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Abstract

The present report is the result of a week–long workshop within the 99th
European Study Group with Industry organized by Department of Mathe-
matics and Informatics, Faculty of Sciences, University of Novi Sad, February
3–7, 2014.

Our task was to solve the problem presented by the company ”Bakery
Milan” whose products have a prominent place in the corresponding indus-
try sector in Serbia. In accordance with it, ”Milan” is constantly seeking
for an improvement which is the main motive of taking part in this Study
Group. Company aims to improve existing production processes using ad-
vanced mathematical tools and to find more sophisticated ways of performing
defrosting procedure in order to provide the best possible quality of the pro-
ducts after the heat treatment.

This working group considered defrosting procedure since the quality of
final products is mainly determined by it. Our main goal was to find time of
defrosting at the room temperature for a group of frozen products depending
on their shape, size and a presence of yeast. We modeled dough defrosting
procedure using the heat equation and Stefan problem - a moving boundary
problem. We carried out numerical simulations using Matlab.
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Chapter 1

Model for two different types of
bakery products

In this report we examine defrosting of a dough on different temperatures –
at the room temperature and at the fridge temperature. Procedure that will
be described here can be applied as model for a ”žu–žu” dough (slab shaped)
and for a roll dough. We divided process of heating of the dough in several
steps. In the first step we observe heating of the dough boundary where the
heat from the environment is transferred by convection. Further, we assume
that the heat is transferred from liquid parts to frozen parts by conduction.
We also assume that the dough density ρ is equal for liquid phase and frozen
phase.

In the sequence we will briefly describe all physical processes and thermo
–physical properties of the dough. The thermal conductivity and specific heat
are important properties needed in the analysis of the heat transfer. There
are three fundamental methods of heat transfer – conduction, convection and
radiation. For our mathematical model we use heat equation in the form

ρ∂t(cpT ) = ∇(k∇T ),

where ρ[kg/m3] is the dough density, cp[J/kgK] is the specific heat capacity,
k[W/mK] is the thermal conductivity and T [◦C] is the dough temperature.
Specific heat cp is a material property that indicates the amount of energy a
body stores for each degree increase in the temperature, on a per unit mass
basis. Thermal conductivity k is a material property that describes the rate
at which heat flows within a body for a given temperature difference. We
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remark that during the heating procedure (phase transition) we have moving
boundary problem which is called Stefan problem (for details see [1]).

First and second step – heat convection

Figure 1.1: ”Žu–žu” bakery product.

Convection is the transfer of energy between an object and its environ-
ment due to motion of a fluids or gases, in our case the surrounding air. In
this step we have dough which is frosted at the temperature of −10◦C and
which is placed in the room at the temperature of 20◦C (resp. in fridge at
4◦C). We consider slab shaped type of bakery product called ”žu–žu” pre-
pared without yeast. We assume that its bottom is at the position x = −1
and its top is at the position x = 1, reducing our model to be one–dimensional
(consequence of this will be that we have a change of units for ρ to [kg/m]),
see Figure 1.1. Our approach is to divide the original problem into a finite
sequence of (numerically) easily solvable classical problems on different do-
mains. More precisely, instead of looking at the real mathematical problem
with moving boundary (standard for phase transition problem) we will dis-
cretize the space variable and let the boundary (which is an outer ice region
that is in the melting state) go along that grid.

Let the interval [−1, 1] be split by an equidistant mesh of mesh step size
h, where h is small enough. The heat transfer between the air and the dough
takes place by free convection. At the beginning, the initial condition is
T (t = 0) = −10◦C. The boundary conditions are given by T (x = ±1) =
Tsurf and by the following heat flux equation

kamb(Tamb − Tsurf) = ±kfro
∂T

∂x

∣∣∣
x=±1

,
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where kamb[W/m2K] is the heat transfer coefficient for free convection, Tamb

is the environment temperature and kfro is the thermal conductivity of the
frozen part of dough. Aim of the first step is to find the time t1 (the surface
defrosting time) such that T (x = ±1, t = t1) ≥ 0.

