Oxford Study Group with Industry 1990, Birmingham University

STUDY GROUP REPORT - DOWTY PROBLEM

1. Information available at the Study Group

On behalf of Dowty Defence and Air Systems Ltd, Dr. Mark Butcher presented a problem to
the study group concerning an instability which had been detected in a steam driven high speed
turbine. The instability had led in some cases to destruction and threatened to greatly reduce
the power and efficiency of the turbine. Dr. Butcher’s main concern was to be able to predict the
instability theoretically, identify the main controlling mechanisms for the instability and project
these predictions to other, hypothetical turbine conditions. Detailed drawings of the turbine were
provided, but the most important pieces of information seemed to be as follows :

(i) The turbine was roughly 20cm in length and 3.5¢cm in diameter. The turbine disc was about
10¢m in diameter. Under the envisaged operating conditions the turbine was expected to run at
speeds in excess of 100,000 RPM.

(ii) The turbine shaft was mounted on a pair of angular contact bearings which were axially
. pre-loaded by springs of a given stiffness. The bearings were of standard ball race type (but see
comments below).

(iii) At a shaft speed of about 45,000 RPM the first ‘whirling’ mode of the shaft was observed.
. Bending of the shaft between the bearings was discerned, but there was no sign of axial motion and
the turbine could be driven through this instability. However, at approximately 90,000 RPM large
amplitude axial vibrations (‘chattering’) of the shaft were noted. This is the potentially destructive
instabilty, and all attempts to drive the turbine through the regime had proved unsuccessful.
(iv) A considerable number of experimental measurements had been performed using an instru-
mented rig. One of the key elements of the problem appeared to be the fact that, at the onset of
the chattering instability, the circular motion of the centre of mass of the shaft due to whirling
took on a pronounced elliptical character. It appeared from conversations with Dr. Butcher that
the appearance of this elliptic shaft centre motion served to differentiate the chattering instability
from all the other possible instabilities in the shaft ‘motion.

(v) From the experiments which had been carried out, it seemed that there was only one practical
way of influencing the onset of the chattering instability. This consisted of changing the axial
preload which was applied to the springs at the opposite end of the shaft to the disc. An increase
in effective spring stiffiness was seen to lead to an increase in the rotational speed at which the
onset of chattering occured, but the relationship appeared to be a nonlinear one.

2. Summary of models proposed and work carried out at the Study Group

Many different models were proposed at the Study Group, and most sought simply to find a
physical mechanism for the chattering instability. In fact it proved hard to find such a mechanism
and personally I am still not happy that the basic cause of the instability is understood.

One of the first models to be put forward was proposed by Professor P. Parks from Shrivenham.
His idea was based on an examination of the out-of-plane tilting of the heavy turbine disc and
consequent bending of the turbine shaft at its centre. The out-of-plane disc tilting was governed
by the standard Euler equations for rigid body rotations and included couples produced by an
assumed imbalance of the disc. When linearized for small disc tilt angles 4 the result was a set of
ordinary differential equations of the form

A6+ A2+ A3b = —mir sin wt

Bl$ + Bgé + Baé = —mZIr cos wl




where ¢ denotes the angle of rotation of the disc, z the axial displacement of the disc centre, and
r the offset of the true centre of gravity of the disc from the centre of the disc. Clearly these
equations provide a mechanism for producing axial vibrations of the sort observed, and much
discussion took place concerning the addition of extra terms representing other effects. However
it was noted that the experiments which Dowty had carried out had been extremely accurate and
showed conclusively that the disc was not subject to any measurable tilt. Indeed, Dr. Butcher’s
opinion was that its weight tended to stabilize it. This experimental evidence should therefore be
regarded as fatal to the above model.

The fact that chattering took place at roughly twice the rotational speed of the first whirling
frequency then became a topic of discussion. It was clear at this point that some analysis of the
basic whirling frequencies of the shaft was required, and David Parker and Graham Mc.Cauley
produced a model (they have the details) of the whirling and bending shaft which depended on
writing down a rather complicated Lagrangian for the motion. Some mistakes were made in the
non-dimensionalization and insertion of the correct numerical parameters, but a reconsideration
of this model predicted that (as far as I know - there may have been further reconsiderations !) the
first rotational speed of whirling would be at about 45,000 RPM and the next at 180,000 RPM.
The suggestion from this model is therefore that the second whirling frequency is not connected
to the chattering.

