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Abstract

A frequently occurring issue in hot rolling of steel is so-called tail pinch-
ing. Prominent features of a pinched tail are ripple-like defects and a pointed
tail. In this report two algorithms are presented to detect those features ac-
curately in 2D gray scale images of steel strips. The two ripple detectors are
based on the second order Gaussian derivative and the Gabor transform, a
localized Fourier transform, yielding the so-called rippleness measures. Ad-
ditionally a parameter called tail length is defined which indicates to what
extent the overall shape of the tail deviates from an ideal rectangular shape.
These methods are tested on images from the surface inspection system at
Tata Hot Strip Mill 2 in IIJmuiden, it is shown that by defining a simple cri-
terion in the feature space spanned by these two parameters a given set of
strips can correctly be classified into pinched and non-pinched strips. These
promising results open the way for the development of an automatic pinch
detection system.
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1 Introduction

One of the key installations on the IJmuiden steel production site is the hot strip
mill. In this mill slabs with a length of between 5.5 and 12 m and a thickness
of 225 mm, weighing between 8 and 34 tons, are heated up to a temperature of
1200 °C. Along a trajectory of about half a kilometer they are rolled in consecu-
tive steps into strips of up to 2 km long and 2 mm thin. After the final reduction
step they are cooled to a temperature in roughly the range 550-750 °C and coiled
in generally less than 60 seconds. In this way 250000 coils leave the hot strip
mill each year for further processing and finally end up in construction, in lifting
and excavating machines, in consumer goods such as white goods (refrigerators
and stoves) and in the automotive and packaging industries.
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Figure 1: Pictures of parts of three consecutive strips. The first strip (t = 1) is
without defects, the second strip (t = 2) is pinched and has damaged one of the
mill rolls which is visible by the periodically occurring defects indicated on the
next strip (t = 3).

The final reduction steps, where the strips can reach a speed over 20 m/s,
are very critical. Errors in the gap settings of the mill may lead to defects in the
shape of the strip. Especially at tailing out of the strip such shape defects may
lead to pinches, damaging the strip as well as the rolls (see Figure 1), which then
in turn need to be changed at significant costs.

Tail pinching is clearly visible by ripples in the strip and the pointed tail. In
some case the strip surface is torn apart. It is not exactly known in what circum-
stances such pinches occur. To determine a statistical relation, and ultimately a
causal relation, between certain process conditions and pinching, it is very useful
to detect these pinches automatically. Once the mechanism is better understood,
an online detection system might also be used to modify the process in order to
prevent more pinches.

By means of a camera of the hot strip mill automatic surface inspection sys-
tem, images of the strip tails are produced. In some of these images pinching
is clearly visible. Automatic detection, however, is still problematic. Commer-
cially available surface inspection systems need to be trained with categorized
images. Once trained such a system computes the likelihood that a certain defect
corresponds to a certain category on the basis of for example their dimensions,
orientation on the strip surface and the gray scale distribution. In this way sim-
ple defects can be detected quite successfully. However, those systems are not
able to detect complex defects such as tail pinches.
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The goal of the assignment at hand is to create a method or algorithm that
with a large collective of gray scale images can determine for individual strips:

= whether tail pinching has occurred or not;
« the location of the pinches relative to the image frame.

One of the challenges of this problem is that it is di [culk to distinguish pinches
from other ripple-like defects. It may even be that such shape defects and
pinches occur simultaneously.

In this paper we show that for a given collection of strips it is possible to
detect tail pinching successfully by considering the overall shape of the tail in
combination with the presence of ripples with a certain wave length (Figure 2).
For this purpose we have developed three di Cerknt image analysis techniques to
a collection of gray scale images of strip tails. First, we preprocess the images as
discussed in Section 2. Subsequently, in Section 3.1, a simple technique, which
proofs to be very e [eckive, for estimating the tail shape counting background
pixels is explained in more detail. For the detection of ripples we discuss two
di Cerent methods in Sections 3.2.1 and 3.2.2. For both methods we make use
of the fact that the ripples on the strips are always aligned horizontally. The
first method tries to find the local maxima caused by the ripples in the vertical
direction by looking at second order Gaussian derivatives [3] in that direction.
The convolution kernel that is used to compute these second order derivatives
contains a scale parameter that can be used to select a length scale at which the
derivative information is computed and can be set using the expected bandwidth
of frequencies at which the ripples occur. The second, alternative ripple detec-
tion method extracts local frequency information from horizontally averaged
vertical bands of the images using a Gabor transform [1], which is a localized
Fourier transform. Ripples are considered to be spots where high local frequen-
cies are present, which can be assessed using the Gabor transform. In Section 4,
we apply the introduced techniques to a collection of images of strip tails and
we assess the e [ectiveness of the techniques for classification purposes. We
build a feature space from the extracted features, which can then be used to to
classify images into two useful categories. We end this paper in Section 5 with
conclusions and recommendations.