In the second step we have T (t = t1) as the previously obtained initial
condition. Now the aim is to find time t2 after which the dough part of height
h will be defrosted. For this purpose we need to solve the heat equation on
[t1, t2]× [−1 + h, 1− h] for t2 still to be determined. On the boundary of the
defrosting region we have temperature zero and thus the boundary conditions
T (x = ±1 ∓ h) = 0. To find t2 we use energy balance, more precisely we
calculate the net flow of thermal energy into the defrosting region, which is
the left hand side of the following equality∫ t2

t1

kamb(Tamb − Tsurf︸︷︷︸
=0 ◦C

) + kfro
∂T

∂x
(−1 + h)dt = Lρh ,

the right hand side being the amount of energy needed for melting the dough
layer of the height h. Here ρ is the dough density, while L[J/kg] is the latent
heat, i.e. the energy released or absorbed by a body or a thermodynamic
system during a constant–temperature process. Note that, due to symmetry,
we only wrote the condition for the lower melting region. In the interval
[1 − h, 1] the condition is the same apart from a change in sign in the last
term on the left hand side since the spatial derivative has to be taken in the
inward direction.

Further steps – heat conduction

Heat conduction is the transfer of heat energy by microscopic diffusion and
collisions of particles or quasi–particles within a body due to a temperature
gradient. After time t2 we have liquid part of the dough in the two space
intervals I∓ = [∓1,∓1± h]. We solve the heat equation on [t2, t3]× I∓ with
Dirichlet boundary conditions on the inside, T (x = ∓1 ± h) = 0, and the
Robin condition

kamb(Tamb − T (x = ±1)︸ ︷︷ ︸
Tsurf

) = ±kliq
∂T

∂x

∣∣∣
x=±1

,

for the boundary that is subject to convection. As this region has just been
defrosted the initial condition is T (t = t2) = 0.
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For the frozen part of the dough we want to solve the heat equation on
[t2, t3]× [−1 + 2h, 1− 2h] with boundary conditions T (x = ∓1± 2h) = 0 and
initial condition T (t = t2) (which we obtained from previous step). Now, our
goal is to find t3 such that following equality∫ t3

t2

−kliq
∂T

∂x
(−1 + h) + kfro

∂T

∂x
(−1 + 2h)dt = Lρh

holds. Again we only wrote the condition for the lower defrosting region –
the one for the region [1− 2h, 1− h] can be formulated in the same way.

In the sequel we continue with this procedure until the center of the dough
reaches temperature greater than 0◦C.

Figure 1.2 gives a graphical illustration of the method we described above.
We use an even number of mesh steps h, i.e. 2/h = 2n, and repeat the
procedure n times. In every step we solve the heat equation for the frozen
and liquid part seperately.

t = 0

t = t1 Surface Temperature 0◦

t = t1 Start of defreezing

length h︸ ︷︷ ︸

t = t2 Defreezing complete

t = t2 Move to next interval

t = t3 Defreezing complete

Figure 1.2: Defreezing - Black corresponds to 0◦ frozen, white is 0◦ liquid.
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Numerical results for the dough without yeast

In the following we present numerical results for the defrosting of the dough.
The physical parameters were taken from literature and calibrated with a se-
ries of temperature measurements on defrosting ”žu–žu” that we performed.
However we were not able to find a complete set of data for one specific dough
and some more measurements would be necessary to calibrate the model pre-
cisely. We give results for dough thicknesses of one and three centimeters.
The dough is assumed to be frosted to −10 ◦C and defrost at an ambient
temperature of 24 ◦C.

Figure 1.3: Dough temperatures during defrosting, left: 1 cm, right: 3 cm.

From our simulation we would conclude that defrosting is completed in about

5



35 Minutes for dough of 1 cm and in the area of two hours for dough of 3 cm
thickness. One can notice that theses graph have three parts. The first part
represents changing of the temperature until surface reaches 0◦C. Then, dur-
ing the melting process, the curves become almost flat. In the final part the
defrosted dough heats up until it reaches the ambient temperature. Here the
slope is a bit smaller than in than before defrosting for two reasons. First
the heat capacity of defrosted dough is larger than that of frozen dough and
second the amount of energy transferred from the ambient per unit time de-
creases as the surface temperature approaches the ambient temperature.