A further mechanism was proposed for the chattering. This relied on the fact that whilst the
shaft was whirling, its centre of mass described a circle so that the effective length of the shaft was
constant. Assuming that this whirling was subject to unstable amplification at certain rotational
speeds, so that elliptic motion would be produced, it was noted that this would lead to a change

“in the effective length of the shaft which may provide the mechanism for producing a resonance
when coupled with the motion of the springs attached to the bearings. It is important to note
however that resonance must be achieved for this to explain the chattering, as the amplitude of
axial vibrations which could be set up due only to the bending of the shaft from elliptical motion
is an order of magnitude too small to account for the chattering. A very simple model of the form

MZE 4+ kz = ccos Qt (1)

was proposed by considering the whole system simply to be attached to the bearing springs. Here
k is the stiffness of the bearing spring, ¢ corresponds roughly to the eccentricity of the ellipse, Q is
the frequency of effective shaft shortening, which is related in an obvious way to the transit time
around the ellipse, and M is the mass of the shaft (or the mass of the shaft and disc assembly,
depending on ones personal interpretation of this very simple model). As usual, resonance takes
place when

k= MQ? (2)

but although it is possible to argue about the correct values for M and §Q one fact is quite clear -
an increase in k from 261 to 2600 (the two values used in the Dowty experiments) increased the
chattering instability onset from approx. 72,000 RPM to 98,000 RPM - nothing like the factor of
V10 which is predicted by (2).

Some discussion also took place concerning a modification of the above model which took the
form of an impact oscillator. The physical basis for this was the fact that under some circumstances
it seemed possible that the shaft was not constrained by the springs. Apparently some numerical
calculations were performed which gave encouraging numbers. (P. Wilmott has details ?

My conclusion from the work carried out at the Study Group was therefore that although many
mechanisms and models had been considered, further work was still required and no concensus
had been reached.

3. Information received after the Study Group

After the Study Group at Birmingham, a meeting was held at Oxford on Friday 11th May to



further consider the problem. At this meeting, some further information came to light which may
materially affect the theoretical approach which must be taken. The important new facts which
were tevealed were;

(i) The ball races in the angular contact bearings are themselves rotating with a significant angular
velocity. Typically the order of magnitude of this velocity is half the angular speed of the shaft.
(ii) The whole turbine assembly actually includes an alternator mechanism which rotates with
the speed of the shaft. This mechanism is not in direct lateral contact with either the shaft or
the outer housing, but is connected to the shaft via a series of gears. This may provide a whole
new mechanism for the production of a ‘chattering’ instability.

(iii) The first whirling mode described in (iii) above did not suddenly appear at 45,000 RPM as
we had thought, but was in fact observed very soon after start-up of the turbine and gradually
increased in amplitude until a peak was reached at about 45,000 RPM. P. Wilmott and J. Ock-
endon were rumoured to be considering a slowly varying frequency driving the turbine through
this instability in order to determine orders of magnitude for the amplitudes which might be

expected.
4. Potential for Further Work

There is no doubt in my mind that the problem still requires a good deal of work before the
important mechanisms and models are for the observed behaviour are properly understood. This
work would have to begin with a collection of all the models produced at the Study Group (Prof.
Tryfan Rogers has all the relevant bits of paper) and especially a re-examination of all the infor-
mation which is relevant to the Parker and Mc.Cauley model. I would envisage that the next step
would be to make a more realistic model of the situation modelled in (1) and see if any realistic
numbers could be produced. My opinion at this stage is that the ball race and the alternator
are not crucial to the instability (with no alternator the instability was still observed - it is not
possible to coduct experiments with no ball race !) and that the mechanism modelled by (1),
perhaps with allowances made for impact oscillator type behaviour is the most likely candidate.

ADF, Southampton University 26/5/90




Dynamic Instabilities in Turbines — the Dowty problem

Introduction

An ub—to-—date diagrammatic description of the shaft and bearings relevant to the
Dowty turbine problem has already been given by Mark (2.4.90), together with a
“definitive" version of the instability observations and a chronological account of the
Study Group's search for an explanation of the axial "chatter" at 79,000-95,000 rpm.

