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Figure 1: Schematic diagram of apparatus.

1 Introduction

We were asked to investigate the system of airbag inflation shown in Figure 1. From left
to right, the apparatus can be divided into four regions:

Region 1

An igniter releases hot gas which ruptures a membrane at a high temperature and pressure.

Region 2

This gas flows into a combustion chamber, igniting a propellant (sodium azide) which
partially coats the upper and lower surfaces of the chamber. The propellant then continues
to burn for a while, releasing gas and some solid particles of combustion products into
the chamber.

Region 3

The hot gas and particles enter a filter where, it is hoped, all the solid particles are
captured. The filter may also absorb some heat from the gas flow. The filter is composed
of many layers of coarse and fine wire, steel wool and inorganic fibre.

1




Region 4

The gas and any remaining particles then travel through a converging nozzle and into an
airbag which inflates.

System dimensions and typical values for the process are given in the following table.

Combustion chamber length 115mm
Combustion chamber pressure 107 Pa
Combustion chamber temperature | 10 K
Filter length 5mm
Gas velocity at filter 5ms !
Time to airbag inflation 30ms

The questions posed by ICI were

1. What is the gas flow through the filter and nozzle?
How are particles trapped in the filter?

‘What heat transfer occurs in the filter?

R R

Given the pressure outside the nozzle, can boundary conditions for the downstream
end of Region 2 be given, and can the volume flux of gas through the downstream
end of the nozzle be predicted? Note that ICI have a model for the flow in Region 2.

Attempts were made to address all of these questions but limited time meant that it
was not possible to consider properly all aspects of the problem. Little time was spent on
the question of heat transfer within the filter.

The strategy we adopted to answer the fourth question was to formulate separate
models for the combustion chamber, the filter and the nozzle. An estimate of the initial
conditions can be made and each model solved in turn to provide boundary conditions at
the upstream end of the next region.

In essence, when brief transients arising from the ignition (and extinction) of the
combustion are ignored, we believe that the pressure at the point where gases and solid
particles enter the filter determines, and is determined by, conditions at the outlet. These
conditions depend on whether or not the nozzle flow is choked—that is whether sonic flow
occurs at the point of maximum constriction. If it is choked (a condition that can always
be achieved by making the nozzle cross-sectional area small enough) then the operation
of the apparatus depends only on the design of the apparatus itself and is uninfluenced by
the outside pressure. If it is not choked then an external condition (such as the stagnation
pressure) determines the operation of the apparatus. It seems that choking is desirable
to ensure a high pressure in the combustion chamber, and hence a high gas production
rate.

The operation may change with time as the filter becomes progressively ‘clogged up’
with trapped particles or as the filter heats up and so removes progressively less heat
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from the flow. A catastrophic change in behaviour could arise if the filter were to become
completely clogged up, stopping all gas flow through it. These changes can be illustrated
using a much simplified filter model.

2 The Combustion Chamber

Although ICI informed us that they have a numerical model for the combustion chamber,
it is important to have at least a broad idea of the operation of this region in order to
place the filter and nozzle analyses in context. We begin with a semi-empirical discussion.

Processes in the combustion chamber
Ignition:

The membrane of the ignition chamber is designed to burst at a pressure of about 103
atmospheres. This enormous pressure results in the propagation of a very strong shock
wave, which, according to the strong-shock limit, has pressure and temperature ratios
across it related by LT ,
PREEE -
Where subscript ¢ refers to initial (or undisturbed) conditions. Although adiabatic expan-
sion of the gases behind the shock rapidly reduces the post-shock pressure in proportion
to (V/V;)™, V being the specific volume, a polytropic exponent of v = 1.4 (for air)
predicts an initial post-shock temperature of about 50000°K! Complicated shock re-
flections at the filter and nozzle may tend further to enhance the transient temperature

field.

