stochastic methods quickly converges to the interesting regions in the op-
timization space. Both techniques are roughly based on the idea of modeling the
problem as a physical system where one is pumping energy into the system and
then slowly pulling the energy out again.
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If we have determined the maximum holding capability envelope it is possible to
determine whether a given desired force vector is inside or outside the envelope.
Now, there are some inertia in the system. When going from time 7; to time #;
the maximum angle the thrusters are able to turn is 6 degrees. What this means is,
that if we at time #; are at a given point in F-space then we are only able to operate
within a finite subset inside the envelope at time #;.+1. But having determined Ep
the choice of control strategy should be much easier.

3 A Lagrangian Formulation

In the previous section the holding capability of a ship with » thrusters was de-
termined by searching through the 2n-dimensional configuration space. Since the
number of possible configurations in this phase space grows exponentially with
n, for any given discretisation of the variables, this search through phase space
typically takes 4 — 5 hours of computing time even on a reasonably powerful
machine.

The method of solution proposed in this section should be considerably faster. We
write down a Lagrange function consisting of the function to be maximised and a
number of extra terms representing the constraints on the variables. We show that
extrema of this Lagrangian can be determined by finding extrema of n real-valued
functions on the real line. The number of calculations needed to determine the
extrema and their positions in phase space is proportional to n.

3.1 Mathematical formulation

Let (x;, y;) denote the position of the ith thruster relative to the centre of mass of
the ship. Let 9; denote its direction and f; the power. Due to the presence of other
thrusters and shielding by the hull, the absolute value of the force that a given
thruster exerts on the centre of mass depends not only on the power f; but also on
the direction 6;. In the model used at DMI, the effective force in a given direction
9; 1s the product of f; by an efficiency factor, #; (6;).

Given an external force and torque acting on the centre of mass of ship, we
would like to produce an opposing force and an opposing torque by means of
the thrusters. Let (Fy, Fy) denote the desired force and M, the desired torque.
Our task is then to find f; and 6; such that,

Fe =Y fini(6)) cost;,
i
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Fy = Zfi 1n:(6;) siné;,

i
M, = Zfl (—y,- cos6; + x; sin@i).
i

Since the thrusters are only capable of finite power, we have in addition #n con-
straints in the form,

fmmfﬁffmax, i=1,"'7n' (2)

The lower bound fiin will usually be negative, as the thrusters are capable of
reversing.

In this report, we define a ship’s holding capability as the collection of ‘demanded’
forces and torques (Fy, F, M) for which the preceding system of equations ad-
mit a solution. The determination of the holding capability is simplified by the
fact that the holding capability is a star-shaped set. That is, if (Fy, Fy, M) is a
point within the ship’s holding capability, then every point on a line segment from
the origin (0, 0, 0) to (Fx, Fy, M) is also within the ship’s holding capability.
This is a simple consequence of the right-hand-sides of Egs. (1) being linear in
(f1, ..., fu)- Hence, there is no loss of generality in restricting our attention to
values of (Fy, Fy, M,) that lie on a given straight line passing through the origin.

For each pair of real constants « and 8, consider the lines in the space (Fy, Fy, M)
parameterised by F as follows,

Fy=aF,,  M,=BF,. (3)

(For the special case where Fy = 0, consider instead a linear relationship between
Fy and M,). By Egs. (1), these equations can be written as follows,

> fini() (sin; — e cosé;) =0, @)

1

D" fimi(6) (—yi cos6; + x; sinf; — B cosé;) = 0. (5)
i

Using the simpler notation,

gi(6) = 1;(6)) (sin6; — & cos;),
hi(6;) = n;(6;) (—y; cosb; + x; sinf; — B cos6;), (6)
ki (6:;) = n;(6;) cost;,
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we get
Fx:Zfiki,
i
Fy_“Fx=Zfigi,
i
M,—BF.=)_ fih.
i

Note that g;, h;, and k; are known functions of 6;, while the f; are variables. The

full statement of our problem is then: find the global maxima and minima of

Fo=) fiki@), (7)

subject to the constraints
> fiai®) =0,
i
> fihi®) =0, ®)

i
Juin < fi = fmax, i=1,...,1.

3.2 Local extrema

The optimization of F}; in (7) subject to the constraints in Egs. (8) is of a classical
type and has a well-known method of solution (e.g., [2], [5]). Functions describing
the constraints are multiplied by undetermined constants - the Lagrange multipli-
ers - and added to the function to be optimized, Fy. This procedure yields the
following Lagrangian function,

L(f1,... :fnael’---en)=Fx+)"1(Fy’"O‘Fx)+)"2(Mz"',BFx)
+ 2w (i = fain) + D K (froax = i),

where Ay, A7, the u; and the «; are the undetermined Lagrangian multipliers. The
advantage of optimizing the Lagrangian L instead of the original function F, is
that an optimum of the former automatically satisfies the constraints.