Apart from a general consensus that the problem needed substantial further work, it
appeared that the Parker et al model merited further investigation, as also did the

Wilmott et al. This report concentrates on the former (Parker) analysis, from which

some conclusions (speculations?) may be drawn.

Notation (also refer figure)

arc length along the central axis of the shaft with s = 0 at the 'fixed' bearing (the

s =
'disc' end) and s = Q at the 'sprung' bearing.

2 = length of shaft ~ 0.114 m,

t = time (one revol® ~ 7.5 x 107 4s)

A = cross-sectional area ~ 0.00045 m?

I = (polar) second moment of area of shaft ~ 3.3 x 1078m*

C = polar moment of inertia of disc ~ 0.85 x 10723 kg.m?2

Q0 = angular speed of shaft ~ 8 x 104 rpm = 8400 s™

p = density ~ 8 x 10 kg m™3

E = Young's modulus of shaft material ~ 1.86 x 10'" Nm™2
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Governing equations

We denote the position of the central axis at s and at time t by

r=xi+ yl+ (stw)k
so that x, y and w are its displacement components. The unit tangent vector ¢ is thus
parallel to r' (=0r/ds) with

£l by )+ (T

The angular velocity of the cross—section at s is

T =-0e+ 0+ pj (b = 38/3t, etc.)

§~ -y , p~x'
Hence the kinetic energy T per unit length is

T = 1pA(x2+y2+w2) + §pI((X')2+y')2 + 2(x'y' -x'y')?) (1)
For the 'potential energy V per ;Jnit length we first note that the shaft is effectively
inextensional, since any extensional wave will traverse the shaft and back in
20p3EY ~ 0.45 x 10°Y whilst the shaft performs one revolution in approx.
7.5 x 1074s. This inextensional condition gives

(x4 (y'2) + (Ttw')? = 1 )
and introducés a Lagrange multiplier S (= tensile load in the shaft) into the potential
energy:

V = 1EI {((x")2 + (y")2) + 4S{(x')2 + (y')? + (w')? + 2w'} (3)
Substituting for L = T - V in Lagrange's equations of motion

) - B -3 G- B
gives

JEIX"" + pA%x - 2pIQy" - ipIx"

-

) - [roesekyn % froeyenn)] @




JEIy"" + pAY + 2pI0x" - iply"
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{S(1+w')}' - pAW (6)

Equations (2), (4), (5) and (6) are the fauur differential equations governing the four
unknown functions, x, y, w and S.

Along the shaft (0 < s < 1), x(s,t) :and y(s,t) are governed approximately by the
linearised equations obtained from (4) ani (5); in each the two leading terms are the
dominant ones for the present problem. However, the Coriolis terms ((:2pIQ) )
introdt..lce coupling between x and y, and :show that modes rotating with, and those
rotating counter to, the shaft rotation hzve= (slightly) different natural frequencies.

The axial load S(s,t) introduces resizrzing forces into (4) and (5). Its time
dependence is coupled to any axial vibrazoons through (6). A resonance phenomenon will
arise if these axial vibrations are themselwes related to the lateral displacements (x, y).
From (2) we see that to leading order v is zero, i.e.

w o~ W(t) (W(0) = W(0) = 0; (7

so that (6) gives
< 2 . (8)

z

S = Sy(t) = pA(s-2)W(t) , 0 <
Here S,(t) is the load at the (sprung) beazring at s = £, and is related to the preload P
and the instantaneq’us length of the springsc:

So(t) = P + f{W(t)) €
where f describes the non-linear dependencce of the spring stiffnesses on the applied load.

If there is a mechanism whereby osciilllations in # and y produce oscillations in W(t),
then (8) and (9) show that S(s,t) becomes oscillatory, so implying possible quadratic

forcing in equations (4) and (5). Once succh oscillations produce W < 0 at any stage,

t = t, say, then the bearing at s = 0 has some lateral freedom. Assuming, for

simplicity, that the bearings are conical width angle @ then



S(0,t) =0 for x2(0) + y2(0) < (tan?@)W2(0)
for t > t, ,

S(0,t) > 0 for x2(0) + y2(0) = (tan2@)wW2(0)
until W becomes positive again. This highly non~linear behaviour could lead to the
“chattering" phenomenon, and is the subject of the Willmott, Ockenden et al.
investigation.