This loss of energy transfer when reaching the ambient temperature be-
comes more apparent when defrosting at lower temperatures. In the following
we give results for defrosting in the fridge at 4 ◦C. We only give the graphics

Figure 1.4: Defrosting in fridge, thickness 1 cm.

for the thinner dough since already there a time of three hours is necessary.
In practical situations we suggest to leave dough in the fridge over night to
defrost.
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Dough with yeast

Yeast is included in different types of dough to make the dough rise and
change its flavor. Since the activity of yeast fermentation depends on tem-
perature a simple defrosting is not enough to reach the desired texture of the
dough. The following graph shows the dependency of the relative activity of
yeast on temperature.
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Figure 1.5: Relative yeast activity.

Yeast activity is measured by determining the amount of CO2 that is pro-
duced. Note that enough sugar has to be provided or yeast activity will be
limited by this factor.

A mathematical model for this types of dough could include the following
modifications of the one we presented in the previous section

• Yeast activity depending on temperature

• Production of thermal energy due to yeast fermentation

• Amount of nutrient for yeast

• Change in thermal conductivity and density of dough during rising

• In non 1-d Situations: Increase of surface area subject to convection.
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Including these into our model certainly is an interesting and, especially in the
geometry-change respect challenging task. However due to time constraints
we only studied the first point, i.e. the dependency of yeast activity on
temperature. Another think to keep in mind is that inclusion of the other
aspects introduces new parameters into the model that would have to be
measured. Thus such a project would necessitate the collaboration with a
lab.

Our simplified approach consists in determining the temperature of the
dough ignoring the effects of yeast and calculating the total yeast activity at
the point of lowest temperature, that is the center of the dough. This should
give a lower bound on the time necessary to attain a certain level of CO2

production in the dough depending on its thickness and serve as a starting
point for experiments to determine actual values of the time necessary for
defrosting and rising of the dough. Therefore we calculate the following
quantity for the dough with yeast

Ytotal =

∫ tfinal

0

A(Tcent(t))dt ≥ value depending of type of product .

A dough of simmilar texture and different thickness could then be attained
by taking the same value on the right hand side of the above inequality.
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Numerical results for the dough with yeast

Figure 1.6 shows the temperature of a dough of thickness 1 cm at room
temperature of 24◦C after two hours. About this time is necessary to reach
a temperature where yeast fermentation begins to speed up.

Figure 1.6: Dough temperature during two hours, thickness 1 cm.

From this data we calculate Ytotal by integrating the relative activity at
the current temperature over time. In Figure 1.7 we summarize these results
by giving the total yeast activity that corresponds to the total amount of
CO2 produced up to three hours depending on the thickness of the dough.

Figure 1.7: Yeast activity (dough thickness 1− 3 cm).
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We want to remark that the same model in polar coordinates could be
applied to products that have a cylindrical shape, with length far greater
then the diameter. This is for example the case for the bread roll of bakery
Milan. The volume of the defrosting region will depend on the position but
implementation is straightforward.
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Chapter 2

Conclusion

In this report we present mathematical model for the dough defrosting pro-
cedure where we have concentrated on the process of changing of the dough
temperature. Dough was frosted at −10◦C and melting process was different
depending on environmental temperature. At the room temperature of 24◦C,
dough reaches temperature of about 100C in 50 minutes. The results were
obtained numerically and the rate of change of temperature is shown graph-
ically. We obtained results for different thicknesses of dough and compared
surface temperatures to the center temperature. We have the impression that
for dough of thickness less than 3 cm a surface temperature of 5◦C indicates
that the dough is defrosted throughout. We also obtained numerical results
for dough stored in the fridge at a temperature of 40C. We illustrated the
temperature profile over time graphically. Our results suggest that a practi-
cal recommendation for defrosting in the fridge would be leaving the dough
over night.

Concerning the dough with yeast, further investigations are necessary.
We just graphically presented yeast activity depending on the temperature
and the dough thickness. The results were conducted in Matlab applying in-
terpolation of a given data. Our results could be used to give a first guideline
if similar products of different thicknesses are to be produced.
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Heat Transfer Modes During Baking of Mlinci Dough, Agriculturae Con-
spectus Scientificus — Vol. 72 (2007) No. 3 (257-263)

12


	Model for two different types of bakery products
	Conclusion
	References