This very hot (shocked) air is rapidly convected out of the apparatus. However,
together with the following hot gases (initially produced in the igniter at about 2000 °K)
it is likely to aid the ignition of the sodium azide propellant on the walls of the combustion
chamber. Lack of information about the process meant that this ignition transient could
not be studied, although one may safely assume that it is likely to be of short duration.

Combustion:

ICT offered us a ‘steady’ free-mass (i.e. gas and solid particles) production rate of the
form
m = ap® (2)

where b= 0.3 and a depends on the total surface area of burning propellant. The prob-
lem cannot be closed however without also knowing the temperature of the combustion
products. In determining this, we consider that a thin slowly-propagating combustion
wave in the sodium azide converts. the propellant from solid at room temperature into
solid and gas at a higher temperature, with a fixed change in energy resulting from the
chemical change. Because the gases emanating from the wave travel at a low Mach num-
ber, the kinetic energy of the reaction products can be neglected and the conversion can
be considered to take place at constant pressure (see below). Thus, with fixed specific
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heats at constant volume of each component, and subscripts s and g referring to solid
and gas phases respectively

Cosi Ti + Q = (Cus + Cog) T, + pAV (3)

for a heat of reaction (). Neglecting the volume of the solid-phase, the change in specific
volume is obtainable from the ideal gas law: AV ~ V, = RT,/p = (Cypy — Cyy) T, /p.
Hence the ‘burnt’ temperature becomes

. Cv#c' Tt + Q
— s TR 4
B Cu.s + Opg . ( )

which is fixed, regardless of the pressure. Allowing specific heats to change, one may
postulate a more general burnt-temperature law I

T, =Ty(p) | | (5)

which may be a weak function of pressure, as is the steady burning law (2). However, we
expect T, to remain more-or-less a fixed constant.

Quasi-steady burn:

We note that the velocity during steady burning in the combustion chamber is of the
order of 5 metres per second, giving a Mach number M of less than about 1072, It
follows that pressure changes across the combustion chamber, which are such that .

_A_p ,

o IyM? ~ 107, | (6)

are very small indeed. Taking p to represent the overall mixture density of gas and solid
particles together, and again neglecting the volume of solids, the ideal gas law gives

p=R(1 - p)pT (7)

where, for all practical purposes, T' = T, and where p represents the mass fraction of
the solid (1 ~ 0.3). R is the gas constant for the gaseous products of the combustion.
If m(p) is the total mass production rate of gas and particles, and if these are flowing at
the same uniform velocity u across a cross-sectional area A at a position z along the
- length of the combustion chamber, the steady mass flux becomes '

L _ @ R(L— )T

T, ‘
—m(p) = Apu  so that 1L ; (8)

L

where L is the length of the combustion chamber. At the end of the chamber, z = L
(i.e., at the beginning of the filter), the averaged velocity over the filter area is

m R(1 — p)T
AT ©)

U =

where in more complex geometries A may simply be taken to denote the area of the filter.
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Simple model:

In an averaged, one-dimensional system, in which the relaxation time over which the
velocity of a particle adjusts towards that of the gas surrounding it, is negligibly small,
the continuity and momentum equations are

pe+ (pu)e = m/(AL) and p(u; + wu,) + p, = 0. . (10)
In order to complete this set, one needs only to invoke a law such as the adiabatic law
(1 = #)Cpg + pCis
(1= p)Cyy + pCys

which applies if compressive heating penetrates equally rapidly into both gas and particle
phases. Solutions of these equations may be separated into the components

pp~T = const. where T =

€ (1,1], (11)

T m
=17
where @(z,t) and p(z,t) represent acoustic or gasdynamic waves which, when set to
zero, duplicate the simple quasi-steady description (8).” After initial transient processes,
the dominant pressure component is the spatially uniform term P(t) which may change
significantly on a time-scale over which the effect of the filter or the external pressure (if
the flow is not choked) may change significantly. ‘

u +@(z,t) and p=P(t) - lpu® +j(e,t), (12)

Transients:

In order to appreciate the role of the quasi-steady solutions, it remains to identify the
appropriate time-scales associated with acoustic waves, quasi-steady flow and. changes in
the filter or external environment.