It has also been observed that the geometry of the bearings can relate the lateral
displacements (x,y) of the shaft to its deflections (x',y'), though this is a linear effect
and probably gives a' negligible adjustment to the whirling modes. More important is the
possibility (DFP) that the angular contact bearings induce a coupling between the lateral
reaction at s = 0 and the axial load S - pAQW there. Finally, there is the coupling
between the shaft (0 < s < @) and the rotating disc at s = -2, a short shaft~length 0

the other side of the fixed bearing at s = 0; Parker and McCauley deduced that this

implied a linear relation between the slope and the curvature of the shaft at s = 0.

All the above possibilities (and no doubt others) imply that the conditions at the

two bearings s = 0 and s = £ merit further careful treatment.

Simplified theory

Linearisation of the governing equations (2), (4), (5), (6) leads to the equations

Xgsss t Xt - Wiss - ®Xptgs = SXgg = 0

0<s<1 (10)

Yssss t Yt t MXpgs - O¥prss — Syss = O

where all the lengths x, y, s have been non-dimensionalised with respect to the shaft

length €, and time t with respect to t* = (2pAQ4/EI)5; the boundary conditions are

X =y =0, x'" = yx" , y' = qy" at s = 0 (11)

x_y_xu_yu_o at s = 1 ° (12)

Here o, Q and § are dimensionless parameters defined by

I = 20174 < 25,02
o=z B2 e -2y (13)

whilst « is the coupling constant derived by DFP/GMcC assuming a single simple whirling

mode of angular frequency w as




El
Y " e (14

It is important to note the dependence on the whirling frequency w, which is obtained by

looking for non-trivial solutions of (10)-(12) in the form

X = X(s) cos wt , y = Y(s) sin wt .

Then

X ug N x n x _

Y Y Y
subject to

x x 1 X 1 x X L]

Y Y Y. Y Y
Clearly X = Y and X = -Y satisfy these equations, ;wvhich therefore uncouple as

zi" + 2852] - w2z = 0, (1 =1, 2) (16)
with

z(0) = zj(1) = zj(1) = 0, 2{(0) = vz} (0) (17)
where

z, =X+Y,2z,=X-Y
and

26 =ow? - S + (-1)1 o) . (18)
The solution is

zy = Aj sin(s-1)B; - Bysinh(s-1) k; (19)
where

Bt = (w7+5{); + 6y , ki = (w2+a§)i - 54 (20)

and

Aj _ sinh ki _ ki (coshkj+ykjsinhk;) 21
By sin f; Bi (cosBi-yBisinBy) 2h

(21) can be rearranged to show that w2 must be such that

By cotBy = ki cothky + y (k}+8])  (1-1,2) (22)
For the parameter values appropriate to the Dowty turbine,

a~0.003,0~0.042,5 ~0.003



so that &, ~ -5, and both co— and counter-rotating modes have the same behaviours.

Furthermore since &, , §, are small, then
l&il <<w =» Bi ~ ki (23)

and the roots of (22) are clos¢ to those of

cot ff# = coth f§ ¢ 2948 . (24)
The coupling v of slope to bending moment tends to zero as {] increases; if it is
neglected (equivalent to imposing a "built-in" condition at the "fixed" end) then the
lowest resonances are close to the lowest non-zero root of cot § = coth g, i.e. f ~
1.25x, which corresponds to a “physical" value of §{; ~ 45,000 rpm.

If we denote the corresponding frequencies determined by (22) as w* and w™ , then

the whirling solution is

X + [cos (w*‘t+¢+) _ [cos(w t+pT)
[ ] =-C [ } z,(s) + C [ } z,(s)
y sin (0tt+p™) sin(w ™ t+p™)

Comments

The non-linear terms neglected for (10) will cause gradual change of the amplitudes
C* and C~ and phases % and p~ . Also if there is any forcing having a component
close to the frequencies w* or w™ then a large response Ct or C™ should be expected.
The forcing frequency has a harmonic midway between wt and w™ , and a

dangerous regime could be its second harmonic Q0 = wt + &~ ~ 90,000 rpm ! However,

to induce this resonance some quadratically non-linear effect must be important. This

has been discussed in an earlier section, but it should also be observed that any

.

irregularity in the ball-race could excite the amplitude of the w* mode. This is because

the ballrace rotates at frequency ~ (), and if 0 = 2w™ the modeshape rotates at

-

wt - Q = -w* relative to the shaft, just the same as the ballrace! In the Dowty case,

2wt ~ 90,000 rpm .... :

DFP/TGR/GMcC




P.S.