The u; and the «; are constraints on the domain and they are set to zero unless
Ji = fmax O f; = fmin, respectively. However, A1 and A; are not set to zero at
the boundary.

J. C. Larsen, H. Rasmussen, and A. Sgrensen 55

Using the functions k;, g; and h; that were defined above, the Lagrangian may be
written as follows,

L= Zfz (ki + A1 g + Ao hi + pi — ;) +Z(—Mi Jmin + i fmax). (9

The first-order condition for having an optimum is that the gradient of L with
respect to (f1, ..., fu,01,...,6,) vanishes. This condition gives 2n equations
to satisfy, one for each i,

ki + Mg + Ak +pi —i; =0, (10)
ki +Agl +rhl =0, (11)
We now consider the solution in the cases where n, n — 2 ..., and so on, of the

thrusters are set at either minimum or maximum power.

Case I: all n thrusters on full power

When all n thrusters are set at either minimum or maximum power, Eq. (10) con-
tains either a u; orak; foreachi = 1, ... n. For any given choice of the directions
{6;}, it is always possible to choose this constant such that Eq. (10) holds. Equa-
tion (10) then puts no restriction on 6;, and we need only consider Eq. (11).

To determine whether a given solution {6;};=1 _, of Eq. (11), for each i, is in-
deed a local extremum for Fy, one can consider higher-order derivatives of the
Lagrangian L. Sufficient and necessary conditions for local extrema can be found
in [2]; note that we consider only necessary conditions here. If this strategy of
solution were to be implemented numerically, we would have to solve, for some
choice of A1 and A, (see the comment in the summary), the n equations repre-
sented by Eq. (11). However, the number of calculations needed to solve these n
equations grows faster than n. Since the efficiency factor n; of the ith thruster is
influenced by the relative positions of all other thrusters, the functions k;, g; and
k; depend on n. Consequently, in the general case, the number of solutions for
{6:}i=1,.n in Eq. (11) is of order n? rather than n.

However, it is possible to reduce the complexity to one of order n by finding 6;, in
the case of a maximum, as follows,

ki(0;) + X1 8:(6:) + A2 i (6;) = o gax [6:(0) +A18:0) + A hi(0)].  (12)

The algorithms used for finding extrema solve this problem in a time that depends
only on the discretisation chosen and not on the number of local maxima in the
functions f;, g; and h;. We have thus reduced the original problem from one that
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grows exponentially with the number 7 of thrusters to one that grows linearly with
the number of thrusters.

Finally, note that A; and A, are undetermined. This shows that the directions
{6;} yielding extrema of F, form a two-dimensional surface in the n-dimensional
space of all possible directions. The surface is two-dimensional because we have
imposed two constraints. These two constraints are represented by the parameters
a and S in Egs. (3).

Case II: exactly n — 1 thrusters on full power

Let us suppose that the jzk thruster is not on full power. That is,

Jmin < fj < fmax, (13)

where it is important that strict inequality holds on both sides. The constraints

associated with u; and «; are now passive, and Eqgs. (10) and (11) become, for
i=j,

kj—I—A.lgj-l-)»zhj =0, (14)
K+ a1 gh+ M, =0,

Once 0; is given, the k;, k;., 8j --- and so on appearing in Egs. (14) are deter-
mined. We then have two linear equations with two unknowns, A; and A,. In
general, this system of equations can be inverted and thereby A; and A, are de-
termined uniquely as functions of j. The exception is when the determinant of
the system is zero. Then one or both equations are negligible (either one is lin-
early proportional to the other or both are trivially satisfied; we do not discuss
these cases in detail, as they are non-generic, but they represent no difficulty in
principle). The solutions for all other values of i are determined as before, from
Eq. (11), with the caveat that A; and XA, are now the solutions of Egs. (14). As
in Case I, we obtain a two-dimensional collection of solutions, but now parame-
terised by ©j. f)-

Note that the 6; with i # j are determined indirectly by 6; through A; and A,.
Thus, depending on which thruster is not on full power, different solutions appear.