Based on the description given for the problem, we are able to suppose that acoustic
waves traverse the apparatus in less than % ms, the speed of sound in the combustion
chamber being about 700 metres per second. The approximate time taken for a molecule
of combustion products to be swept out of the apparatus by the flow is of the order of 10 to
20 ms. For practical reasons, it should be necessary to design the apparatus such that the
time-scale over which significant changes in the operation of the filter (especially clogging)
would be longer than the overall burning time of the propellant (say 50 to 100 ms). If this
were not so, a potentially catastrophic blockage in the flow out of the apparatus might
occur.

The relatively very short acoustic time means that acoustic waves are able to travel
and to reflect many times across the combustion chamber. At least at the filter and
nozzle, where some acoustic energy can be transmitted through to the airbag, reflections
involve a loss of amplitude so that an acoustic (or gasdynamic) wave is greatly diminished
after several reflections. On the other hand, slow changes due to the filter or external
conditions manifest themselves as acoustic waves in the chamber of very small amplitude.

In essence, it can be argued that the quasi-steady almost uniform-pressure solution
p = P(t) dominates the behaviour in the combustion chamber, and is fully determined
by the pressure at the inlet to the filter. In turn, this solution determines the mass-
production rate & 7(P), the velocity at the filter inlet (via equation (9)) and the
temperature at the filter inlet 7'~ T,.




One dimensional two-phase model

Although ICI already have a model for this part of the process, we thought it worthwhile
to construct a simple model of our own which could be solved numerically.

The gas and solid particles are assumed to behave as separate phases and the flow is
taken to be one-dimensional. The gas is assumed to be perfect and the gas flow to be
adiabatic. The burning of the propellant produces solid and gas and so that source terms
are included in the gas and solid mass and momentum equations (in the latter, these
terms arise only through the use of a conservative form for the equations; there is, of
course, no chemical production of momentum). We also include interfacial forces between
the gas and the solid. The model equations are? '

(agpg)e + (gpgtig)e = 1irg(p), ' (13)
(sps)t + (Qspatts)e = 1, (p), - (14)
(agpy“y)t + (ag/’guz):c = —qupy + uymy + Fy, (15)
(Capstta)t + (Capstid)e = u,mh, + Fi, (16)
a,+a, = 1, ‘ )

P = Kpy, (18)

p = pgRT. . (19)

Here, = is distance measured from the membrane, ¢ is time, p is pressure and T tem-
perature. The subscripts g and s denote the gas and solid phases respectively; the o;’s
are the volume fractions of the phases, the u;’s their velocities and the p;’s their densities.

In equations (13) and (14), 7, -and 1, are the rate of mass production (per unit
volume per unit time) of gas and solid respectively. ICI informed us that m, and 7,
depend only on p and that the propellant yields 18% free solid, 42% gas and 40% residue

(by mass) so that

iy = gm, — 0.7 x 1(p)/(AL).

1 An alternative set of one dimensional model equations follows. In this, we use the volume fraction of
solid o = a, to identify overall densities of solid and gas, measured in terms of mass per unit volume of
the two-phase mixture, as g, = ap, and g4 = (1 — a)py. Note that p = p, + g, and p = 0s/p-

0s¢ 1 (05s)s = por(p)/(AL)

0g¢ + (09ug)z = (1 — po)(p)/(AL)
0s(Usy + UsUss) + apr = (05 + 05)(ug — )/ Ty
05 (ug, + ugtig,) + (1 — a@)ps = (05 + 04)(us — ty)/Ta
05Cus (Tss + ©sTaz) = (05C0s + 0,Cpe)(Ty — To)/ 71
09Cg(Ty, + vgTy,) = Pe + tgPs + (05Cus + 05Cpg)(Ts — Ty) /71
p=RT,0,/(1 — ) and a = 0,/ps-