In rechecking the calculations of parameters it was found that the value of

t* = 4.46 'x 1079 sec gives f; ~ 330,000 cycles/min. This appears quite unrelated to
observations and design theory. No error in the calculations has yet been traced.
Modification of the boundary conditions (11), (12) seems unlikely to provide sufficient
change in 8 or w. To resolve this discrepancy, comparison with the original design

calculations for the whirling modes of the shaft may be called for.

DFP/TGR
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Report on the Dowty Turbine Vibration Problem:

Professor P.C. Parks, Applied and Computational Matheematics
Group, RMCS, Shrivenham, Swindon, SN6 8LA.

1. INTRODUCTION

1.1 It was an unfortunate feature of this study tkhat much
important information did not become available until tkhne second
meeting held on 11 May 1990 in Oxford. This informatiopnn, had it
been available during the Study Group week in Birminghaam (26-30
March), would have prevented a number of false traiils being
persued at that time.

1.2 A particularly difficult feature of this vibrationn problem
is the presence of axial vibrations as opposed tec:- lateral
vibrations. The voluminous literature on shaft vibrzation and
whirling problems is almost entirely concerned with:. lateral
vibrations of rotating shafts and their bearings. Howwever, in
the present Dowty problem it appears that it is axial viibrations
that are responsible for severe damage or destructicon of the
bearings and shaft of the turbine. A Key problem is ttherefore
to identify a mechanism which can couple lateral aand axial
motions of the shaft.

2. GEOMETRICAL CONSIDERATIONS

As it appeared that shaft bending was associated with ~—the axial
vibration problem, it seemed natural to consider possiblze changes
in length of the shaft due to lateral bending. To ottazin orders
of magnitude one can consider the assumed mode shown in Fig 1 in
which the dimensions only roughly approximate the real shaft.
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If a quadratic bending mode y = x? is assumed the szccond order

change in length is

» ;
y f dy)? dx.
0 dx

For a lateral displacement of 1 mm at the centre of tte cshaft (as
shown in Fig 1) the second order change of length is akoout 1/10
mm. However, b, the displacement axially at a radius cof 12 mm,
shown in Fig 1 is about 1 mm.
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This suggests that an axial dissplacement of° the same order of
magnitude as the lateral displazcement at the shaft centre point
could be the result of shaft beending and coontact at a certain
distance out from the shaft cemrtre line. Thiis distance (12 mm)
has been taken to be the approx:imate radius cof the ball bearing
race.

Other simple mode shapes may be assumed insteszad of y = x? assumed
in Fig 1, but rather similar ressults will be obtained regarding
the relative magnitudes of the "various displzacements.

The experimental results suggesst a lateral c&displacement of 0.1

mm (peak-to-peak) compared with. an axial disrplacement of 0.2 mm
(peak to peak).

3. FREQUENCTIES

Important clues could be fourcd from a knooswledge of resonant
frequencies of the shaft and tturbine disc, including both the
fundamental and higher bending mmodes. These ZZirequencies were not
known except the whirl frequerncy at about -45 krpm, which one
assumes is of the form shown irn Fig 2. As instabilities were
observed at higher frequencies it is assume=d higher modes are
involved eg. a tentative shaft toending mode stnown in Fig 3. This
could cause an axial displaceme=nt, b, as was ~proposed in section

2.
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Careful examination of frequenccies (by countzing peaks) in Fig 3
of the Dowty handout instabiliity at 76.8 kirpm reveal accurate
frequencies of 1270 Hz (for shzaft rotation) and 485 Hz for the
axial vibration. This later is not a neat stub-multiple of 1270,
and certainly not % as rnad been smggested in sheet
FSD/CCTS/09/5135 (January 185:0). It is nearer 3 (in fact
1/2.619).
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4. FALSE TRAILS (DUE TO P.C.P

4.1 Axial coupling with out of balance mass.

R R
m | g
r S " "
w - &«
AX'\" L) t A!"ﬂ,
veloc:}b vp Axie/ vQ/ocflS ' vc/oc,‘{-’ “p
(2) (b)) own (e) =(a)

R = m‘,-q//:) Rsohed Component -} Ceﬂﬁiﬁ‘jn( —A'—uz (Mrwz)
Fig. 4 .

