Void spaces under tubes in fluidized beds

A: Work prior to Study Group

From videos of two-dimensional fluidized beds, it is seen that, at low
fluidization velocities, 1ens-shaped voids develop under tubes and lead to

bubble formation from the sides of the tubes, as in fig.1l
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Fig.l Periodic bubble formation under tubes

The gas flow around the pipe has a stagnation point on the upstream

side. Vertical velocities close to the stagnation point are below minimum

fluidization velocity and this, we believe, leads to local defluidization of a

region which ‘slumps’ to closest packing, initiating a thin void space under
the tube.

A model was proposed for void development based on the ad hoc

assumptions that
1) the void is long and thin so flow is approximately one-dimensional;
2) flow through the void boundary is negligible;

3) gas viscosity is negligible in the void (Re > 103, estimated
void

from video);

4) gas flow in the porous medium is given by Darcy's law;
5) the pressure in the void is imposed by the Darcy flow in the porous
medium.

Fig.2 shows the simplified gfometry used.




y = h(x,t) <<1

Stagnation point flow

Fig.2 Unsteady, stagnation point flow problem (\ilwvtnston\esg)
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In region I, P = y*-x
2 2
since v=0ony=0.
The pressure is continuous across the void boundary, so p = - x%/2 to
void

lowest order.
In region II (0>y>h)

h, + (uh), = 0 continuity

.f(“z+“ux) = - Py X -momentum,

:-%h
. Since p -p(xz: then u = u(x) and the void thickness is of the form

h-;p[fg-c]

u u
As a crude model for flow round a pipe (rather than just stagnation point flow% u
was chosen to be 1 - e *, The void thickness could then be found explicitly

and, as shown in Fig.3, after an {nitial transient, a travelling wave was



observed (cf Fig.l).

h 1t h=1-x% at t=0
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Fig.3 Evolution of void space

B: Work during Study Group

The assumption of no flow across the void boundary was modified, as it
is clear that gas flow is easier through a void than through a porous medium.
Flow across the boundary into the void would make the void flow rotational.
Thus different equations would have to be used which reflect this nature of
through-flow. In order to deal with a simpler problem, an ‘immobilized’ bed
was thought of (i.e. h was prescribed) to obtain a steady (if unrealistic)

problem. |
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For the flow in the regions shown in Fig.4, the followinglequations are

written
Region (1): f(uux+vuy) - - Py
hyh <y < 0
u + v, = 0

Region (2): U= - &P,

_ B -H<y<hh

vV = - K Py
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Fig.4 Flow teglons for immcbilized bed

with boundary conditions:

Ony =0, h=0 v=20
y=0, h=20 v=20
y=-H B_po
x =D p =0
ax
on y = hyh: P=D
[(u,V)-a(u,v)].n = 0, ' n = normal to h.

and,assuming inflow into the void, either

[(U,V)'Q(G,\_I)].E -0 (a)

or (u,v),t =0 (b) t = tangent.

Here a denotes the voidage at y = h, h.



Boundary condifion (a) is used for fully developed bubbles {n fluidized
beds [ref.l], but here the void {s in a defluidized region of particles and it
might be more appropriate to use the boundary condition (b) which is used for
air flowing over sand dunes [ref.2].

Non-dimensionalizing using:

In porous medium region (2)

In region (1)

y = elLy’ where ¢ = h,
L

u? e?12

We get in (2): Afuu +vuy ) = - Py where A = x?_p,
*
and the boundary is givén by y = h(x),

u +v, = 0
and in (1): V2P = O where the boundary is given by ¥ = eh(X).
On the boundary: p = P
and (since n = (¢h’,-1)), uh' - v = guh’ - V } Q+)

u + e2h'v = e(uteh’'V)

using the continuous tangential velocity condition (a) (both (a) and (b)




give u =0 ﬁo lowest order).

It is unlikely that A will assume large values; indeed, estimates
indicate that it is - 1/10. For A << 1, the pressure in the void space would
be spatially constant (to within 0(X)), consistent with Davidson’s assumption

i,
of constant pressure in fully developed bubbles [ref23]. In this case when D

-+ o the velocity through the boundary,V, is proportional to 1

er —x2

For arbitrary A, we can relate §IY'0 to'Vly_o - Qﬁly_o, from the porous medium
]

P 'dtgv) = Plyancxy -

The equation * in the void, together with the boundary conditions (+), can

problem, by

only be solved once a second equation relating P and Vv is found. This can be

done using the method of Cole & Aroesty [ref.4]
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Fig.5 Stream tube in Cole & Aroesty model

|
From Bernoulli'’s theorem, along a sgéamline emerging from the porous

medium at £ (see Fig.5) we have

p(x) + )23 u? (x,y) = p(§) |

By mass conservation within the stream tube in Fig.3, V()56 = u(x,y)éy and

hence v(§) = 3y
u(x,y) 8¢,



The voidspace thickness h(x) can now be obtained by integration:

~heo = [ oy a8 = [ 9 &
u

3¢ >
But u = /2Tp(E) -P(X])
05
SO

- hex) = [ JRE) 48
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A solution for the unsteady problem (i.e. a mobile fluidized bed) is still

dnclear, as is the mechanism of initial defluidization and slumping.
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