The simple model (10) and (11) can be derived from these equations in the limits as the momentum and
thermal relaxation times 7, and 7., and the volume fraction c, tend to zero. This model explicitly
considers thermal transfer and pressure-enthalpy relations instead of more simplistic adiabaticity of the
gas phase alone. The terms po, AL, 7y, T;, Cys,. Cpg, ps and R may be treated as constants.
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In equations (15) and (16), Fy; and F,; are the interfacial ‘forces’ (per unit volume)
acting on the gas and solid respectively. For momentum to be conserved, F,; = —F,;. In
(16), we have assumed that the gas is ‘dusty’, that is that the particles are small and far
apart. Thus, their interaction with each other is negligible and we do not have to include
a solid pressure term.

In equation (18), « is the entropy of the gas and the ratio of the specific heats, v is
about 1.3. In equation (19), R is the universal gas constant divided by the molecular
weight of the gas; R ~ 277. The solid density, p,, is constant and, since a, < oy, we
take oy =1.

The set of model equations given in the footnote on Page 6 are equivalent to equations
(15)—(19) except that the latter assume a Stokes drag between the particles and gas, and
~ include a more realistic model for heat transfer than the assumption in equation (18) of
adiabatic flow.

We define dimensionless variables &, t, p,, @y, @,, &, T and p as follows;

— A _ L — A
¢ =Lz, t= ﬁg't’ Pg = PoPyg,
ug = Uiy, u, = U,tl,, Q, = QpQ,,

T =TT, p = poRIpp.

Here, L is the combustion chamber length, U, and U, are typical gas and solid veloc-
ities, po is a typical gas density, ap a typical particle volume fraction and Ty a typical
temperature. The choice of { as measuring flow times anticipates convective transients
to be present. As noted earlier, boundary conditions at the filter are expected to change
more slowly than this. |

Substituting into equationsi (1) to (7) and dropping the hats for convenience, gives the
following set of dimensionless equations:

(pg)e + (pyug)e = ring(p), (20)
(as)t + (aeus)m = m:(p), (21)
(/’guy)t + (Pgug)z = —Apz+ uym; + ;i, (22)
(estty)e + (equl)y = usmg + F, (23)
p = &'p;, (24)

p = pgT, v (25)

where the dimensionless mass production rates and dimensionless forces are defined by

. U, . . sUs .
my = E(—)'L—im;a ms = 'O'{P"pz‘—'m:,
p U2 * 127 3Us2 %
Fg, = __OL__g_ng, Fsi = OPL 8ty
and o = Kk \ = RyTy
RTyY’ Uz’

Note that A > 1 and we also expect A to be much greater than a characteristic value
of F:, u, and u, being almost equal. Thus, spatial pressure variations will be small
compared to the large ambient pressure in the chamber, as discussed earlier.
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This system of hyperbolic equations with suitably estimated initial and boundary
conditions could be solved numerically. However, it may be noted that the numerical
problem is likely to be stiff due to the presence of relatively high frequency acoustic
waves.

3 The Filter

As in the combustion chamber, we use the equations of one-dimensional two-phase flow.
Equivalently, we may think of the mathematical formulation as describing a flow with
three phases: (i) the free gas, (it) the free solids and (4i) the immobile solid matrix. 2
The porosity, ¢, of the filter may change significantly during the time that it takes the
airbag to inflate. Our calculations indicate that the average porosity may decrease as
much as 50% below its initial value of about 1. Of course, it is the permeability of
the filter that is crucial in the present context. Even though the value of the avarage
porosity may be % at the end of the process, the particle capture could (for example)
be concentrated at the front face of the filter, thus creating an impenetrable blockage.
The filter design must take account of this and aim to minimise the overall resistance to
the flow. A realistic mathematical model should therefore include equations for partlcle

capture and consequential changes in permeability.