It is possible to envisage a coupling of an out-of-balance mass
m as shown in Fig 4 which generates a centrifugal force. The
axially resolved component of this couples with an assumed axial
motion in such a way that positive work is done during the cycle
at (a) = (c) and (b). The shaft rotation is double the axial
vibration frequency. The differential equations describing the
motion have periodic coefficients and are therefore of the same
type as the celebrated Mathieu equation which has various
instability regions (of a complicated nature). It was envisaged
in the presentation at Birmingham that the imbalance would be in
the turbine disc itself but equally well the imbalance could be
in the shaft at the "drive end" and the mode could be as in Figs
1 or 3. (This theory had been ruled out at Birmingham as the
disc itself appeared to move only axially and not as shown in Fig
4) . A further objection is that the centrifugal force at 95 krpm
with a shaft unbalance of 0.06 gm mm is only some 6 N - and the
resolved component is insufficient to overcome the axial preload
of 1000 N, but could a lightly, damped axial resonance be
excited? The resonant frequency of the disc and shaft mass and
the axial spring stiffness (taken as 2626 N/mm) would appear to
be too low (225 Hz approx.)).

In Birmingham a "Meccano" model had been constructed to
demonstrate this phenomenon, but the rotor could not be rotated
fast enough to excite this axial vibration.

4.2 Hydrodynamic oil pressure

Another possible means of generating axial forces seemed to be
via the centrifugal pressure gradient due to an angular velocity
w (rad/s) generated in the oil (of density p) filling the
bearings. Inte?rating outwards from 0 to r a possible axial
force of % mpw’r® is obtained. This can produce forces of 1000N
at radii of 12 mm sufficient to counteract the spring pre-load.
However, this idea seems to be ruled out by the nature of the
lubrication system in which oil bleeds out into the bearings so
that the rotating mass of oil assumed in this theory does not in

fact exist.




5. CONCLUSIONS

It seems that much effort by 7 or 8 people at the Dowty Group
failed to produce a convincing explanatlon of this axial
vibration. The remaining possibilities seems to be a non-linear
investigation along the lines of Zalik's paper on the Jeffcott
equations (R.A. Zalik, Quart. of App. Maths 47, No.4 585-599,

Dec. 1989), or a more detalled examination of the dynamlcs of the
interaction of the shaft, ball races and axial tensioning
springs. Could an axial dlsplacement such as b in Flgs 1 and 3
cause a virtual point displacement on the circular springs used
to provide axial tension? Could the rotating point contact then

set up a resonance in the spring - (Fig 5)?
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Such an idea may be rather far-fetched, but, in the absence of
more simple explanations, may be worth more detalled study. The
appendix makes a start on this study. It should be noted also
that there exist papers in the mechanical engineering literature
which take into account the dynamical behaviour of the balls in
the ball-race - each ball is treated as a minature gyroscope.
This kind of detailed analysis is, of course, something that
would take weeks, rather than days, to develop fully.

i

Professor P.C. Parks



APPENDIX

Fig 6 shows a model of a ring representing the outer part of the
spring loaded bearing supported by a uniform circumferential

distribution of springs. <0
2 = , ~X, chsplacement

P, Foree
T~

; LkFiX(d
ackin
{qul’e

Springs  Fig. 6

A moving point load P giving rise to a displacement -X is
considered. An axial displacement of the ring plus small angular
displacements §; and ¢, about the y- and z- axes make up the
total ring motion.

