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Stability of the crust on a spreading pool

In order to obtain a licence to run its nuclear power stations, Nuclear Electric is
obliged to demonstrate to an independent body (the Nuclear Installations Inspectorate)
that an adequate safety margin exists even under severe accident conditions. This re-
quires that the physical processes involved in any situation, however extreme or unlikely,
are sufficiently understood that corrective actions can be implemented effectively.

The problem of interest is a hypothetical situation in an advanced gas-cooled re-
actor (AGR). It perversely assumes that the shut-down systems have failed to arrest
some event which has caused the fuel in a particular channel to overheat and that the
entire fuel inventory of the channel has melted and poured onto the steel floor below
the fuel channel. The fuel will spread quickly over the floor and freeze into a solidified
mass. On a much longer time-scale, the solidified fuel will release its nuclear decay heat,
partly to the gaseous environment (by radiative heat transfer) and partly to the steel
floor (by conduction). The issue of industrial interest is whether or not the floor could
melt during the period of release of decay heat, and one of the determining factors is
the extent of spreading of the original puddle.

Experiments performed at Berkeley Nuclear Laboratories and elsewhere indicate
that the extent of spreading depends on a number of physical parameters, notably the
pouring rate, the thermo-physical properties and the superheat of the pouring fluid.
The extreme pouring regimes are not of concern because (a) for slow pours, the fluid
would be broken into small droplets and would be dispersed over a wide area, and (b) for
fast pours, the puddle would spread to a very thin crust ‘pizza’ which would be too thin
to melt the floor. The case of interest is the intermediate regime in which the fluid pours
at a moderate rate onto the floor. In this regime, the extent of spreading of the puddle
appears to be strongly determined by the stability of a thin solidifying crust on the free
surface. In some cases, the crust appears to be strong enough to act as a restraint on
the spreading of the puddle, but in others the crust breaks open and fluid is able to
seep out (either through radial cracks or at the advancing front) and form lobes. Lobes
are seen as desirable because the complex lobe morphology would have greater surface
area than an axisymmetric morphology and the peak temperatures would therefore
be lower. A series of experiments is underway in the Geology Department at Bristol
University (Stephen Sparks, Mark Stasiuk) to investigate the behaviour of the crust
in a well-controlled environment and some results my be available at the time of the
Study Group. In addition, there is a CASE project in the Mathematics Department at
Bristol University (Pauline Bennett, David Riley) to investigate the heat transfer and
two-phase phenomena, but not the question of crust stability.

To summarise, the problem of industrial interest is to find the conditions for the
stability of the crust on the free surface.



The Nuclear Electric Problem

The Nuclear Electric problem attracted the attention of many of the Study Group
participants. This was due in part to the multi-faceted nature of the problem, in part
to the wealth of experimental observations (cerrobend in air and polyethylene glycol
600 in a solution of water and ethylene glycol), and in part to the fascinating overview
of analogous geological fluid mechanical problems (volcanic lava in either water or air)
given by Steve Sparks. The net result was that subgroups worked on several related
aspects of the problem, leading to a breadth of coverage rather than depth. Steve
Wilson, Tim Pedley and Louise Terrill worked on a simple static model; Julie Moriarty
and colleagues from Bristol, Leeds and Nottingham considered a simple lubrication
model; Tony Green was very active with his bladder problem — a nonlinear elastic
model; Alexander Movchan concerned himself with linear elastic models; meanwhile
Howell Peregrine was up a ladder pouring buckets of water over paving slabs — an
experimental study of hydraulic jumps. Since the Meeting, Mark Stasiuk, Steve Sparks
and David Riley have made significant progress with some simple visco-elastico-gravity
current models.

Given the complexity of the Nuclear Electric problem (featuring, for example,
radial spreading centres, undermining, overwelling, hydraulic jumps, substrate erosion,
etc.), it is not surprising that the group’s models did not mature as far as others at
the Meeting. In fact, much of the group’s time was spent discussing the relationship
between the actual problem involving UQO; in air and the simulant experiments. Several
promising ideas, however, emerged from the Meeting and Nuclear Electric are keen to
realise the potential in these.
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Spreading of melts (Nuclear Electric)

Description of the mathematical model
The whole problem may be divided into several steps:

i. Spreading of a viscous fluid on the flat surface (formation of ‘lobes’)

ii. Formation of a crust (solidification problem).

iii. The problem of the fracture mechanics (longitudinal thermocracks in an elastic
layer.)

