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provided us with another two-dimensional surface. The solution to the holding
problem in the special case where a relation of the type in Eq. (15), holds is the
intersection of the two surfaces. (By the way, it can be argued that the intersection
is non-empty. Because, on physical grounds, f is continuous, f(0,0) = 0 and
f(x, y) must be unbounded, in the general case, in (x, y)).
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1 Introduction

Grundfos asked for a model, describing the problem of mixing chemicals, being
dosed into water systems, to be developed. The application of the model should
be dedicated to dosing aqueous solution of chlorine into swimming pools.

The first thing to be decided is the type of model we are looking for; in particular
whether this is a diffusion dominated problem (where spatial gradients and diffu-
sion times are important) or a sink-source type of ordinary differential equation
problem like the CSTR (Continuously Stirred Tank Reaktor).

Swimming pools as a rule are designed specifically to mix the re-circulated water
well, i.e., much faster than the typical diffusion time associated with the pool size.
Such a rapid mixing is accomplished by having the chlorinated water re-enter
the pool through a large (30-80) number of jets, evenly spaced across the pool
bottom. The actual mixing time in a particular public pool is monitored as a part
of the routine whenever the pool water is to be drained prior to a filling with fresh
water.

-

1

Figure 1: Mixing jets at bottom of pool.

As the final operation on the ‘dirty’ water, a single blob of dye is injected into the
water entry system, and the subsequent spreading of the dye throughout the pool
is observed and timed, see figure 1. A well functioning jet system (such as e.g., in
the Lyngby Svpmmehal) mixes the dye evenly in the entire pool in 2-3 minutes; a
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mixing time of less than 10 minutes is required by law in Denmark. The observed
mixing time of 2-3 minutes, is far less than the diffusion time associated with

pool size.

The conclusion is that, on the time scale of interest (i.e., hours), setting 5"’;, %,
and % ~ 01s a good approximation. The pool indeed resembles the CSTR modf:l,
and can for the present purpose be modeled by a system of ordinary differential
equations.

2 An ODE Model

We introduce three variables denoting the (approximatly) uniform concentrations
of the following quantities:

¢(#) = concentration of ‘free’ chlorine (C/O H ) [moles/l]
b(t) = concentration of bacteria [10° parts/I]
p(t) = concentration of organic pollutants [moles/I]

Three coupled ODE’s for the time evolution of these quantities are to be set up,
with source and sink terms. We begin with sources and sinks for the chlorine.

2.1 Chlorine sources and sinks

The pump and its reservoir of chlorine is a source term. The pump is connected
to a chlorine gauge near the pool overflow channel, and the pump injects well
separated doses of chlorine with a variable stroke frequency, i.e., a stroke rate that
depends on the chlorine concentration. Figure 2 displays the stroke frequency R
as a function of the concentration c.

pump
) frequency (Hz)
Rmax I
L ON\R(c)
: concentration
I (moles/])
i) ¢

Figure 2: Chlorine injection strategy.
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When the chlorine concentration is above a value c1, the pump is off. Below cy,
the pump frequency increases linearly with decreasing ¢ until at ¢o a maximal
pump frequency Ry, is reached. This feedback strategy will be referred to as the
ramp, for obvious reasons. The functional form of the source term in the equation
is consequently G/ V - R(c), where

10 ifer <c¢
g Cl1—C H
R(c) = { Ryux ——Cll_co ifcp <c <
Ryax ifc < ¢

where V is the total volume of the pool, and the constant G denotes the dosage
per stroke. We use a value for G - R, of 30 moles/hour.

Next, we discuss the loss mechanisms for the chlorine. The first one of these is
the chemical reactions that bind chlorine with the organic polutants p. We assume
that this is a first-order chemical reaction,

cl+p—clp

with rate constant k4, such that the loss term is

—kac(t)p(2)

The value of rate constant k4 will be a parameter in the model.
We must also estimate the loss of chlorine due to its reaction with bacteria.

Not much is known at the microbiological level about the details of the process by
which bacteria are killed by chlorine. The interaction with one molecule of chlo-
rine is probably not enough to kill one bacteria. With the concentrations involved
in the present study, there are 10?7 chlorine molecules and 1019 bacteria. Even if
it takes 1000 molecules of chlorine to eliminate one bacteria, the concentration of
chlorine will not affected measurably. ' '

Based on this consideration we make the assumption in this report that the chlorine
kills the bacteria without actually depleting the chlorine concentration. Hence
there will be no bacteria dependent sink term in the chlorine equation.