The Reynolds number of the gas flow through the filter, based on the largest ‘grain’
size, is about 10, and so it seems reasonable to extrapolate the well-known result for
particulate porous media to ‘fibrous’ media and use a Darcy drag law, D = ku,/p in
- dimensional terms. Here p is the coeflicient of viscosity of the gas and k is the perme-
ability of the porous medium. One possible permeability-porosity relationship is given
by the Kozeny-Carman equation—though this is not wholly satisfactory, since the result
is based on a capillary-tube model for the porous medium.

In what follows, we take the permeability to be constant in order to simplify analytical
progress. The variables are non-dimensionalized with reference to the same values as in
the combustion chamber except that the spatial co-ordinate z is non-dimensionalized
with the filter length, d, rather than the combustion chamber length, L. As in the
combustion chamber, we take a, = 1. The dimensionless model equations are

d
‘E(‘Ppy)t + (‘Pagpgug)m = 0, (26)
d
'Z((Pas)t + (‘Pasus)z‘ = _I(asus(IOZ((lD)’ (27)
d d .
7 (Ppoug)e + (opgug)e = —pdps + TPy — pApyug, (28)
d d
-E(soasua)t + (pasul); = —Ka,ulpl(p) +7eFs (29)
pr = —Peupl(p), (30)
p = pT, (31)

2 A more sophisticated approach would be to use continuum theory of mixtures or local volume aver-
aging. See, for example, M.S. Willis (1983) “A multiphase theory of filtration” in Progress in Filtration
and Separation, Vol. 3, edited by R.J. Wakeman, Elsevier.



In equations (27) and (29), (K/d)l(¢) is the fractional volume of solid particles which
are deposited on the filter, per unit length of filter. We expect that ’(¢) < 0 and, for
simplicity, take I(¢) = 1 — . In equation (30), B/aoL is the fraction of filter volume
clogged up per unit volume of particles deposited. In equation (28), the dimensionless
drag coeflicient A = dp/(p,u,K).

In general, we also need a heat conservation equation. At the Study Group meeting,
however, there was not enough time to consider the heat transfer problem for the filter.
For simplicity, it was assumed that the gas flow is adiabatic, so that T is solely a function
of time determined by the conditions at the exit from the combustion chamber.

We make the following simplifications to equations (26) to (31):

1. Since d/L < 1, we may neglect time derivatives in comparison to space derivatives
in equations (26) to (29). Thus transients are neglected, not only on the longer
‘clogging’ time-scale but also on the time-scale of convective flow in the combustion
chamber.

2. We expect that |Fy;| « L/d and A is order 1 or larger, so that the interaction
between the gas and the particles in equation (28) can be neglected in comparison
to the interaction between the gas and the filter.

3. Likewise, we expect that |F,,| < L/d and that K = O(1) so that the interaction
between the particles and the gas in equation (29) can be neglected in comparison
to the interaction between the particles and the filter.

With these simplifications, equations (26) - (31) become,

(poug)e = 0, (32)
(‘Pasus)m = _I{asuaso(l - Lp), (33)
(0pguz)e = —@Aps — pApguy, (34)
(pond), = —Koyidp(l ) (39)
pr = —Pousp(l - ), (36)

p = pT. (37)

Note that the solid and gas phases are coupled through their interaction with the filter.

Assuming that the problem in the combustion chamber has been solved, the gas den-
sity, solid volume fraction and volume flux of particles and gas are all prescribed at the
inlet to the filter. Thus,

a, = at) at z =0,
pus = b(t) at =0,
pg = () at =0,
pu, = g(t) at z=0.

Solution of the Filter Eqﬁations

To enable analytical progress to be made, we assume that the filter is uniform so that

Y=o at t=0.




where g is the initial porosity of the filter, and that A is a constant. We discuss later
how allowing for non-uniformities in the filter porosity affects the analysis.

Eliminating o,u, between equations (33) and (36), gives the following partial differ-
ential equation for ¢

[I(—Pt—] =—-Kg, (38)
with ¢ = ¢ at t =0. This can be integrated to give

_ ¢o— B(t)exp[—K(1 - go)a]

1= B(0) expl—K(L — po)a]

~ (39)

where B(0) =0.