Case I1I: exactly n — 2 thrusters on full power

In this case, two thrusters are not on full power. If these two thrusters are number
J1 and jp, with j; # j,, then an extremum exists only if we can solve Egs. (14)
for both j = jj and j = j,. If we consider first the case of J = J1, then the
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possible choices of A1 and A, form a closed curve in the plane, parameterised by
;1. Similarly, if we consider the case J = J2, then we get another closed curve,
this time parameterised by @ j2. Since we have to be on both curves at the same
time, the admissible values of A1 and ), are the points of intersection. There may
be any number between zero and infinity of such intersection points. (The latter
happens when the efficiency functions 5 j1 and n ;> are identical).

Case I'V: n — 3 or less thrusters on full power

Now we have to satisfy Eqs. (14) for three distinct values of J. Since we have
six equations, but only five variables (the three directions and the two Lagrange
multipliers), this is impossible in the generic case. Hence, we obtain a “Sailors
Lemma’,

For a ship with n thrusters, where n > 3, at least n — 2 thrusters are needed to
achieve maximal force and torque at the same time.

But the practical relevance of this lemma is questionable, to say the least.

3.3 Summary of method

The method proposed in the previous section for solving the holding problem can
be summarised as follows:

1. Decide which « and 8 to use in Egs. (3).

2. Given the efficiency factors #;(6;), for i = 1, ...n, construct the functions
Ji» & and h; in Egs. (6).

3. Determine the local extrema as described under cases I-IIT in the previous
section.

4. Compare these local extrema to see which are global minima or maxima. The
corresponding directions {6;} and power allocations { f;} are then solutions to
the holding problem for this particular choice of & and B.

This procedure is repeated for as many values of & and 8 as desired.

As for the third point, it is important to note the following. If the functions f;,
& and h; are all smooth, then it is sufficient, in case I, to optimize for only one
choice of A and ;. Geometrically, the maximum of F, occurs at a point where
the gradient of Fy is orthogonal to the surface on which the two constraints are
satisfied. The collection of points at which this conditions is satisfied is a surface
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parameterised by A1 and A;. Since the gradient of Fx is orthogonal to this surface,
F, is constant on the surface and the value of F, at any point on the surface is the
maximum. Similar simplifications are possible for cases II and 1.

4 A Maple® Program

4.1 Statement of the first problem

We are given a floating oil rig influenced by wind and current. There are two com-
ponents of the total force on the oil rig, the x component FX, and the y component
Fy, in a rectangular coordinate system xy. This force can change the position of
the oil rig. In addition to this there is a moment Mz which can change the direction

of the vessel.

To compensate for the changes the force and torque can give we have n thrusters
at positions (x1, y1), ..., (xn, yn) on the ship. This means we want to satisfy the
equations

n
Fx=7)  fi
i=1
n
Fy = Z fyi
i=1
n
Mz = Z(fxi yi — fyi %i)
i=1
We formulate this as an optimzation problem: Minimize the energy function
n
E=Y (f+50)
i=1
subject to the formulas above.

4.2 Solution to the first problem

We start by solving this problem. For the sake of simplicity we let n = 4.

First we solve for fxi in the first equation above and for fy in the second. Finally
we isolate fxp from the third equation.
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> restart;
>  fxl:=Fx-sum(fx[i],1=3..4)-£fx2;

fxl == Fx — fx3 — fxg — fi2
> fyl::Fy—sum(fy[i],i:2..4);

Al =Fy—frn—fHs — s
> eqg:=Mz-sum(fx[i] *v[i]-fy[1i] *x[1i],1=3..4)+fy[2]
> *X[2]+fyl*x[1]—fxl*y[l]—fo*y[Z];

ew=m—mm+M%7MM+MM+MM+WPﬁrﬁVﬁ@M
— (Fx — fiy —fxg — i) y1 =32 »2

> fx2:=solvel(eq, £x2);

fx2 1= —(—Mz + f3 y3 — fy3 %3 + fra ya — fa x4 — 2 X2 — X1 Fy + x1fyy + x1/y3 + X1/
+ y1 Fx — y1fe3 — y1.f%a) /(—y1 +y2)

Now the energy function E that we wish to minimize is
> Ezzsum(fx[i]A2+fy[i]A2,i:3..4)
+Ex1M2+Ex272+E£y172;
E = frs? 1957 -+ fig +Pa + (Fx— firy — fra + (~Mz + e y3 = fy3 %3 -+ fa ya = fa x4
 foyis — 51 Fy -+ x1fya + 5y + X151 Py =) [y
S (—Mz + firy y3 — fy3 X3 + fxg ya — yaxa — o X2 — X1 Fy 51/ + x1fy3 + x1/94
oy Fr— yifey =y (32 By = fn = fs =)

To find the minimum we compute the following partial derivatives
> eqgl:=diff(E,fx[31])
> eqg2:=diff(E, fx[4]):
> eqg3:=diff(E,fy[2]):
> eqgd:=diff(E, fy([31)
> eg5:=diff(E, fy(4])

and solve for the remaining variables fx3, fx4, fy2, 3, fya.
>~ gol2:=solve({eql,edq2,eds3, eqgd,eqgb}, {fx[31], fx[4],
fy (21, £y (31, fy[41}):

So for small values of Fx, Fy and Mz we have found the forces the thrusters should

give.

