Electric arc problem

Introduction

This problem was concerned with the behaviour of an electric arc as tﬂé
current supplied to the arc passed through zero. It was prompted by a series
of experiments by S.Smith showing that under some but not all circumstances
the arc was extinguished and we sought to estab;ish a model predicting which
form of behaviour would occur.

The basic geometry of the arc is
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and it comprises a region of hot gas which is at a sufficiently high
temperature to conduct electricity well. Heat is generated and“lo;f by
radiation and conduction. We were mainly concerned with the behaviour of
optically thin arcs with a radius of around 100um. T

There is a substantial literature on the behaviour of electric arcs but
much of it is unsatisfactory as it requires various ad-hoc assumptions to
produce a complete equation, for example Steenbeck's principle.

During the Study Group we attempted to show how an equation of state
could be derived by proposing that the arc should be in thermal equilibrium
with the surrounding gas. This led to a closed set of equations which could
be solved. i}

We looked at the behaviour of this system as I » 0 but were unable to
draw any firm conclusions for in the parameter range considered the time
scales for the arc to cool and the electrical circuit to respond are almost

identical. Hence the arc may (or may not) cool down sufficiently to

extinguish.




This report is concluded with a brief statement of a more complete
model of the arc studied in the Study Group which should hopefully lead to
some future research.

1. Derivation of the basic model

We consider an arc to be a region of hot gas at temperaure T. The arc
itself is approximately cylindrical.
The conductivity of the air is o(T) and an electric field E is set up within
it by an external circuit. Within the arc we have

(i) Heating due to current flow equal to o(T)E?

(1i) A conduction term kV2T where k = 1072,

(iii) Heat loss due to radiation which for an optically thin arc is

I, = 2KAT®

RL
where 2KA = 1073,
The conductivity o(T) has the explicit form

o(T) = 1000T3/*exp(-6.53x10%/T)

a(T) t

+ T

T
c
We consider this to be negligible if T < T, = 2x10*, There is also a term due

to heat gain by radiation within the arc which takes the form

Ic = T'G(r,r’)dr' = gain at point r where G(r,r') depends on the

arc

geometry of the arc.

Hence the heat balance equation is

pCp 8T = KV2T + o(T)E? - 2KAT* + Ig,.
at



As an approximation we shall consider the field within the arc to be a
constant independent of r. (This seems reasonable for a long thin arc but may
be worth calculating more exactly in later work). In this case if the arec

radius is a(x) at the point x then from Ohm’'s law

a
I = 27E [ o(T)rdr. (2)
0
To determine the arc we need to find T,E and a. So far we have only two
equations. The approach in some of the literature is to treat T as a constant

independent of r and to ignore I;.; thus from (1),(2),

I = 7a?Eo(T)
(3)
and o(T)E2 = 2KAT*
Steenbeck’s principle is to take the minumum E satisfying (3).
Thus
d E=0 so d (T'/o(T)) =0
dT dT
(4)
or d [log o(T)] = 4/T,
. daT

and (4) then provides a third equation of state. Not only is this ad-hoc it
also (as Steve Smith showed) leads to various contradictions. We now propose

an alternative mechanism for closing the system.

2. Closure of the system on the assumption of thermal equilibrium

When we examine the form of o(T) we see that for T less than a value T
then o(T) is effectively zero. We thus can define the arc to be the region of
gas for which

T > T, so T(a) -.&b, a: radius of arc.

If T < T, then no current flows and hence the arc is not ohmically heated.

We now consider the gas surrounding the arc. This will receive heat
from the arc through conduction and radiation and will also radiate heat
itself.

Hence the equation for the temperature in the gas external to the arc
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2
pC,T, = kV3T + I po - Iy,

Radiant heat / '\Radiant heat
gained (global lost (local term)
integral)

To make progress we shall make the gross assumption that I;, and Iy, balance
in the gas [Clearly this will in general be a crude approximation: W
should think more clearly about approximating the global integral terms], so

that outside the arc

pC, T, = k V2T. (5)

3. Solution of (2),(4) in the steady state

To solve (2), (4) we make the assumption that the arc is long and thin
and slowly varying in x. Hence we may examine its behaviour by using slender
body theory. We firstly look at the gas outside the arc.

