Jet Break-up (Elkem)

Elkem propose to produce drops of liquid mbnjg:;t from the break-up of a cylindrical jet by
capillary instabilities (see figure 1). They require the drops to be large (1 to 5cm in diameter) with
a narrow size distribution. They also want the jets to break-up in a reasonably short distance and
to have some means of controlling the drop size. The study group was asked to determine which
dimensionless groups govern jet break-up, and what effect the design of the outlet nozzle has on
the break-up of the jet. The problem of jet break-up has been studied intensively and the main

activity of the study group was to survey the literature.

Dimensionless Groups

There are two dimensionless groups which control jet break-up. These are the fluid Reynolds
number (Re) and the Weber number (We). For a jet of diameter d falling at velocity V' these are

given by
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where v is the kinematic viscosity, o v e &23\9}3) o - Cila Swf‘&-&ca. Aewtion,
(adual values oce confidontiok) . For ajet of Yoo weknd constdeed !, Re = 2000
and We ~ 40. In order to keep these two numbers constant, an equivalent flow with water would

have a jet of diameter approximately 0.15 cm with a velocity of approximately 1.3 m s~1.

Experimental Observations

The many experimental observations of jet break-up have been reviewed by McCarthy and Molloy
(1974). The variation in the break-up length with the jet velocity is sketched in figure 2. For
jet velocities below a critical velocity Verit the jet develops a varicose instability (see figure 3)
and breaks up into drops of uniform size (with some small satellite drops). The break-updength
is proportional to the jet velocity, except at very low velocities when viscosity is important. At
velocities above Viri; the nature of the instability changes from varicose to sinuous (figure 3) and the
jet no-longer breaks into drops of uniform size, hence this mode of instability should be avoided. At
very high velocities aerodynamic effects become important and the jet breaks up into a fine spray.

The critical velocity Veri¢ depends not only on the Reynolds and Weber numbers, but also on the
nozzle design. Indeed it is possible to observe all three kinds of break-up (varicose, sinuous and
fine spray) at the same Reynolds and Weber pumbers with different nozzles. Short nozzles produce
fiows which have larger values of Verit and are more stable to disturbances than longer nozzles.
The velocity at the outlet of a short nozzle has a plug profile, whereas that at the outlet of a long
nozzle has a fully developed Poiseuille profile. The Poiseuille profile subsequently relaxes to a plug
profile through a radial transfer of momentum which destabilises the jet. The values of Re and
We for the Elkem jet appear to be above Vpi¢ for certain nozzle designs and so short nozzles are

necessary to ensure varicose break-up.




Linear Stability Theory

The linear stability of a liquid jet to axisymmetric disturbances was first analysed by Rayleigh
(1879). Subsequently Weber (1931) and Stirling & Sleicher (1975) have modified this theory to
include respectively the effects of fluid viscosity and aerodynamic drag. The relative importance of
viscosity to surface tension is proportional to vWe/Re, which is small, and hence viscosity can be
neglected. Aerodynamic effects are also negligible because the density of the liquid metal is much

greater than that of air.

Rayleigh considers the growth rate, s, of an axial disturbance of wavelength A. In cylindrical polar
coordinates (r, z) in a frame moving at the unperturbed velocity of the jet, the jet radius r; is taken

to be
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The fluid velocity u and pressure p are then of the form
. 2riz
u = u(r)exp (T + st) ,
p= Edz + p(r) exp (————27:\12 + st) .

The linear growth rate, s, is found to be given by
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and I (z) is the modified Bessel function of order n. s has real solutions for 0 < £ < 1 and so all
wavelengths above 7d are unstable (shorter wavelength disturbances are stable as they increase the

surface area). A plot of the dimensionless growth rate (sy/pd*/80) is shown by the solid curve in
figure 4. The maximum growth rate occurs for A = 4.5d, and the break-up length is proportional

to dvVWe (x Vd®/?) and so increases linearly with V/, as observed in experiment.