Our objective is to study the last part. We can formulate this problem in the
following way.
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Boundary conditions
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There are three important types of cracks:

1. Radial cracks

2. Cracks on the surface of a long ‘lobe’

)

3. Cracks on the bottom of the crust

Here we have the usual ‘angular’ singularity for stresses
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Simplified Model
We consider a thin cylindrical layer with a longitudinal cut.

For a long ‘lobe’ and for the axisymmetric formulation one can use a 2D approxi-
mation on the cross-section.

The top of the crust (region I) behaves like a ‘beam’ (or thin plate) and the
displacement vector satisfies the fourth order equation,
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Boundary conditions are derived due to the boundary layer effect in the vicinity
of the crack tips.

In a neighbourhood of the tips of the crack (region I1) the stress components have
a singular behaviour
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Let us emphasise that region I is related to the cracks of first two types (1,2), and
region II corresponds to the last kind of fracture (3).

To show the idea of the asymptotic study of the problem for a longitudinal cut
in a thin layer, we present some results related to the problem of anti-plane shear of
a thin rectangle with a longitudinal cut. We should emphasise that we have to deal
with the effect of a boundary layer in the vicinity of the tips of a cut. The problem of
a boundary layer is described by means of solutions of the homogeneous problem in a
semi-infinite strip.

Finally, we should say that the present approach is based on the results of the
following papers

1. N.Kh. Arutyunyan, A.B. Movchan and S.A. Nazarov, Advances in Mechanics,
Vol. 10, N4, 3-91, 1987.

2. S.A. Nazarov, Izv. AN Arm.SSr, XL, N5, 24-34, 1987.




Formulation of the problem.
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Statement 1.i) The principal term of the function u admits the following form
(lz £ 1] > 8).

u o~ —e-z-w(:c), I<|z| <1
1
u o~ gwi(a}), lz| < l,£y >0

ii) Functions w and w?* satisfy the equations

5w 1/2
8—7(9«') = p-(2) —ps(z) — f(z,8)d¢, I<|z] <1
z -1/2
O*wt 1/2
W(m) = 2(q4(z) = ps(z)) — 2 ; f(z,€)d¢, lz| <L,y >0
O%w~ 0
90 = @) —a-@) -2 [ SOk, el <ly<0

-1/2



and the following conditions at the points z = +1,2 = %/
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Statement 2. In the vicinity of the ends & = £l of the cut the function u has the
behaviour

u(e, z,y) ~ €2 (const + 4/€Cp'* cos <§>> + O(p),
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where (p, ¢) is a polar coordinates system; ¢ = 0 corresponds to the direction along the
cut. In a neighbourhood of z = —I the following equality holds
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We have a similar relationship near z = [.
Corollary. In a particular case of a symmetric ‘deformation’ fj{?z f(z,8)d¢ = 0,
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Appendix
The conformal mapping
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A simple dynamic model

Goal :
e To study the spreading of molten UO2

Assumptions
e Axisymmetric
Observations from experiments indicate that the flow is unlikely to be truly axisym-
metric, but here we are looking at the simplest possible case, and restrict attention to
radial flow.
e Slowly moving
This is an asymptotic study of the flow away from the hydraulic jump (if present), where
the fluid velocity is small, and viscous forces dominate. Quoted figures of characteristic
flow rate Q ~ 1ls™!, characteristic radial length scale I ~ 1m give a Reynolds number
of 330. The characteristic depth of fluid H is on the order of centimetres, giving a
reduced Reynolds number Re(H/L)?, which is small compared to unity, thus justifying
neglecting inertial terms in the momentum equations.
e Conduction dominated
The Prandt] number, Pr ~ 0.35 so that the product of the Peclet number and (H JL)?
is much less than unity. In this circumstance, the temperature field is conduction
dominated.

The physical model is shown below.
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Since the fluid layer is typically thin, we use the lubrication approximations. This
yields the velocity flow field,

Op [z2 - 2hz] 4 do 2z
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where the pressure field is given by
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r and z are the usual polar coordinates, ¢ denotes time and g is the acceleration due
to gravity. In writing down the above equations we have assumed that variations in
viscosity due to thermal effects are negligible. The second term on the right-hand side
of (1) is a surface shear stress due to the surface tension gradient of the crust. The
structural properties of the crust were unknown to us, but after some discussion we
decided it was reasonable to assume the tensile strength of the crust was a function of
its thickness H. Thus we model the surface tension of the molten UQ, at the crust
interface as being 0 = o(H).
The evolution equation for the height of the fluid film and solid crust is then
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This equation can be modified to include the fact that there is a source of molten UO,
at » = 0. This entails adding an extra flux to the left-hand side of the flow domain.
The boundary conditions at the right end of the flow domain are ¢ = 0 and h = 0 at
r = rp. Some stress criterion could be added to this model to allow for crust rupture.
The boundary conditions at the left end of the flow domain are less straightforward and
will be left for future consideration.