Here are the formulas for fx3, fxa, fy3, and fys:
> fxx3::subs(solZ,fx[3]);fxx4::subs(solz,fx[4]);
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fxx3 = (3x22Fx—-x2y2Fy——2x2x1 Fx—2x2Fxx3 —x2VaFy+3xy3 Fy —xay1 Fy
~2x2Fxx4—FX}’2y3+3Mz}'3—Y1ny3+Fxx32+x12Fx-sz2-—Mz)’4+ny22
— Mzyy + 12 Fx — Fxys ya -+ Fxys® + Fxx4?) /(3)'22 —2y294 =212 —2y3 )2
—2}’3}'1+12x22+3)'42+4X32+3y12+4X42—2)’3}’4—2)'1)'4—89623644-3)’32
+4x%2 —8x3x3 —8x1x2)
fod == (32 Fx —2xp Fxx3 +3x2y4 Fy — xay3 Fy —xa y2 Fy — X2 y1 Fy — 2 x2 %1 Fx
—2x2Fxx4—sz3+Fxx32+ny32+x12Fx-—MZy2-|-3sz4+ny22——sz1
+y12 Fx — Fxys ya — Fxy3 ya — y1 Fxys + Fxx4%) /(3 y22 = 2y2y4 =212 - 2372
—ZY3y1+12x22+3y42+4x32+3y12+4X42~2y3)’4—2y1y4—8x2x4+3y32
+4x12-8x2x3—8x1x2)
> fyy3:=subs(sol2,fy[3]); fyy4d:=subs(sol2, fy[4]);

fy3 = —(—Fxyrx3+Fxyrxp — AMzxp — 4Fyx22 + y3 Fxxg — y3 Fxx3z +4 Mz xs
— y1 Fxx3 + 4x2 %3 Fy 4 y1 Fxxa — ya Fxx3 + ya Fxx2) /(3 22 =2y =2y 3

— 293y =293+ 123522 + 3y +4x32 +3y12 +4xs® —2y3y4 —2y1 94 —8x2%4
+3y32 +4x12 — 8x2x3 — 8 X1 X2)

fivéd = —(—4Fyx22 + ya Fxxy +y1 Fxxy + y3 Fxxa + Fxy, x2 +4x Fy x4 — 4 Mz x2
— y3 Fxx4 +4Mzxq — ys Fxxq — Fxys x4 — y1 Fxx4) /(3 y22 =294 =251 52
—2y3y2 =23y + 1252 43y +4x3 312+ 45> —2y394 —2y1 94 — 812 X4
+3y3% +4x1% — 8x3x3 — 8x1 %7)

fxxl:=subs(sol2, fx1) :

fxx2:=gsubs (s0l2, £x2) :

fyyl:=subs(sol2, fyl):

fyy2:=subs(sol2, fy[2]):

vV V. V V

We can easily substitute values for the constants by using the MAPLE command
subs:
> sgsubs ({Mz=4,Fx=13,Fy=5,x[11=0,x[2]1=2,x[3]=2,
x[41=3,y[11=1,y[2]1=1,y[31=2,y[4]=2},fyy4);
11
12

4.3 Numerical experiment
Here we perform a numerical experiment by letting Fx, Fy and Mz increase along a

line through the origin and then solve for the values of the thruster forces. We have
found the solution to the control problem above for small wind speeds. However
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at some point one of the motors will reach its maximum capability and then we
have a different control problem.

