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1. Introduction

Sand production in oil and gas wells can occur if the fluid velocity exceeds a
certain value. Due to drilling operations, the mechanical stresses can exceed the
load bearing capacity of the rock. As the local stresses exceed certain level, a
certain amount of rock is fractured into sand. Then, the sand is carried by the
fluid through the wellbore depending on the flow rate. The amount of the solids
can be less than a few grams per cubic meter of reservoir fluid or an essential
amount. In the later case erosion of the rock and removing sufficient quantities of
rock can occur. This can produce subsurface cavities which collapse and destroy
the well.

When sanding is unavoidable it is necessary to estimate the characteristics of
the process. Our aim was to generate a simple one-dimensional local model, which
predicts the volume of sanding, the radius and the porosity of the yielded zone.
Such model will help the company in the development of complex 3D models.

2. Mathematical model

The model we have generated is based on the continuum model presented
in the paper [1], assuming radial propagation of the yielded zone around the
wellbore (see Fig. 1). First we quote only the main results of the modelling in
[1], concerning the quantities we are interested in.

By assuming small variations of the porosity, the relationship between the
radius R(t) of the yielded zone and the cumulative solids production S(t) is
derived:
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Figure 1: Wellbore, yielded and intact zones

where rw is the radius of the wellbore, φn is the porosity of the intact zone, φy is
the porosity of the yielded zone at r = R(t), α is the coefficient of dilation.

From this equation we find:
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Further, assuming continuity of the radial stress at the boundary between
yielded and non-yielded zones, the following equation is obtained in [1]:
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where ρ = R(t)/rw, ρe = re/rw, re is the radius of the reservoir (see Fig. 1), pc

is the critical wellbore fluid pressure, pe is the reservoir pressure, β is the Biot’s
constant, µ is the viscosity of the fluid, k is the permeability, κ is the strength
function.

The strength κ and the porosity are related by (see [1]):
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For the evolution in time of the wellbore pressure pw(t) we have used

(5) pw(t) =
pe(1 + exp(−10t/T ))

2
, T = 500 × 24 × 3600 sec.

Equation (3) (together with the relations (1), (2), (4) and (5)), is an ordinary
differential equation for the radius R(t) of the yielded zone. The initial condition
is

R(0) = rw.

This initial value problem was solved in Maple and Mathematica by the fourth-
fifth order Runge-Kutta method.

Once a solution for R(t) is obtained in the time domain, the solids production
S(t) can be calculated from equation (1).

To find the porosity of the yielded zone, the second continuity equation from
[1]

(6) −
∂φ

∂t
+ div[(1 − φ)vs] = 0

has been simplified there by letting φ = φy. By using this simplification the
following dependence of the porosity on the radial coordinate r and time t has
been proposed in [1]:
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However, as we have found in the computational experiments, this formula gives
non-physical behavior of the porosity, namely, it becomes negative for r close to
rw.

In the next section we derive another dependence for the porosity without
making the above mentioned simplification. Besides we verify the expression (1)
for S(t).

3. Improvement of the expression for porosity

Let λ =
1 − α

1 + α
. From the equation for the solid velocity in [1]:
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where q(t) is the volumetric rate of solid production, we get

vs =
−q(t)

rλr1−λ
w

.

Now we rewrite the continuity equation (6) in polar coordinates and obtain

−
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−
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w r
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After the substitution u = r1−λ(1 − φ) this equation takes the form
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This is a first order hyperbolic equation for u. Its characteristic curves are given
by

dt
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Since
∫ t

0
q(u)du = S(t) we get
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The solution u is constant along the characteristics, thus:
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,

where F is an arbitrary sufficiently smooth function. Taking into account the
condition

φ = φy on r = R(t)

we arrive at
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To relate S(t) and R(t) we use the equation for the mass balance at the boundary
(from [1]):
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and (8):

(φy − φn)R′(t) =
(1 − φy)q(t)
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w

.

Then we integrate with respect to t and use R = rw at t = 0 to get
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which verifies (1).
To find φ we substitute S(t) in (10):
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We set
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Now we go back to (9)
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Further we express φ(r, t) in terms of R(t):
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Thus, solving this equation for φ(r, t), we get
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We substitute A and B and finally obtain the new formula for φ:
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4. Numerical results

By using the described model we have investigated

• the evolution of the radius of the yielded zone R(t),

• the cumulative solids production S(t) and

• the porosity φ(r, t)

for the following values of the model parameters:

pc = 4 × 107, pe = 4 × 107, rw = 0.1, re = 500, k = 10−14, µ = 10−3,
φy = 0.4, φn = 0.2, β = 0.9, α = 0.01; 0.1, κ(φy) = 105, |κ′| = 107; 108.

First we show the porosity φ as a function of r at time t = 500 days, computed
by formula (7) from paper [1] (Fig. 2, left), and by the corrected formula (11)

by formula (7) by the corrected formula (11)

Figure 2: Porosity φ(r, t) for t = 500 days and α = 0.01, |κ′| = 107.
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Figure 3: Evolution of the radius of the yielded zone for several values of α and
|κ′|.

Figure 4: Cumulative solids production S(t) for several values of α and |κ′|.
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Figure 5: Porosity φ(r, t) for t = 500 days, for several values of α and |κ′|.

(Fig. 2, right). It can be seen that for small r, close to rw, the porosity on Fig. 2,
left, is negative.

The radius R(t) of the yielded zone as a function of time is presented on Fig. 3,
for four sets of parameters α > 0 and |κ′|. It can be seen that the radius of the
yielded zone increases at the initial time interval and then it reaches a steady-
state value, thus the yielded zone stops growing. The steady-state value of the
radius of the yielded zone depends on the model parameters.

The sand production S(t) is obtained by using the computed radius R(t) of the
yielded zone and equation (1). It is presented on Fig. 4 for the same values of the
parameters α > 0 and |κ′|. The graphs of S(t) for parameters α = 0.1, |κ′| = 107

and α = 0.01, |κ′| = 108 coincide within the plotting resolution.

Finally, the porosity is obtained from equation (11). It is shown on Fig. 5 for
the same values of α and |κ′|. It can be seen that by using the new approximation
(11) the porosity of the yielded zone is positive for r ≥ rw, moreover φ(r, t) ≥ φn,
which is physically realistic.

5. Conclusion

The model presented in [1] gives reasonable approximations for the radius
R(t) of the yielded zone and for the cumulative solids production S(t), but it
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does not give physically reasonable results for the porosity φ(r, t). With the new
approximation of the porosity, the numerical results are physically reasonable.

The described model and its computer implementation can be used to predict
the radius of the yielded zone R(t), the cumulative solids production S(t) and
the porosity φ(r, t) for various scenarios.

The model can be improved taking into account the sand erosion due to abra-
sion. This could be done by including extra terms in the equations of continuity:

−
∂φ

∂t
+ div[(1 − φ)vs] = −c(vf − vs)

∂φ

∂t
,

∂

∂t
(φ c) + div[φ c vf ] = c(vf − vs)

∂φ

∂t
,

where c is the sand concentration in the fluid.
Alternative possibility is to construct elastoplastic model for the rock behavior.
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