Temperature Distribution

We assume that the temperature of the molten UO, remains at the melting tem-
perature T' = T), across the molten layer. The temperature variation across the crust
is given by
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—— =0 4
5.7 (4)
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where op is the Stefan-Boltzmann constant.



Heat balance across the solid crust
The heat flux across the solid crust/molten fluid interface, must equal the change
in thermal energy of the crust. Thus
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evaluated at z = h, with u(r,z,t) as defined in (1). In the above equation, p is the
crust density per unit width, and L is the latent heat of the crust.

Thus (3) and (5) are two coupled equations for h and H which can be solved at
each time step. One method of solving these equations is to use a finite difference time
marching scheme.

J. Moriarty 26.5.92



The Crust and ‘Surface Tension’
An addendum to J. Moriarty’s report entitled: A Simple Dynamic Model

When the UQO, is entirely liquid, as at initial meltdown, then it seems reasonable
to give it the usual properties of a viscous liquid, including a surface tension. However,
as it cools from the upper surface, the liquid first forms a flexible film or membrane and
then this develops into a crust (a ‘thick’ film?) at which stage the boundary condition
must be modified.

A film might still be interpreted as providing a tensile capability, at the surface,
which is analogous to a surface tension but much larger than the ‘real’ surface tension of
the molten liquid. It is reasonable to expect that this ‘effective surface tension’ increases
with the thickness of the film (but difficult to envisage how it may be characterised by
experiment).

Once a crust is formed and prior to rupture, the problem changes to an essen-
tially radial flow between two coaxial plates, with the surface tension theory possible
governing the ‘leading edge’. The lower plate is a flat, rigid base which is an excellent
conductor of heat, with little cooling of the liquid at the interface. The upper plate
(the crust) is a circular elastic shell of varying thickness (dependent on the temperature
field) with a circular hole where the molten liquid enters. The outer radius of the shell
increases with time at a rate to be determined.

Lubrication theory still seems a reasonable model, since the fluid thickness is still
typically ‘small’. However, its upper surface condition is now one of ‘no slip’, i.e.

u(r,0) = u(r,h) = 0.

The relevant theory would require amendment of (1), (2) and hence (3) - refer main
report - which together with (5) would then provide the flow solution. This solution
would then give the shear traction condition applied to the crust.

The analysis of the crust at each time t is as for an elastic plate of given varying
thickness being deformed by the action of radial surface shear traction

S(r) = has at z = h,

applied to its lower surface. The deformation and stress analysis (cf. Timoshenko
and Woinowsky-Krieger, Ch.9, Section 67 etc.) would provide stress magnitudes — o,,
and ogg in particular — which can be used in a stress criterion for fracture (circum-
ferential cracking if o,, reaches a critical value, radial rupture if 49 reaches the same
critical value); alternatively the displacement solution would allow a critical-maximum-
displacement criterion to be used.

Improvements to this crust/liquid model would be to include thermoelastic de-
formation of the crust and a temperature-dependent viscosity of the liquid, with the
viscosity becoming infinite at the solidification temperature.

T. Rogers 4.9.92



The Bladder Problem

In this approach, the skin formed by the cooling of the outer material is assumed to
behave like a flexible elastic membrane. The membrane will have no bending stiffness
and the tensions will be some nonlinear function of the extension. The simple example
is the rubber balloon where it is known that the nonlinear nature of the material allows
the possibility of two different inflated configurations at the same internal pressure. This
phenomenon is well known to anyone who has inflated a bicycle inner tube. Initially the
tube inflates symmetrically to form a torus but, as the volume of air contained in the
torus is further increased, there comes a stage at which one section of the tube suffers
a much larger extension than the remainder. At first sight this might be regarded as a
weak area of the tube, but it is easy to show that this is not the case since the area of
larger inflation can be manipulated to some other section of the tube and will remain
there.