Let the length of the arc be-{; then we can approximate it to be a line

of sources. Hence the solution of (5) is

AL
T(r,x) = [ £(x')//Gx=x)?Fr? dx’ (6)
d

Similarly, on the assumption of slow variation we can write the solution of
(4) close to arc as
T = A(x) + 2B(x) log(l/r’) ' )

where r = ¢r’ and ¢ << 1 is a measure of the aspect ratio of the arc. From (3)

{
T = [ £(z')dz’
0 f(z-z")  + g2rT?
L - L E(x)-£(x)
- { £(x)/JEXY2F2Y2 + [ ST )

- 2f(x) log(l/er’)

+ f(x)log(4x(l-x)

+ f(ff(x')-f(x)]/./z—ryzx-x Fglr'? (7)
0



Comparing (8) with (7) and matching to leading order we see that

f(x) = B(x) and

{
A(x) = 2B(x)log(l/e) + B(x)log(ax(f-x)) + [y eel _ -7
[+

Now when r = a, T = T,. But a = ea’ and a(x) is an order one quantity.

Hence

T, = A(x) + 2B(x) log(l/a’),
therefore

Tc - 2B(x) log(l/a’) = 2B(x) logl/e

+ B(x) loghx(€-x)
|
+fBX-BX' Ax"
° . |x-x'

Thus to leading order B(x) = TC/Cllog(l/e)]which is a constant.

B(x) = T/log [(1/ea")?.4x(l-x)],
thus
B(x) = T, /log [1/a%4x(1-x)].
We can repeat this procedure to refine our estimates.

= - B(x)/a,

Now T(r) = A(x) + B(x)>10g(;/r))so dT
r=a

dr

and we can conclude that on the boundary of the arc

I) T(a) = Tc; II) dT(a) = - TCA? log[ég(l-xz]).

dr a?

To next order

These now become our equations of state. (But see Andrew Lacey'’s comments in

the appendix on the problem when we do not treat heat transfer to the gas as

-

purely conductive).

&. Solution of the steady state equations of the arc

The arc steady state itself satisfies the equations

K(T"+ 1 T') + oE? = 2KAT*
r

- (9)




2xE {“amrdr -1 (10)

T'(0) = 0O (11)

T(a) = T, (12)

T'(a) = - TCA@‘log[Axg‘-gl]) . (13)
8.2

Here k = 10°2 and KAT® = 8x10° (SI units) so conduction becomes important on a
length scale
L = 1//102x8x10° = 1um.
Note a = 100um.
(a) The case a >> L

The temperature in this case has the form

)

If r < a-0(L) then

T = T,,where  o(T,)E? = 2KAT,*cnd wEa*e ()= 1.
and T )

Now at the boundary of the arc

T' (r) = - T, fa log [4xg:;§2])
and - T' (a) = (T,-Tg)/L.
Hence T, = TC[1+(L/a) log [&gﬁi;g)]] (14)
a

If we approximate o(T) the piecewise linear function

o(T,) = o' (T;)(T,-T;) then o’'(T;) = 15 so



o(T,) = . - IST.L a log [Axgt-z—ﬁ].

a
We can now solve the system
a = (I2/2KAT,%r20(T,))*
~ (I2/2KAT,>15.x2L/a)¥.

Substituting values we have

a = 1,3x107512/3, (14)
Similarly
E~ I/ra® x __a__ = If157T;La),
15T L
i.e E = 8.16x10%1%/3, (15)

These formulae apply provided a >> L.

We note that E and a decrease as a function of I,and T, slowly
increases.

When I = 0.0213 (14) = a=1L. If1I= 10* sin 2xx50t this occurs within
7.10"°s of the current zero.
(b) The case a << L. Rescale r - r/a, so in the new variable

T" + T' + a® [0E2-2AKT*] = 0.

r K

From (13)

T' (1) = T./logl[4z(l-2)/a%]
If a is small then T*a? is small hence

T"+_T_"+22 UEZ_O‘
r K

(This is called the Elenbaas-Heller equation). But if o(T) = 15(T-T;), putting

u=T - T, gives

u = AJo(jgg‘aEr)

Now T(1l) = T, 2

where j, is the first zero of J,. Therefore

u(l) = 0, therefore Jo(j§§‘aE) = 0. Hence aE = JR/15 Jo
/K




E ~ 1/a and solving we get a ~ 1. (and T - T.).
We can combine the estimates in the following figures

~

E, a Ab E~1"1

1

Note This predicts E + ©» as I -+ 0. All heat loss 1is conductive with little

radiative heat transport. Of course the external circuitry cannot support such
large fields.