Alternativly, one could model (but this is not done in the present treatment) the
bacteria as amorpheous lumps of molecules, all of which eventually react with the
free chlorine to stable compounds. The details of such a reaction, the stoechiom-
etry as well as the time scales for the various reactions, would be appropriate for
models more detailed than the one considered here.
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Finally, we consider the ‘physical’ loss of chlorine due to the filters through which
the pool water is circulated, due to evaporation, or to migration into pipes and
walls. This is taken to be a slow, zeroth order process, with a rate constant which
we estimate from observations of the chlorination needed to maintain a constant
c(z) when no bathers are present (e.g., over night, or when the pools are closed to
bathers for other reasons). The appropriate term has the form:

—kic(t)

A typical value of & is estimated from actual pool data [5]. If, in order to maintain
concentration, an amount corresponding to 1/4 of the total amount of chlorine
present needs to be added after a 24 hour period (with no other sink term being
present) the rate constant must have a value of about k; = 0.01h™!.

2.2 Source and loss terms for p

The quantity p originates with the bathers !. In this model, each bather is assumed
to stay in the pool for one hour, and in this hour to deposit roughly 5 grams of
organic molecules of fairly large molecular weight (100 - 500 g/mole). See [1], p.
285. Let N () = # of people in the pool as a function of time (i.e., throughout the
day), then the source term is

%N(t)

where .01 < a < .05. In this study, we took as a specific N () a simple sinusoidal
variation throughout the day, and zero at night:

N = 80sin* (Z¢) if0 < [r]as < 12
0 otherwise

see figure 3. A loss term for quantity p is the reaction with the free chlorine to
form the compound cp:

—kacp

Such a term also appears in the chlorine equation, and as already stated, the value
of k4 is regarded as a free parameter in the present model.

INo, the letter for this variable was not chosen arbitrarily.
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Figure 3: The assumed time dependent number N (¢) of bathers.

2.3 Source and loss terms for b

Bacteria are also deposited by the bathers. It is estimated [1] that each bather de-
posits about 10% bacteria per liter per hour. The source term for b is consequently

BN ()

where 8 &~ 0.1 x 10°/h. Furthermore, bacteria are live and will grow by them-
selves (feeding off salts and and organic substances in the pool) unless kept in
check by the chlorine; this process is described in the following source term for b:

k3b(t)
where a worst-case scenario (a two-hour doubling time) would correspond to a
value for k3 on the order of 1/3h~1.

In spite of the fact that we did not take bacteria as a loss term for chlorine, we do
take chlorine to act as a loss term for bacteria; kinetically as a first-order reaction:
—kyc(t)b(t)

We estimate from data reported [3, 4] that the rate constant has a value of about

ky = 8 x 10°/(mole h).

In principle, there is one further loss term associated with the number of bacteria
themselves (due to overpopulation and deplection of nourishment, as in ‘predator-
prey’ models). But the numbers of bacteria will (hopefully!) never get so large
that this term becomes significant. So we leave it out from the 4 equation.
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3 The ODE system

Collecting all the source and loss terms of the pervious section into a system of
Ordinary Differential Equations, we have:

Z; = gR(c) — kacp — kyc
21;’ = BN (@) + (k3 — kac) b M
-“% - %N(z) _ kacp
where
G Ryax = 30 moles/ h V=8x10°1
k1 =0.01 h~! ky = 8 x 10% I/(mol - h)
k3=1/3h! a = 0.01 — 0.05 moles/(pers. - h)

Note that we have no set value for k4. This rate constant describes in this model the
rate at which chlorine is consumed by reaction with with the P quantity, and vice
versa. In a more detailed model, more variables coupling through more chemical
reactions might give a more detailed view. Here, with Just a single coupling, we
examine the qualitative changes in the evolution of the substances ¢, b, and p over
some days, as k4 is set to values with different orders of magnitude. Specifically,
we shall examine the solutions at parameter values k4 = 50, 500, 5000, and
50000.

b(t)

night night night t

° 2 40 60 80
day day day day

Figure 4: The time evolution of b for all examined values of k4.

The variable b is found in this model to have an evolution that is nearly indepen-
dent of such a variation in k4. The quantity is input (via the bathers), and destroyed
rapidly by the chlorine; at the end of each day, nothing remains.
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This is not the case for the time evolution of the variables ¢ and p, as illustrated
in the figures below.
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Figure 5: c(t) and p(t) for k4 = 50.

For the lowest examined value of k4, we find that ¢ increases rapidly until a satu-
ration value of just under 3 x 10~ moles/[ is reached. This is a value where the
pump input balances the ‘background’ loss of ¢. The P quantity is cumulatively
added by the N function, and the ¢ — p reaction rate does not, at least on the time
scale of a few days, have any influence on the accumulation of p. (only the slowly
decreasing saturation level of ¢ indicates in figure 5 that there is a ¢ — p reaction
at all).
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Figure 6: ¢(z) and p(z) for k4 = 500.