2 Preprocessing

The upper image row is removed because it often contains gray artifacts. Since
the images taken by the installed camera system are very large (around 8000 %
2000 pixels), we resize them to 10% of the original sizes (800 x 200). This al-
lows us to speed up the process without loosing important features since in the
rescaled images all the defects are still visible. Background is defined by setting
a threshold. For the images we have set this threshold T to 0.15.



Image Recognition of Shape Defects in Hot Steel Rolling 25

Figure 2: A strip without defects (left) and a pinched strip (right). The techniques
discussed in this paper are designed to extract two features: the tail length,
indicated by the red rectangles and the appearance of ripples, indicated in blue.

Note that we often consider an image as a continuous function in real space
R2, and therefore we are able to integrate and di [erkntiate. Since in reality we
deal with discrete images, the integration is replaced with summation in the
implementation of the discussed image analysis techniques.

3 Features

The aim of this project is to find features distinguishing pinched and normal
strips. In this report we focus on two which we think are the most important
ones - tail length and the presence of high frequency ripples.

3.1 Tail length

One of the main di[Cerknces between normal and pinched strips is their tail
shape. The normal ones have a more square shaped tail and the pinched ones
have in most cases an elongated tail (see Figure 2). In order to distinguish these
two basic shapes we introduce the parameter tail length defined as the distance
between the top point of the tail and the place where strip reaches its full width.
In order to find this length we compute number of background (black) pixels for
each image row in the image. In the lower half of each image normally the width
of the strips is almost constant and therefore we estimate from the lower half of
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the image the full strip width R by taking the median value of the width in this
part of the image (the median is less sensitive to outliers than the mean).

We start scanning the image (size N x M) starting from the top row of pixels.
Since in the top row all the pixels are black (gray value below T), the number of
black pixels will be equal to N, the length of the image in Xx—dimension. The first
row with less than N background pixels is the position of the top point of the
tail. The position where the width exceeds R for the first time is the end point
of the tail, see Figure 3.

1. For each row i count B(i), the number of pixels with value lower than T,
fori=1,...,M

2. 11 - is the first row (from the top) where B(i) # N
3. iz - is the first row where B(i) < N — R.
4. TaillengthL:=1>— i3

In some situations, for example when shadows appear in the image, there
may be a lot of black pixels inside the strip, which leads to a wrong estimate
of the tail length. The way to improve this feature is to compute the width for
each row. By width we mean the distance between the first and the last point
with nonzero (non-black) value in an image row. The rest of the procedure is the
same. For most of the images it yields the same length (see Figure 4), but for
some, with a lot of shadows, the second approach gives more accurate results
(see Figure 5).

Although the second approach is more accurate and will be used as a feature
for distinguishing between normal and pinched strips, the first approach still has
some potential. For example, the di Cerknce between two approaches to estimate
the tail length, based on the width and the number of non-black pixels, can be
used for detecting strips with shadows or holes.

3.2 Rippleness

Tail length alone cannot completely separate pinched and good strips since there
are cases when a strip has a normal shape but due to ripples is called a pinched
one and there are cases then tail estimation algorithm fails due to shading, see
Figure 6. Another feature that distinguishes between normal and pinched strips
is the appearance of ripples with high frequency, which mainly occur on pinched
strips. We would like to construct a measure of rippleness as well as to detect
their locations. Ripples are characterized by fast periodic changes of gray-values
in vertical direction.