It is possible to envisage a similar sort of phenomenon here. The molten material
forms an outer flexible membrane on cooling, but, since more material is being supplied,
the membrane must extend in order to accommodate the increase in volume. There
then exists the possibility of the membrane being extended to a state which would allow
some portion to undergo a much larger inflation than the remainder with a consequent
thinning of the membrane in that region. Continued expansion due to a further supply
of fluid material could then result in fracture of the membrane, allowing the fluid to
flow out.

Consider an initially spherical membrane of initial radius Ry which is filled with
with a volume V > 27 RJ of weightless fluid, causing it to inflate to a new radius
R = (3V/4m)'/®. Now imagine this membrane allowed to rest on a horizontal table
and switch on gravity so that the body takes on the configuration shown in Figure
lc. The point initially at Py goes to Py in the inflated configuration and to P in
the deformed configuration. The tangent at P makes an angle 1(0) with the upward
vertical (Oz), s(8) denotes the arc length OP,z(f) = ON is the height of P above the
horizontal table and NP = r(8) is the radius. Then the equations of equilibrium for
the membrane are
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where T is the azimuthal tension at P and S is the hoop tension at P. These tensions
will be some function of the deformation at P, the function being a characteristic of
the membrane material,

T =T(s1,%),S = S(s/, ). (3)

The prime denotes differentiation with respect to § and p = p(0) is the fluid pressure
within the membrane at P. This is given by

p = pa + pg{z(x) — 2(0)}, (4)

where py is the pressure at A, p is the fluid density and g the acceleration of gravity.
For specified functions T and S in equations (3), equations (1-2) form a pair of coupled
O.D.E.’s for s(8),%(8),7(6), z(9). These, together with the equations
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can be integrated numerically to determine the deformed shape and the resulting ten-
sions T and S at each point. The initial conditions are r(0) = 0,s(0) = 0,2(0) =
0,%(0) = 0 and it is necessary to satisfy the conditions r(7) = 0,%(7) = 0. In order
to do this it will be necessary to employ a ‘shooting’ method in which estimated values
are given for ps and s’(0) and these values are modified until a solution is obtained
which matches the required conditions at § = n. Alternative conditions can be derived
if the sphere is not closed but has a spherical cap removed so that fluid is accumulating
within the membrane. '

The solution obtained here is based on the assumption of a symmetric deformation.
In order to examine the problem of fluid breakout it is then necessary to impose a
small perturbation on this solution and to use this to examine the stability of the
symmetric configuration. For appropriate forms of the function in equations (2) there
will exist symmetric solutions which are such that small perturbations will grow with
time indicating the onset of instability. The equations governing these perturbations
can be derived from the general equations for membranes in the absence of symmetry

but they are not reproduced here.
W.A. Green 25.7.92
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Inflated membrane containing heavy liquid




Hydraulic jumps

The flow of liquid down onto a flat plate usually results in a rapid outflow brought
to subcritical, often near zero, velocities by a hydraulic jump. The jump is usually
at a radius defined by the height of the subcritical flow which is itself determined
by conditions at the spreading contact line boundary. After the initial, splash-type,
spread it is probably quite adequate to treat the supercritical flow and hydraulic jump
as quasi-steady, since most fluid particles pass through this area in a time which is
short compared with the evolution of the pool of liquid surrounding the jump. As this
deepens, it is possible for the jump to become ‘submerged’.

In the parameter range of experiments presented at the Study Group, it seemed
likely that, at least initially, the jump may be determined by bed friction slowing down
the supercritical diverging flow. This problem is treated in some detail by Watson
(1964, Journal of Fluid Mechanics 20, 481-499). The results from a computer program,
written to evaluate the effects of the boundary layer growing from the bed on the flow
using Watson’s equations, indicated that this had an important influence on the flow
and that some interesting further study would be worthwhile.

The hydraulic jump could be important for heat transfer in the rapid flow portion of
the event. This is because of the greatly enhanced turbulence caused by the energy dis-
sipation in the jump. For strong jumps (Froude number > 4.5), this is well documented
in a recent book which also provides a good literature review: W.H. Hager ‘Energy
dissipators and hydraulic jump’, Kluwer Academic Publishers, 1992. Recent work on
this topic by Bowles and Smith (1992, Journal of Fluid Mechanics 242, 145-168) fol-
lows Watson (1964) in using boundary-layer theory, but also considers viscous-inviscid
interaction.

D.H Peregrine 25.9.92