For a ten times higher value of k4 (see figure 6), the effect of the reaction on the
chlorine level begins to be detectable; from its initial saturation level, the daytime

e e i S
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loss of c is followed by night time return towards a saturation level. The slow de-
crease over a time scale of days is now more pronounced. The effect of the higher
k4 value on the p evolution is that at night the p, instead of remaining nearly con-
stant, now is slowly being depleted by the ¢ — p reaction; but the daytime load
still ‘wins’, and over a time scale of days the p accumulates, though possibly with
an upper bound.
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Figure 7: ¢(z) and p(t) for k4 = 5000.

In figure 7, for k4 = 5000, the N (¢) induced oscillations are quite pronounced,
and the ¢ — p reaction term at this parameter value influences the solution signif-
icantly. The daytime N (z)-oscillations can be detected in the decreasing part of
the curve. At night, the ramped pump function drives the c level up towards the
saturation level, but before a steady state is reached, morning arrives, and more
bathers. Nevertheless, the overall ¢ variation on a time scale of several days is at
the percentage level, a fluctuation which is acceptable by current standards.

The p evolution curve at this value of k4 is qualitatively different from the previous
two; it no longer shows a long term accumulation. Over the time scale of a single
day there is a build-up, but at night the ¢ — p reaction drives the level back down;
a constant average level seems to be maintained.

Finally, we can see in figure 8 the effect of a ten times higher value, k4 = 50.000.
The daily oscillations now take place around a lower average ¢ value (however:
note the scale, the variation is still at the percentage level). The nightly saturations
with ¢ run more nearly to completion.

The p level is now very low (we have maintained the same scale as in previous
figures, for comparison), and does not show any tendency to accumulate at all.
This value of the reaction constant very effectivly keeps the p level in check.
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Figure 8: c(¢) and p(t) for k4 = 50.000.

4 Discussion

The chemistry in swimming pools is of considerable complexity [1, 6]. The above
considerations constitute the simplest model, so to speak, in the chemistry. It
contains the minimal number of variables: chlorine, one organic (b) pollutant, one
inorganic (p) pollutant, and the very crudest sink, source and interaction terms for
these quantities.

In particular the higher order reactions between chloride and ammonia are cer-
tainly of interest in a more detailed study, as the end compounds are potentially
carcenogenic and hard to remove by filters.

Furthermore, various types of pump strategies (e.g., other response functions than
the ramp) might be examined. In our opinion, the qualitative conclusions arrived
at here will be invariant for a large class of ramp-like functions, but this of course
should be tested.

5 Summary

We have determined that, consistent with the engineering design of pools, fluid
mixing is so rapid that the time evolution of chemicals and bacteria in a pool sys-
tem is well modelled by a set of coupled ordinary differential equations (ODE’s).

We have constructed, as a simple model, a 3-variable ODE system, containing the
evolution and coupling between one variable representing the chlorine concen-
tration, one variable representing the concentration of bacteria, and one variable
representing the concentration of organic molecules.
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This model indicates that, with the chlorine as the only means to remove the or-
ganic pollutants supplied by the bathers, the rate at which the organic substances
accumulate has strong dependence on the chemical reaction constant k4. At suf-
ficiently high values of k4, the concentration of organic pollutants does not accu-
mulate, on the time scale of interest.

The explicit pump strategy examined (the ‘ramp’) is effective in regulating the
chlorine concentration.
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LEGO:
Automated Model Construction

REBECCA A. H. GOWER, AGNES E. HEYDTMANN,
AND HENRIK G. PETERSEN

1 The Problem Description

The question from LEGO was, “Given any 3D body, how can it be built from
LEGO bricks?”

We will assume that we have a “legoised” model, i.e., a 3D matrix containing ones
in the places where unit-volume LEGO bricks should be put and zeros where there
should be empty spaces. A LEGO unit-volume is a brick 8 mm long and wide and
3.2 mm high which has only one stud on the top for connection with other bricks.

So the task was to make an algorithm which takes as its input a legoised 3D model
and produces a way of constructing the model from actual LEGO bricks so that
the model “stands” connected.

We were restricted to the use of so-called “family” LEGO bricks and LEGO DU-
PLO bricks. Both kinds are rectangular prisms whose dimensions in each di-
rection are integer multiples of the unit LEGO brick’s dimensions. The lengths,
widths and heights of bricks are measured quite naturally in terms of unit bricks.
We were given a table of sizes of all the permitted building blocks. Due to the
construction of LEGO DUPLO, these bricks can be connected to family bricks
with even length and width only. Another restriction is that only family bncks of
height 3 or more can be connected to the top of a DUPLO brick.

As there is more than one way of building any model of even quite small size
LEGO suggested that we should seek “more stable” models. More stable models
are those which are made w1th blgger bricks and w1th bl‘leS that have more studs
connected to other bricks.

Nothing can be assumed about the shape of a legoised object given as input except
that it is connected. However, some characteristics of typical models and how they
are commonly built were discussed.

If a model is of sufficiently large size then its interior should have a hollow space in
order to save bricks. LEGO designers keep this space approximately box-shaped
for simplicity and so that a supporting structure or motorised mechanism can be
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