What we have described is a quasi-steady state in which thermodynamic
equilibrium is achieved quickly. We now consider the fully time dependent
case.

5. Time-dependent arc

There are various timescales to be considered.
1. Radiative cooling
ty ~ pC,/2KAT® ~ 10" 7s
2. Conductive cooling
t, ~ pC\»-a2
Only important if a = L, i.e. t < 10"%s (from before),

3. External circuitry

- -12 -7
t, = JIC ~ JIXIO 3xXI0x10 12~-1077s
- |
Thus the time for the external circuit to react is comparable to the

time it takes for the arc to cool down radiatively.

The complete system we need to consider is
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Electrode
capacitance

V =YV, sin (27xx50t)

where the arc forms part of the system. To maintain thermal equilibrium our
earlier equations imply that E ~ I'/? for I away from zero and I"! for smaller
I. As the external circuitry responds in time 0(10°7)s and E must change sign
over a half cycle it is clear that in the 10"7s during which E decreases to
zero the ohmic heating in the arc cannot balance the heat loss and it will
start to cool. If the arc cools below the temperature T = T, it will not
restart on the next half cycle as now the gas has effectively an ggfinite
resistance.

It is clear though that the cooling time and the circuitry response
time are so close that we cannot decide this question with the approximations
made during the Study Group.

6. A review of the complete model

It is worth finally stating a complete model.
et
We shall take the arc to be the region of[gas between two electrodes,
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We solve the following system:

A. Inside the arc. If we continue to use a uniform field assumpttion

(1) pC, T, = V.(K(T)VT) + o(T)E?

- 2RAT* + [ 2KAT*G(r,r')dr
space
{where we must find G);T + T ,uprenr @t @ -
(2) 1 =2xE [ o(T)r dr
0

(1) Holds everywhere but o(T) terms only matter if T > T..

B. Outside the arc.

I, c
N | 1
[ [
ARC
Lror Y >
I
-—m * V pe
L
I.: Capacitative current due to changes on the electrodes.
1. Ipor = I + I (currgnt conservation)
2. V = LI, + EC (Kirchoff)

(length of arc)
3. - [1./0
Combining, we find -
V=LI+LCE+E
Our initial attack should still assume that the hot part of the .arc is

cylindrical, although the global radiation term will make thingss harder.

CJB,AAL,SJC,JC,PWw,JRO



Appendix: written after the-follow up meeting in Oxford in June.

ERDC Problem: Electric Arc in Bitumen

We wish to find the behaviour of

pcT, = V.(kVT) + E20(T) - 2KAT* (1)

subject to T » T, at some (relatively distant) boundary and ffadedy = I where
the integral is taken over some typical cross-section of the arc. The terms in
(1) represent rate of change of internal energy, heat diffusion, ohmic (Joule)
heating, and heat loss by radiationm, respectively. We may be thinking of

I as either imposed or given by a circuit equation such as

v(e) = LB + L & ar L) + r(1+{cS) (2y"

where V(t) is a known applied voltage. The conductivity o is given by
o(T) = AT3/4e ¥/T,

so we choose to scale temperature with &: T = ¢u. Since T, is expected to be
small compared with @ the boundary condition becomes u = 0. We balance the
source and sink terms by scaling E appropriately, we scale distance with a
typical arc radius (10" *m?), and we should scale time to suit this distance
(rather than the period of V=2.10"2s).

Taking k to be constant (we could probably modify the analysis to cope

with k = k(T)) we get:

au, = §2v2u + E2g(u) - u* ,
u =0 for large r (3)

I = 27Efro(u)dr




Notes: We have assumed an optically thin are. If it is actually optically
thick the -u* term is replaced by a modified diffusion term. Since we are away
from equilibrium the radiating term should probably be a function of u other
than u®; the following analysis can easily be modified to Allow for this.

We expect a and § both to be small. The former leads us to neglect the
time derivative to give us a quasi-steady problem while the latter 1¢ads to
the appearance of a boundary layer, say at r = a (the surface of the arc),

which is the only place that spatial derivatives are significant.