We shall impose the natural restriction that each motor has only a limited amount
of power according to inequalities

—&i(fxi) < fyi < &(fx)
where the g; are smooth functions. For the sake of simplicity we set

> x[1]:=0:x[2]:=2:%x[3]:=2:x[4]:=1:y[1]:=0.2:
yvi2):=1:y[3]:=2:y[4]:=2:

The solution to this problem can be found by using the Kuhn Tucker Theorem.
This theorem says that if we want to minimize E (fx, fy) subject to the constraints

0=hl(fi i) =Fx— ) fu

i=1

0=h2(fx, i) =Fy— ) foi
i=1

0 = h3(fx, f7) =MZ—Z(fxi yi — fi %i)

i=1
and

ki(fx, fy) = gi(fxa) — fya =0

we have to solve the equation

grad E(fx, ) + Y A grad_hi(fx, fy) + 1 grad _ki(fr, ) (%)
i=1

where A1, A2, A3, and 1 are real constants to be determined. This is done by the
following MAPLE code.

> B:-matrix(8,4,[(-1,0,-y[1]1,0, -1,0,-v{2],0,
"1,0,‘Y[3],O, —1,O,—Y[4]/H, Ol_llx[l]lol
Ol—llx[z]lol OI_1IX[3]IOI 01—1/X[4]1_1]);

-1 0 -2
-1 0 -1

0
0
0
-1 0 -2 H
0
0
0

-1
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In the first three columns of B we have grad hi, grad ho, grad k3 and in the last
we have grad k;. We have let H = g/ (fx4).

> with(linalg):
Warning, new definition for norm
Warning, new definition for trace

The Kuhn Tucker equations (x) are

> egn:={seqg(evalm(B&* (vector [11,12,13,ml1]))) [i]
>  42*vector ([fxl,fx2,fx[31,fx[4]1,£fyl, fyl[2],fy([3],
fy[411)[11=0,1=1..8)1};

eqn = {—12+213+2fy3 =0, =12+ 213+ 2y, =0, =l — 213+ 2fx3 =0,
U 213+ Hml+2fy =0,
— 1] — 213 + 2.500000000 Fx -+ 2.500000000 fx; -+ 2.500000000 fx; — 2.500000000 Mz
— 5.000000000 f7; — 2.500000000 7 — 5.000000000 3, = 0,
— 24+ 2Fy —2f9y — 23 — 2fya =0, =2 +13 —ml + 2y =0,
_ 1 — I3 + 2.500000000 Mz — 4.500000000 f5; + 5.000000000 fy; — 4.500000000 f,
+2.500000000 fy + 5000000000 f3, — .5000000000 Fx = 0}

> fy[4]:=H1;
f}’4:=HI

Later we will let HI = g; (fx4). For the case of one motor on maximum capability
the solution is

> gol:=solve({egn, {11,12,13,ml1, fx[37, £x[4] ,Evi217,
fy[31});

sol .= {

100. Mz + 114. Fy — 214. HI + 130. Fx+35. H Fy — 105. H HI
106.+5. H ’

—100. Mz + 114. Fy —214. HI + 130. Fx+35. H Fy — 105. H HI

Sz = 1428571429 106 75.8 ,

fry = —.07142857143(—210. Mz — 280. Fy + 70.HI — 98. Fx —422. H Fy

+1313. HHI —75.Mz H + 80. Fx H)/(106.+ 5. H),

—30.Mz — 40. Fy +10. HI +39. Fx+7. HFy — 28. H HI

106.+5. H ’
12 = — 2857142857 —200. Mz — 514. Fy + 314. HI + 260. Fx 4 35. H Fy — 1I5. HHI’
106.4+5.H

frs = .07142857143(210. Mz + 280. Fy — 70. HI +98.Fx —206. HFy+ 699. HHI

—25.MzH +50. FxH)/(106. + 5. H),

11 = .1428571429(—390. Mz — 520. Fy + 130. HI + 878. Fx — 66. H Fy + 139. HHI

—25.MzH +50. FxH)/(106. + 5. H),

—50. Mz — 314. Fy + 1006. HI 4- 65. Fx

106.+5. H

fry = 1428571429

13 = —1.428571429

ml = 2857142857

}
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> fX3:=subs(sol, fx[3]):

In the MAPLE program below we shall need all the motor forces, so we have to
assign values to all the fx;, fy;.

> fY4:=H1;
fY4 = HI

fX1:=subs
fyl:=subs(sol, fyl):

(sol,fx1):
(
fX2:=subs (sol, £x2) :
(
(

vV V. VvV V

fy2:=subs (sol, fyl[2]):
> fY3:=subs(sol,fyl[3]):

Just to consider an explicit example we shall use the motor constraint function
> gl:=x->sqrt(2072-x72/2);

1
gi:=x — /400 — Exz

> Hl:=gi(fx[41);

HI := = /1600 — 2 fx,*

1
2
> H:=diff(H1, fx[4]1);

Jra

/1600 — 2,2

To find the solution to the optimization problem we solve the following equation
for fxs. Once this is solved we can insert in the formulas for the fx; and fy;.