The Effect of Rotation

In order to consider the effect of rotation on the stability of the jet, we have modified Rayleigh’s

theory to include solid body rotation. In a frame which is translating and rotating with the
undeformed jet, the linearised equations of motion are
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and the boundary conditions at the jet surface (r = r;) are

un=
p=0V.n,



where n is the unit normal. We now seek a solution to the above equations of the form

[
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u = (&(r), (), (r)) exp (ik + 1)
p= 2‘% + {; (r2 - é:_) + p(r) exp (ikz + st),

where k= -2-1
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The equations of motion for the linear perturbation then become
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Eliminating # from the top two equations we find that
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and substituting for 4 and  in the final equation gives
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The linearised boundary conditions are
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and substituting for # and p we obtain
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Note that since 8 depends on s that this is now an implicit expression for s. In the limit of no

rotation, when § — 1 we recover Rayleigh’s formula.

In figure 4, the dimensionless growth rate for & = V20 /pd® is compared to that for @ = 0. As
before, all wavelengths above xd are unstable, but rotation reduces the growth rate and increases

the wavelength of the most unstable mode. Thus we would expect to find an increase in the

break-up length with rotation.

That rotation stabilises axisymmetric disturbances may at first appear to be counter-intuitive,
however the following physical argument shows it to be correct. In the unperturbed state, there is
an axial pressure gradient which balances the centrifugal force. Now, if a section of the jet expands
radially it must rotate slower in order to conserve angular momentum. This in turn reduces the
centrifugal force, which no longer balances the pressure gradient, and leads to a net inward force

on the jet.

In order to test this theory, we conducted some (qualitative) experiments to determine the effect of
rotation on the break-up length. We observed that jet break-up for a rotating fluid is via a helical
instability rather than an axisymmetric mode, and that the break-up length is shorter than for
non-rotating fluid. Thus the above tnheory may be of little practical interest.

Satellite Drops and Forcing

Careful experimental observations (Bogy 1979) find that in varicose jet break-up small satellite
drops are formed in between the main drops. These satellite drops are particularly undesirable in
ink-jet printing and various one- and three-dimensional non-linear theories have been developed in
order to understand their formation (these are reviewed by Bogy 1979). It is found experimentally
that if the jet is forced to oscillate at a wavelength in the range 5 to 8 jet diameters, no satellite
drops are formed provided that the amplitude of the forcing is sufficiently large. Forcing also has
the desirable effect of reducing the break-up length and, by varying the disturbance wavelength,

provides a means of controlling drop size.

In order to produce a disturbance of wavelength 6d forcing at approximately 20Hz is required.

Various methods of forcing the jet were proposed:

Loudspeaker Thisis the method used in ink-jet printing, but because of the larger scale
and harsher enviroment of |o'¢w:¢! wehsl production this method may not

be practical.

Air-jets This method involves the use of radially directed air-jets to create the
disturbance. One possible drawback with this method is that it is likely
to produce a fine spray. This method would also be difficult to implement
if an array of nozzles were used. (In order to maintain current production
levels approximately 50 nozzles would be required).
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Mechanical Vibration This method has already been tried by Elkem in preliminary experi-
ments. Our own qualitative experiments showed that this method was

quite effective at reducing break-up length.

Magnetic Pinching This uses an alternating axial magnetic field produced by a coil around
the nozzle outlet to create the disturbance. The magnetic field induces
azimuthal surface currents producing an inward Lorentz force. As the
magnitude of the magnetic field has two maxima per cycle the frequency
of the magnetic field should be half that of the instability. This method
has the advantage that it requires no moving parts, and for multiple

nozzles the coils could be connected in series.
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Postscript

the Study Group, Patrick Parkes suggested a

1 procedure for producing drops (in which a jet

of liquid ~w¢kﬁiicsn falls onto a convex trock'; a sheet of liquid is formed

which subsequently breaks up into droplets). He suggests using a concave stone
(Fig.5) to improve the drop formation. Some work has been carried out on this

configuration by G.N. Lance and published in the 1950's.

In a letter received after
modification to Elkem's origina
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Figure 4: Plot of dimensionless growth rate (sy/pd/80) against wavenumber: —— @ = 0,

------ Q = \/20/pd.