3.2.1 Gaussian derivative

Fast changes of gray values lead to high second order derivative in vertical direc-
tion. Derivatives can be computed in a well-defined and well-posed way by using
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scale space theory [3] Given a two-dimensional image f, f : R? - R, its scale
representation u : RZ2 x R* _ R is defined by the convolution product

u(x,0) =(g(-,0) LH(), @)

in which g is the Gaussian kernel given by
__ 1 _ 2
g(x,0) = o7 exp(— [XI?4262) . 2)

Scale space theory allows one to interchange di Cerkntiation and convolution, viz.
as follows:

0%(f g, 0))(x) = (F Ea4g(-, o)) . 3

This property allows implementation to be fast and robust. We compute the sec-
ond order Gaussian derivative iny-direction uyy (X, o) with reflective boundary
conditions [2]. By choosing the scale o we can actually tune to the frequencies we
are interested in. A maximum filter is applied to the resulting two-dimensional
Gaussian derived image, replacing every value by the maximum pixel value in a
chosen neighbourhood (in our case 5 pixels).

In order to introduce a measure for the amount of vertical variation for the
whole image, we compute the area in the image where the response is higher
than some threshold (in our case 0.03). A drawback of this method is that the
Gaussian derivative gives a response to any changes, not only periodic ones,
therefore edges also give high values. However, the di [Cerknce between those
two is that edges occupy a small area compared to ripples. Images with ripples
will have a larger area with responses above the threshold As can be seen from
Figure 7 this gives a clear distinction between rippled and flat strips. In the
next section we consider another approach, in which frequencies are taken into
account in a more explicit fashion, namely the Gabor transform approach.

3.2.2 The Gabor transform

Because ripples occur only locally, the Fourier transform of an image does not
not give a clear peak at the frequency of the ripples, i.e. detection is practically
impossible. This is directly related to the fact that the ripples are local. The
Gabor transform [1] is a windowed-Fourier transform, which is well suited to find
local frequencies. We restrict ourself to the one-dimensional case, since we are
looking for harmonic behavior in the vertical direction only. Applying the two-
dimensional Gabor transform to the whole image is computationally too heavy.
Therefore we cut the images into K bands (we used 20 for the visualization
purposes, but it can be less), and for each band we construct a one-dimensional
intensity profile f;, k [, ..., K] by summing up all values in every row.
Continuous case Although images are always discrete, the theory we use is
for the continuous case. Later we will translate it to the discrete case. The Gabor
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transform Gy (f) : R xR - C of asignal ¥ [I3(R) is given by
(.

Gu(F)(y, @)= FEW(Y —§e?MHdg, (4)
where { is the Gaussian kernel in 1D,

exp(—y?/2c?) . (5)

1
The Gabor transform yields a complex-valued spectrum in each spatial position,
which can now be used to find positions in which high frequencies are present
(i.e. ripples). However, we are not interested in the phase of the frequency
pattern, but only in its amplitude. Therefore, we define the probability density
function of finding a certain frequency w at position y as:

Uk(Y, ) = |Gy (F)(Y, w)|%, k=1,...,K . (6)

Discrete case For the images vertical coordinate y takes only integer values,
y [I1,...,M] and 4 has a summation instead of integration

S :

Uk(y, w) = % F(OW(y — ke 2Hiy—Rw
=0

()

w [[+M/2,...,...,M/2]. Due to the symmetry around zero, for the computa-
tion it is enough to consider only positive side of the spectrum. Locations with
ripples di Cerl from normal ones by giving high response for certain w values
(Figure 8).

We define the first moment by

M
Ex(y)= Un(y,w)w, k=1,...,K. 8)

w=0

It gives larger weight to high frequencies and allows to filter zero frequency
response in a soft way. The first moment for locations in a flat area will be
close to zero, since only frequencies in the neighborhood of zero are present.
For a rippled area the first moment will be shifted to a higher value (Figure 9).
Therefore the first momentlﬁﬂ(pﬁﬁd to be a reasonable measure of rippleness.
We use the total response —; -1 Ek(Y), where we sum over every cut band,
of an image as a measure of severeness of the ripple defects.