> sgoll:=fx[4]=subs(sol, fx[4]1);

H:=—

soll = fx; = —.07142857143(—210. Mz — 280. Fy + 35.00000000 ~'%1 — 98. Fx

Jxq Fy Mz fxy Fxjfx, / Jxa
+422. — 656.5000000 fx, + 75. — 80. 106. — 5.
P V1 «/%1) ( Nk

V%1
%1 = 1600 — 2fx,”

Here we plot the right hand side of the above equation for a particular choice of
Fx, Fy and Mz. We display it below. We can solve the equation soll numerically
using the MAPLE command fsolve once we assign values to Fx, Fy, and Mz. This
is done below.
> plotl:=plot(rhs(subs({Fx=11*10,Fy=11*5,
Mz=11*4},s011)),fx[4]=-24..28):

> eql2::subs({Fx:lB*lO,Fy:l3*5,Mz:13*4},soll);
fX4:=fsolve(eqgl2, fx[4]1,20..28);
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eql2 = fx, = —.07142857143 (— 41860. + 35.00000000 /1600 — 2 fxg?

+20930. P 6565000000 m) / 106. — 5. P
|/ 1600 — 2fx? /1600 — 2,65,

X4 := 23.85218616

We can find the solution to equation soll graphically by plotting the right hand
side and left hand side of the equation. The point of intersection gives the solution.
> with(plots):
> plot2::plot(y,y:—24..28):
> display(plotl,plot2);

Exf4!

We can see that the plot agrees well with the numerical solution fx4 = 23.85 that
we found above using fsolve.

4.4 Output of the MAPLE program

We have chosen to omit the MAPLE program used to perform the numerical ex-
periment. Below we display the output of the program, showing the motor forces
found by the solution formulas above as we increase (Fx, Fy, Mz) along the line

t(10,5,4), teR,

through the origin.
> x0:=zevalf (sgrt (400*2));

x0 = 28.28427124
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> plotl::plot(gi(x),x:—XO..XO):
> display(plot3,plotl,plotZ,plot4,plot5);

Motor 1: diamond, Motor 2: cross, Motor 3: box, and Motor 4 (reaching the
boundary of the constraints): circle.

4.5 Maximum capability

In the following we shall determine the maximum capability of the oil rig, that
is we shall determine the values of (Fx, Fy, Mz) that we have motor power to
compensate for.

We shall use the motor constraint function

1
gi(fra) = 400 — 237,

and we plot it below.

157

-10 10 0 10 20
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To find the maximum capability of the oil rig we discretize the values of the motor
forces fx;, fy; and plug into the formulas for Fx, Fy, Mz. Finally we plot the
resulting (Fx, Fy, Mz) values.

> Ll:=[evalf(seqg(seqg(seqg(seq([i*(28/3),]*(28/4),

k*(28/4),1*(28/4)]1,1=-3..3),3=-3..3) ,k=-3..3),
1=-3..3))1:

> x->(gi(x[1]),gi(x[2]),gi(x[3]),9i(x[4]),x[1],
x[2],x[3],x[4]);

x — (gi(x1), gi(x2), gi(x3), gi(x4), X1, X2, X3, X4)

> L2:=map (x->[gil(x[1]),gi(x[2]),gi(x[3]),gi(x[4]),
x[1],x[2],x[3],x[4]],L1):

> x[1]1:=0:x[{2]1:=2:x[3]:=2:x[4]:=2:
vI[1]:=1l:v[2]1:=1:y[3]1:=2:y[4]:=2:

> IL3:=evalf(map(z->[sum(z[i],i=1..4),
sum(z[j1,3=5..8),sum(z[k]l*x[k]l-z[k+4]*y[k],
k=1..4)1,L2)) :

> with(plots):
The following is a plot of the values we have motor power to compensate for in the

(Fx, Fy, Mz) coordinate system. Above we only discretized part of the boundary,
just to show the idea involved.

> pointplot3d(L3,style=point, symbol=cross,
color=blue, axes=—FRAMED) ;

J. C. Larsen, H. Rasmussen, and A. Sgrensen 67

4.6 The case with two motors on maximum capability

When two motors are on maximum capability the Kuhn Tucker equation becomes

grad E(fx, fy) + Y _ li grad _hi(fx, fy) + > mi grad_ki(fx, f) =0,
i=1 i=1

and this is solved below for n = 4. We use the notation

0
{{l—a—mkl(fx, )
Ki = ki(fx, fy)

> restart;

The first column in the matrix B below is grad %1, the second is grad A2, the third
is grad A3 and the last four are grad ki.

