Shell - Annular Breakthrough

During the meeting several mechanisms for annular breakthrough were
proposed, some of which incorporated a tilting motion of the ‘washer’ allowing
gas escape. The model which received most support, however, treated the
bearing as a ‘canal lock’ mechanism.

In this model the two competing effects

(i) large pressure gradients across the washer and

(ii) frictional forces (which move the washer against the pressure for

part of the cycle)
are assumed to be of roughly the same order. Referring to figure 1 (a
simplified model for one bearing, although our model could be extended to any

number) there is a high pressure, P*, to the right of the washer;
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this pressure is a known function of time. To the left is an unknown and lower
pressure P~. Within the bearing cavity is an again unknown pressure P. The
length scales in the diagram have been exaggerated: the gaps between the washer
and walls are much less than other length scales . As the shaft moves to the
right the washer is held against the right hand wall and gas can only travel
through the left hand gap. This situation is reversed when the washer is held

against the left hand wall. The competing effect of a high pressure gradient




forcing the washer to the left means that the washer spends more time against
the left hand wall than against the right - indeed if this gradient is
sufficiently large the washer will never reach the right hand wall.

The bearing thus acts as a ‘lock’ since gas is typically stored in the
cavity for part of the cycle before moving to the left,

The mass flux through the narrow gap will be assumed to obey a
‘lubrication law’; that is, mass flux is proportional to pressure jump and the
third power of the gap width. This law is a consequence of ‘slow flow’ and
the Reynolds equation [Cameron, Basic lubrication Theory].

We prescribe the high pressure, P*, so that

P*(t) = A + B cos wt. (L

(since sufficient data was not available during the meeting neither A,B nor
any of the constants to follow can be given numerical values).

The washer is assumed to move according to a ‘wet friction’ law

d (x(t)-C cos wt) = P (t) - P*(¢v). (2)
dt
Here x(t) is the horizontal coordinate for the centre of the washer. We must

have

lx} < L (3)

since the washer is constrained by the two walls. Equation (2) holds until
le = L when equation (2) is ‘switched off’ until it predicts dx/dt changing
sign.

The mass flow into the bearing cavity is given by a flux from the right

‘reservoir’ minus a flux into the left ‘reservoir’ so that



dP = D{(P*-P)(L-x)3 + (P -P)(L+x)3}. (4)

dt
Note that we have implicitly assumed that the pressure increase, dP/dt, is
proportional to the mass flux.

Finally, the equation for the pressure in the left reservoir is

dP™ = - E(P -P)(L+x)® - AP". (5)
dt

Again this represents a lubrication flow. The last term in equation (5) is a
‘leakage’ term. In the absence of any movement of the shaft the pressure P~
decreases exponentially to zero (atmospheric). Equations (1) to (5) form our
system. The system can be extended to any number of bearings, with P* for the
second bearing being equal to P~ for the first etc.

Note that

A > B (P* is always greater than atmospheric pressure)
and D >> E (the bearing cavity is much smaller than the left hand

reservoir).

Equations (1) to (5) are easily solved numerically.

With A=0.5,B=0.1,C=1,D=1, E=0.2, w=1, L=1, A =1 and
x,P and P~ set at 1 initially the pressures P*(t) and P(t) are shown in fig.2.
In fig.3 is shown the corresponding x(t).

The one bearing system as it stands does not exhibit a breakthrough
instability but rapidly settles down to a periodic motion. This work could

form the basis for a more sophisticated, many bearing analysis.
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