4 Classification

We have discussed two measures: tail length and rippleness. For rippleness we
introduced two methods, which are highly correlated and it is subject for further
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experiments to decide which one is more favorable for classification purposes
(we use the Gaussian derivative for further experiments in this paper). Note that
both methods have their advantages. For example, the Gaussian derivative re-
quires less computational power but with the Gabor transform specific frequen-
cies can be detected. In Figure 10 a two-dimensional feature space is presented.
As one can see, the defected strips (green dots) are, as expected, more scattered
in feature space. The straight line in the figure represents a possible and simple
manner to classify the images of the strips into two classes: normal strips and
strips with a defect. We have a set of images with labels "normal” and "pinched",
with 163 normal and 21 pinched strips. For the labeled training set we take the
line y = ax + b (for the collection we have y = 8000 — %x) that separates
the most normal strips (96.3% are true negative) from strips with a defect (for
the 3.6% false positive results, see Figure 11), without creating false negatives
(0% false negative). The classification has not been considered thoroughly and
may be improved further. For new cases the decision is taken by determining
on which side of the line the image is in feature space. We would like to stress
that, apart from classification use, the introduced features could also indicate
severeness of the pinching as shown in Figure 12-13.

5 Conclusions and recommendations

In this paper features of two di Cerknt types have been considered: the tail length
and the presence of ripples. For each of them two di Cerknt approaches are given
and compared. Although all of them have some advantages, only one of each
type was chosen for the classification (the tail length based on width estimation
and rippleness using Gaussian derivatives), and a simple, but e [ective, classi-
fication rule has been considered. As a result we have constructed an e [cieht
algorithm with which one can:

= distinguish tail shape;

= detect and locate ripples;

= e [ectively classify pinching.

We propose several points for further research:

1. Based on the proposed features, a measure of severeness of the defect can
be introduced.

2. Improvement of existing features can be done:

< In the Gabor domain the important information is hidden by fluctu-
ations. Applying (contextual) enhancements in the Gabor domain be-
fore extracting features such as the 1st order moment Equation (8) can
clean up the signal and improve the results;
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= Rippleness measure requires some parameters, like scale for the Gaus-

sian window. It is an open question whether just one scale should be
fixed, or several of them can bring more information. Therefore rip-
pleness can be extended to a multi-scale framework: edge focussing,
automatic scale selections, tracking critical path of the Laplacian in
scale space.

3. Consider other features in the Gabor domain, e.g. other moments or re-
sponses to the certain range of frequencies, corresponding to the band-
width of the actual ripples (this would correspond to changing the summa-
tion limits in Equation 8 on [wg, w1], where the limit values are obtained
from statistics of ripple frequencies).

. Classification in feature space should be explored further. A basic linear
discriminant analysis (as in Sec. 4) would probably be su [Ccieht.

5. New features can be introduced:

Deformation modeling. Unfortunately, the process does not allow
imaging of an evolving process. So use idealized flat image as ref-
erence for rough single step deformation estimates. The amount of
deformation needed to obtain the image from the ideal can tell about
the severeness of the defect.

2D-filtering to detect endings of ripples and scratches.

Include contextual filters via the Gabor domain. It is important to
check whether the surrounding local frequencies are coherent/aligned
or not. This could distinguish between folding and ripples. If some
frequency appear over the complete x-axis than it is a fold and it can
be filtered out.

New applications. Ripple detection algorithms are developed in this
work can also be applied to other wave-like shape defects over other
parts of the strip, and hence can be used to distinguish wavy edges,
quarter buckles and center buckles much more accurately than with
the standard optical shape meter at the hot strip mill.
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Figure 3: Tail length estimation for a strip without defects (left) and a pinched
strip (right): red graph represents number of background pixels per row.
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Figure 4: Two diCerént tail length estimations, based on width estimation on

x-axis and based on black pixels on the y-axis. Green dots represent pinched
strips and blue dots normal strips.
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Figure 5: Cases when computing width directly leads to better tail length estima-
tion.
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Figure 6: Tail length fails to separate pinched strips from the rest.
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Figure 7: Results (before and after thresholding) of applying the Gaussian deriva-
tive to normal (left) and to pinched (right) strips.
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Figure 8: Left: band cut from pinched strip image (870 x 27 pixels) and its inten-
sity profile by summing over rows. Right: local spectra from the two indicated
regions in the intensity profile. The rippled region (orange) contains more high
frequencies than the flat region (blue).

Figure 9: The first moment for a normal and a pinched strips.
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Figure 10: Feature space, tail length on x-axis and rippleness (using Gaussian
derivatives) on y-axis. Green dots represent pinched strips and blue ones normal
strips.

Figure 11: False positive classification results.



38 SWI 2012 Proceedings

76 103 159 228 367

Figure 12: Pinched strips sorted according to their tail length.
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Figure 13: Pinched strips sorted according to the severeness of their ripples.