> B:=matrix(8,7,[-1,0,x[1]1,0,0,0,H1,
-1,0,x[{2],0,0,H2,0, -1,0,x([31,0,H3,0,0,
-1,0,x[4],H4,0,0,0, 0,-1,-y[17,0,0,0,-1,
0,-1,~yI[2],0,0,-1,0, O0,-1,-y[3],0,-1,0,0,
O/_ll—y[4]l—'1lololo]);

0 xx 0 0 0 HI
0 x» 0 0 H2 0
-1 0 x 0 H3 0 0
0 x, HL 0 0 0
0 -1 —yy 0 0 0 -1
0 -1 =y, 0 0 -1 0
0 -1 —y3 0 -1 0 0
0 -1 —y -1 0 0 0

> with{linalg):

Warning, new definition for norm
Warning, new definition for trace

The Kuhn Tucker equations are
> egn:={seg(evalm(B&* (vector([11,12,13,m1,m2,0,017)
)) [1]+2*vector ([fx1, fx2,fx[3], fx[4]1, £yl, £y [2],
fy[3],£y[4]1)[11=0,1i=1..8)};

eqn = (=11 +x413 + HAml +2fx, = 0, =12 — y1 3+ 2fy1 =0, =12 — 213+ 2fp, = 0,
—12=y313—m242fy3 =0, =l +x2 13+ 22 =0, —I12 — y413 — mI + 2y, = 0,
U 4+ X313+ H3m2 + 2f3 = 0, =11 + x1 13 + 2.l = 0}

R




B
|

68 Danish Maritime Institute: Dynamic Positioning System

Below we assign values to some of the motor forces assuming that the motors 3
and 4 are on maximum capability fys = K4(fxs) and fy3 = K3(fx3).
> fy[4]:=K4;

f)’4:=K4
> fy[31:=K3;

fy;3 ==K3
Recall that we solved for fx1, fy1, fxz in the first three equations of section 4.1.
> fxl:=Fx-sum(fx[1],1=3..4)-fx2;
> fyl:=Fy-sum(fy[i],i=2..4);
Sl := Fx — fx3 — fxg — fx2
fyl := Fy —fy, — K3 — K4
> eqg:=Mz-sum(fx[i]l*y[1]-fy[il*x[i],1=3..4)+
>  fy[2]1*x[2]+fyl*x[1]-fx1*y[1]-fx2*y[2];
> fx2:=solvel(eq, £x2);

eq =Mz —fr3y3+K3x3 — frgya + Kdxa +fya 3o+ (Fy — fy, — K3 — K 1
— (Fx — fag — fag —fx2) y1 = fx2 y2

fx2 1= (Mz — fx3 y3 + K3x3 — fig ya + K4 x4 + fyy x2 + x1 Fy — x1fy, — x1 K3 — x1 K4
3
— 1 Fxt i fis + 1 fe) [ (v +y2)

> Mz::l:Fx::2:Fy::l:x[1] 1=0:x[2]:=2:x[3]:=2:
x[4]1:=2:y[1]:=1.2:y[2]:=1:y[3]1:=2:y[4]:=2:

The solution to the Kuhn Tucker equations is
> gol:=solve(egn,{11,12,13,ml,m2, £x[3],fx[4],
ty[21});
5 —248. 4+ 230.K3 +330. K4+ 81.H3 K3 — 81. H3 K4
' o1
12 =-2.(—192.+ 170. K3 + 170. K4 i790. H3 + 189. H3K3 + 90. H3 K4 — 90. H4
+90. H4K3 + 189. H4K4)/(%1),
248. —330. K3 — 230. K4 — 81. H4 K4 + 81. H4 K3

m2=2. %1 s

fiy = (180. H4 K4 + 81. H4 H3 K3 + 60. + 150. H4K3 — 80. H3 K4 + 125. H3 — 123. H4
—100. K3 — 150. H3 K3 — 100. K4 — 81. H4 H3 K4)/(%1),
fiz = —1.(150. H4K4 + 81. H4 H3 K3 — 60. + 80. H4 K3 — 150. H3 K4 + 123. H3
- 125. H4 — 180. H3K3 — 81. H4 H3 K4 + 100. K3 + 100. K4)/(%1),
fyy = —1.(28. — 30. K3 — 30. K4 — 45. H3 + 54. H3 K3 + 45. H3 K4 — 45. H4 + 45. H4K3
+54. HAK4)/(%1),
I3 = 10.(—44. + 40. K3 +40. K4 — 9. H3 +27. H3 K3 + 9. H3 K4 — 9. H4 + 9. H4 K3
127. H4K4)/(%1),
11 = 10.(—76. 4 60. K3 + 60. K4 + 7. H3 + 24. H3 K3 + 2. H3 K4 + 7. H4 + 2. H4 K3
124, HAK4)/(%]1)}
%1 := —100. + 81. H3 + 81. H4