To determine B(t), we substitute for ¢ into equation (36) and use the boundary
conditions on «, and ¢u, at z = 0. This gives

B'(t)
T—BE) - Pa(t)b(t),

so that . .
B(t) =1 -—éxp{—ﬂ /0 a(3)b(%) dt‘}. (40)

From equations (33) and (35), wu, is independent of z and thus, using the boundary
conditions at = = 0, :

b(t)(1 — B(t)) :
B0 o
We may now determine «, from equation (36); -
__ B()es=K(1 - po)s)(go — B()
~ Bb(1 — B(t)){yo — B(t) exp[-K (1 — po)a]}
Note that the ‘clogging time’, ¢,, at which ¢ — 0 at 2 =0, u, —» 0o and «a, — 0 is
given by

Oy

(42)

te A A ~ 1 ].
a(t)b(t)dt = =1lo . 43
[ atbucyai = 3108 (). (43

The solutions for ¢ and «, are plotted for various times in Figures 2 and 3 taking
wo = 0.5. For simplicity, we have taken the flow at the inlet to the filter to be uniform.

Turning to the gas momentum equation, equation (34), we note that A > 1 and, we

expect, A > A. Thus, we expect the pressure drop across the filter to be small compared

“to the ambient pressure.® Thence, from equations (37) and (32), p, and @u, will be
approximately constant. To find the pressure drop across the filter, we write

p = ct)T(t)+ ep1 + O(€?),
b = cft)+epp +O(e),
14
Uy = 9() + €ugy + 0(62),

o
3 Note that this assumption will break down as the clogging time is approached. In equation (34),
the inertia terms will become comparable with the pressure gradient when ¢ ~ 1/X. In this case, the

pressure drop could be found by eliminating between equations (32), (37) and (34) to give a nonlinear
ordinary differential equation for p which could be solved numerically.
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where € = A/A < 1. Then, from equation (34),
g(d)e(t) _ 1 s
D1 = —"—(p—‘ - Zgz(t)c(t);g

so that

no= oty [ Afm%%(%i%f"é%
= ) { 11wy, [w S B]}

K wo— B

gmmo“} %Y“%}" (a4)

Thus the dimensional pressure drop across the filter, p, is given by

z=d .
p= POdAUyg(t)c(t) {/ ((fvxt) + ggzd ¢(w1, t)z] _0} : (4’5)

The pressure is plotted for various times in Figure 4, again taking oo = 0.5.

4 The Nozzle

We assume that the mass fraction of particles leaving the filter is negligible. Note that
our filter model does not allow us to prescribe that all the particles are removed by the
filter, but if K(1 — o) > 1 then the number of particles entering the nozzle will be
negligible and we may assume one-dimensional inviscid compressible adiabatic gas flow
there. Mass conservation, Bernoulli’s equation and the adiabatic condition imply that the
gas velocity, u4, and density, p; at the nozzle outlet satisfy

A4p4u4 = A3p3U3, (46)

-1 -1 '
Luite = L=ud+d, (47)
ps/p’ = pa/ps" (48)

where u3 and p; are the gas density and velocity at the nozzle inlet or filter outlet,
Az and A4 are the inlet and outlet cross-sectional areas and the sound speeds at these
positions are

a? = 7pj/pj, J =34

Since uz, ps and p3 are known from the solution of the filter model, u4, p; and P4
can be found. There is certainly a possibility that the Mach number may reach unity,
so that the flow would be choked at the nozzle outlet. Whether or not this happens is
essentially determined by the constriction ratio A;4/As. There are therefore two distinct
forms of final boundary condition that determine the overall behaviour of the apparatus:

either Ug = a4 (49)

—1
or  ps+ 727 psud = py/ "V (50)
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for a specified ‘external’ stagnation pressure p.,(t) which would normally be of the order
of magnitude of the atmospheric pressure.