We have:
r < a (arc interior) E20(u) ~ u* : (4)
r> a (exterior) . u-~0 ;

r = a+ 6x (arc surface) u" + E20(u) - u* ~ 0 ('= %;). (5)

The current condition then gives 7a’Ec(U) = I where u = U solves (4),
i.e. U*/o(U) = E2.

We now have two equations for the electric field E, internal arc
temperature U, and arc radius a. The final equation is to come from careful
consideration of the boundary layer at r = a subject to matching with r < a
and r S a (u- U and u » 0 respectively).

Multiplying (5) by u’ and integrating from x = - « (u=U,u’=0) we see

that
Ty (E*o(u)-u*)du = 0 (6)
or
U“fg o (u)du/o(U) J’% Us
1.e
- 1 o(Us) 1
Jo o0y 9”35 -



Taking the given conductivity law o(u) = u/te 1l/u gives

F(U) = fé s?/ 4 exp {;S%éél}ds - % . (7)

It is clear that F(U) is increasing with F(U) - 0 as U > 0 and F(U) ~ %

as U » ©». We see that there is a unique solution U = U* to (7). To compare

this predicted value with that given by Steenbeck’s minimum principle

(0 = ga(gr) = u e /u(1-13u/4), i.e. U = 4/13) we look at the integrand in (6).

Since u‘/o(u) is positive and large for positive u both large and small,

and g;(u‘/a/u) < 0 for u < %3 , > 0 for u > 4/13 it is clear that

ut - Ezo(u)_is positive for all u > 0 if E2 < ¢, = (4/13)% /o (4/13), is

positive for 0 < u < 4/13 and for u > 4/13 but zero for u = 4/13 if E? = £,

is positive for u < u < u, and for u > u, but negative for u; < u<u, if

E?> ¢, where u, and u, are respectively decreasing and increasing functions

4

of E? with u, (£§,) = W, (§,) = 33 -

w / Tl /
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We see that U = u,(E?) with fg(u“-Eza(u))du s+ 0. Thus E? > £, and

U= uz(Ez) > 4/13,
Improved estimates can be found as asymptotic series e.g.

U ~7U" + U’ +..., with U, (and the first order corrections for other

equations) depending upon a power of § and of In % but these do not seem very

illuminating.
To see how the solution becomes invalid, rather than use detailed
asymptotics we may now find how the au, or §2V?u terms become important. Just

how this happens depends critically upon the sizes of a and §. The diffusion

term will become significant throughout the arc for a = 0(§) while the

internal energy change must be considered in the boundary layer if
da . : . .
ac = 0(6/a). Taking I to vary linearly with time so that a = aljzf we must

have diffusion everywhere for - t = 0(62) and initial energy at the arc
boundary for - t = 0(a?/62) (if a = 0(6) the above boundary layer analysis

would be ;ncorrect).

For 62 > > a (which we believe to be the case) the diffusion term
becomes significant first and we must then consider the (quasi-stéady)

problem



V2u + E20(u) - u* =0,
u=20 r large,

I = 27E [ ro(u)dr,

where r has been rescaled.

Since we are looking for two-dimensional, radially-symmetric solutions

the problem becomes

u" + u'/r = f(u) r > 0, where £(u;E) = ut - E2o(u),
with u'(0) =0, u(r) - as r + =,

Multiplying by u’ and integrating from 0 to = we get

12
0 < O—%— dr = - fgf(u)du, where now U - u(0).

This indicates that E2 > U*4/0(U") and also u, (E*) < U < uzf(Ez). It
appears that I decreases as E2 increases; it is not immediately clear how the
maximum temperature U behaves.

1t should be noted that for short times the circuit equation may have
to be considered more carefully. Again we must be sure of the relevant sizes
to ascertain how the external problem links with the arc. We also note that

for 62 < < a < 0(8) we can adapt the earlier boundary layer analysis to

include a term of the type Vu'(V = - %%), coming from au,, which gives some
relation between V and U. Preliminary analysis (which can be taken further if

it is at all relevant) suggests that V= V(U) is a decreasing function for

we only know (at present) that V < V,(U) for some

b
(%]

4
U > 13 but for U <
decreasing function V, satisfying Vo(%g) = V(%§+). While U > %5 the equation

(&) gives E? decreasing with U.
A.A.L.