’

sol :=={ml = —
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The solution to the optimization problem is then obtained by solving the following
two equations
> equal:=fx[4]=subs(sol, fx[4]);

equal ‘= fi, = (180. H4K4 + 81. H4 H3 K3 + 60. + 150. H4K3 — 80. H3 K4 + 125. H3
— 123. H4 — 100. K3 — 150. H3 K3 — 100. K4 — 81. H4 H3 K4)/(—100. + 81. H3
+81. H4)

> equa2fx[3]=subs(sol,fx[3]);

equa2 := fx; = —1.(150. H4K4 + 81. H4 H3 K3 — 60. + 80. H4 K3 — 150. H3 K4
+ 123. H3 — 125. H4 — 180.H3 K3 — 81. H4 H3 K4 + 100. K3 + 100. K4)/(—100.
+81. H3 + 81. H4)

for fx3 and fx4. So we have to insert the expressions for Hi and Ki. When the
two equations above are solved for fx3, fx4 by for instance the Newton Raphson
method we can substitute the values of the remaining variables from the solution
formulas in sol.

5 Conclusions

We have shown in this report that the holding problem for a given configuration of
thrusters on a ship can be solved in a time that increases at most linearly with the
number of thrusters n. This improves on the previous method of solution which,
it seems, required a number of calculations that increases exponentially with .

The holding capability has some peculiar features. Here we point out only one of
these. By comparing cases I —III, we see that the solution for (61, .. . , 8,) changes
discontinuously when one thruster goes from being on full power to slightly be-
low full power. Consistent with this observation, the numerical results in Section 4
show a similar discontinuous change in the optimal position of the thrusters (al-
though it is a slightly different Lagrangian which is considered).

We have made no restriction on the force (Fy, Fy) and the torque M;. Once
this general problem has been solved, it is straightforward to solve a special case
where the restrictions are present. Such restrictions arise in practice because, for
instance, the wind will result in both a force on the centre of mass and a torque
around this point. The exact form of the relationship between force and torque
depends on the ship considered. However, to see how this special case can be
solved in principle, suppose that the torque is a function of the force,

M, = f(Fy, Fy)- (15)

This equation describes a two-dimensional surface in the three-dimensional space
(Fx, Fyy, M;). Recall that the solution to the holding problem in the general case
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provided us with another two-dimensional surface. The solution to the holding
problem in the special case where a relation of the type in Eq. (15), holds is the
intersection of the two surfaces. (By the way, it can be argued that the intersection
is non-empty. Because, on physical grounds, f is continuous, f(0,0) = 0 and
f(x, y) must be unbounded, in the general case, in (x, y)).
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Grundfos: Chlorination of
Swimming Pools

VIGGO ANDREASEN, MORTEN BR@NS, POUL HJORTH,
JOHN HOGAN, AND DAVID WOOD

1 Introduction

Grundfos asked for a model, describing the problem of mixing chemicals, being
dosed into water systems, to be developed. The application of the model should
be dedicated to dosing aqueous solution of chlorine into swimming pools.

The first thing to be decided is the type of model we are looking for; in particular
whether this is a diffusion dominated problem (where spatial gradients and diffu-
sion times are important) or a sink-source type of ordinary differential equation
problem like the CSTR (Continuously Stirred Tank Reaktor).

Swimming pools as a rule are designed specifically to mix the re-circulated water
well, i.e., much faster than the typical diffusion time associated with the pool size.
Such a rapid mixing is accomplished by having the chlorinated water re-enter
the pool through a large (30-80) number of jets, evenly spaced across the pool
bottom. The actual mixing time in a particular public pool is monitored as a part
of the routine whenever the pool water is to be drained prior to a filling with fresh
water.

I 1

Figure 1: Mixing jets at bottom of pool.

As the final operation on the ‘dirty’ water, a single blob of dye is injected into the
water entry system, and the subsequent spreading of the dye throughout the pool
is observed and timed, see figure 1. A well functioning jet system (such as e.g., in
the Lyngby Svpmmehal) mixes the dye evenly in the entire pool in 2—3 minutes; a

71

T P R