The equations of motion of the ring are with zero damping

mx + Kx = =P
I9) + ko, = -Prsinet
I8, + kf, = Prcoswt
X = x4+ r sinwtd, - rcoswt 4,

Now if k* = stiffness per unit distance around the
circumference

27

k = [ k*r’sin®sds = wk*r’
0
27

K= [ k*rdé = 2nk*r
0

and kX = r’K .

2
Assume that I = mr’ then
2
mx + Kx = -P
r(mé, + Ko;) = -2Psinot (A1)
r(mf, + Ké,) = 2Pcoswt

and X = X + rsinwt 4, - rcoswt 4,




If P is constant we obtain

P —_2Psin®wt - 2Pcos®wt = =P {1 + 2 l
X (mw® + K) (Fmw® + K) K (1 - (v/0)’)

where w,? = K/M. Thus

X = =

P =K { 1 - (w[wo):}

(-X) 3 = (w/w,)

A fuller treatment adding a damping term into each differentis/
equation gives

P =K [1 - (w/w)?1® + 4c% (w/w)?
(-X) [1 - (0/wo)J% 2 [1 - (w/wo) ]+ 4¢% (w/w,)?

where ¢ is the "damping ratio" in conventional notation.

If we suppose that S-—X) is constant then the behaviour of P as

a function of (vw/w,)“ is sketched in Fig 7. ( \
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Fig. 7 L

Of course P and (-X) are also related via the dynamics of the
axis whirling equations leading to a closed "loop block diagram"

shown in Fig 8. Transfer fon chions
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Here Y' is the standard second order transfer function

1
K(L + 2¢D + D¢ J
we  wo

where D = d/d4t.

A very crrude model for the axis whirling dynamics is that. P = K*
(-X) wherre K* is a probably "large" stiffness. Feedirng this
relationsthip back into the equations (Al) (with the dampirng term
added) :

X + cX + Kx = -K* (x + rsin ot 6, - rcos oté;)
ri{ms., + cé, + ké,) = -2K* (x + rsinetd, - rcosw,)sinwst

s -

r{mg., + cé, + Kké,)

-2K* (x + rsinwtd, - rcosw,)coswit

The left hand sides of the second and third equations may be
written

il

r(mé.. + c6, + (K + 2K* sinwt)d,) = . . . .

r{’.né"_; + cé.z + (K + 2K* coszwt)az) . e e .

which tzkece the form of the damped Mathieu equation on rerplacing
2sin?wt arnd 2cos?wt by 1 - cos2wt and 1 + cos2et respeczzively.

Here is a new possible cause of instability in #,, i, (and
conseg:enttly X) which meets further more detailed investicgation.
o« . P
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DOWTY: the possibility of ' chattering’

A important piece of evidence concerning the onset of ‘chattsr‘ is that
it first appears as the shaft begins to whirl with an elliptic patk. ~Once the
whiriing is elliptic the effective axial length of the shaft oscillzrees
harmonically and thus there is a time varying restoring force due ta t=he
springs. There is a natural frequency for the shaft/spring system and-
therefore resonance can occur if this coincides with the frequency of ‘shaft
length vibration' (which is twice the whirl frequency). Larger amplictzude
oscillations are possible causing chatter at the disc end of the shzf::.

A simple model which may exhibit this phenomenon is describeZ beelow.
Note that the subtleties of beam elasticity have been approximated 3y :a

mass/spring system.

collar restricting motion

” k/2 jm k/2 o
/

Large spring and spring, forced
mass, modelling | small mass, | modelling oscillation,
disc. modelling the bearing/| modelling
the elastic | spring. change in
shaft. length of
shaft
(and spring).

Both springs have been assumed to have the same spring constant. for

simplicity.



S0

Coordinate system:

M m

- = B

y X esinwt.

-My - T, +(k/Xx+ty) ory =0
1
rest tension.
mX = - %(x+y) + %(esinwt-x).

mx=-kx--lzsz+ g—ssinwt.

Resonance when w? = k/m.

disc/shaft combination.

x and y measured from
rest positions.

Note that resonance depends upon the mass of the shaft not the

Away from resonance, y = 0, and x = 0(e). As

resonance occurs X becomes large and when x = -2T,/k the mass M begins to move

and chatter occurs, the problem is nonlinear - an impact oscillator. The next

stage is to construct a more accurate model bringing into play the elastic

properties of the shaft.

PW.