Because the flow Mach number is very low at the exit from the filter, the latter
(unchoked) condition is very closely approximated (to an accuracy of about 0.01%) by

P3 & Poo- (51)

Since the pressure drop across the filter is unlikely to be large (unless it is clogged), this
condition therefore shows that, under unchoked conditions, the combustion chamber pres-
sure would not normally differ greatly from atmospheric pressure. This situation certainly
does not normally hold, pressures being of the order of 100 atmospheres in the combus-
tion chamber. Indeed it is probably highly undesirable. One must therefore conclude
that choking is probably the most desirable operating condition and the constriction ra-
tio A4/As would need to be designed accordingly. For this purpose, one may note from
equations (46)—(49) that

=1
-1, /ey T+ +1 [(Ag,) p3u32] ¥Fi 52)

Y
p3+ 5y P3t3 — |\7, ~

in which the term containing uz on the left hand side may reasonably be neglected, as in

(50), to yield simply
141
- ’)’+1) P 1 <é)2 paus®
Ps ™ < 2 A4 v ) (53)
With this condition the operation of the apparatus becomes completely self-contained.

5 Overall Operation

We can now summarise the overall behaviour of the apparatus in its quasi-steady burning
stage.

We firstly pose the pressure, temperature and velocity changes across the filter simply
in terms of the relations

pa=fpey  To=frTy,  and  up=(1—a) Zu, (54)

where the functions f,(t) and fr(t) would need to be obtained by solving an adequate
-model for the filter or by experimental evaluation. Moreover, assuming that all solid
particles are trapped by the filter, one has that

p3uz = (1 - [t)’fh/A;; with Pz = R,D3T3. (55)

It seems likely that both f,(t) and fr(¢) would assume values slightly less than unity
under normal operation. That is, relatlvely small pressure and temperature losses would
appear across the filter.

Based on simple mass and pressure balances, but to a good degree of accuracy, the
steady-state behaviour of the combustion chamber gives

p2 = 'P, T2 = TB and Paua = m(P) (56)
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Applying the choking condition (53), together with these results, one finds that the pres-
sure in the combustion chamber is given by the algebraic relation

PURL, P g (o (ra1) 3 @

m2(P)  aRT, ~ f, ~AZ 2

This relationship applies provided the value of A, is small enough to ensure choking.
Noting the result (51), the condition for this to occur is that

2 (Poo/ f) ; , (1= p)? (7+1Y 31
Al < p% [RT, folr ~ ( 2 ) ‘

In general, the rate of production of gases to fill the airbag is increased as the nozzle area
Ay is decreased below this value.

(58)

6 Conclusions

Various aspects of the behaviour of the combustion chamber have been discussed on
physical and semi-empirical grounds. The most salient feature is that an almost uniform
pressure would tend to be found under normal burning conditions. The examination could
be extended using numerical solutions of less simplified models.

The filter model has enabled us to predict the pressure drop in the filter and the
deposition of particles and consequent ‘clogging up’ of the filter. To give quantitative
results, estimates for the filter parameters, A, § and K are needed. The neglect of heat
transfer in the filter is probably not realistic and some thought is needed as to how to
incorporate heat transfer. We assumed that the filter has uniform porosity initially; if
% = wo(z) at t =0 then the analysis is similar but slightly more complicated since the
solution for ¢ must in general be left in integral form. We assumed that the particles
become immobile on collision with the filter; in practice they may bounce and interact
with the gas.

The model for the nozzle is straightforward and it would seem that a choked condition
at the outlet would be the most desirable operating condition to ensure that high pressures
are maintained in the combustion chamber. With the appropriate choking or non-choking
conditions applied, the overall behaviour of the apparatus is reasonably well predicted.

JND SJC ELT

CA LH JWD

DSR SDH JL

NS PW ADF (Report by ELT, CA, JWD and DSR)
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