
Lipid Metabolism and Comparative
Genomics

Problem presented by

Janette Jones, Brendan O’Malley, Patrick Warren,
Laura Pickersgill and John Melrose

Unilever Corporate Research

Problem statement

The Study Group participants were asked to focus on two questions relating
to metabolism. The first of these concerned modelling lipoprotein metabolism
such that differences in the biology of the healthy and obese states can be
encompassed as well as changes in the size and composition of lipoprotein
particles. The use of ordinary differential equation models to infer rate
constants from experimental data was discussed and a partial differential
equation model was developed to describe the dynamics of lipoprotein particle
formation.

The second problem focused on understanding how certain components of
well understood biological networks can help in determining the functionality
of other networks, in which certain components are not so well determined.
The study group participants focused on issues regarding comparative
genomics to discuss this question. A number of issues were addressed
including the derivation of parameter values from experimental data via
a stoichiometric matrix and the importance of randomly sampling and
comparing sections of known networks.

Study Group contributors

David Broomhead (University of Manchester)
Jens Gravesen (Technical University of Denmark)
Poul Hjorth (Technical University of Denmark)

James Ing (University of Aberdeen)
John King (University of Nottingham)

Bill Lionheart (University of Manchester)
Eirik Mo (Norwegian University of Science and Technology)

F-1



James Parrott (University of Bristol)
Jonathan Rougier (University of Durham)

Marcus Tindall (University of Oxford)
Eddie Wilson (University of Bristol)

Report prepared by

Marcus Tindall (University of Oxford)
Jonathan Rougier (University of Durham)

Laura Pickersgill (Unilever Corporate Research)
John Melrose (Unilever Corporate Research)

Brendan O’Malley (Unilever Corporate Research)
Janette Jones (Unilever Corporate Research)

F-2



1 Detailed Problem Statement

The Study Group participants were asked to focus on two problems related to the
modelling of metabolic networks. The first concerned dysregulated lipid metabolism
which is a feature of many diseases including metabolic syndrome, obesity and coronary
heart disease. As one of the world’s largest foods companies Unilever has a responsibility
to produce health promoting foods and thus requires better understanding of lipoprotein
metabolism and the key drivers of its dysregulation in order to develop products that
further improve heart health. The Study Group was asked to develop a simple model of
the kinetics of lipoprotein metabolism between healthy and obese states incorporating
the activities of key enzymes.

A second question concerned the use of comparative genomics in understanding and
comparing metabolic networks in bacterium. In modelling metabolic networks a key
step is understanding the interactions between network components where some parts
are experimentally well mapped and other regions are data poor. We take, as an
example system for this problem, bacterial metabolism where some species, e.g. E.
coli, are well mapped. From this we wish to infer parts of a comparative metabolic
network, which have not been measured, in another bacterium. Metabolic maps are
often constructed using comparative genomics methods, in which one compares the
genome of new organism with that of a previously characterised organism, to infer the
presence of enzymes and metabolic pathways in the new organism. The first interesting
mathematical problem is how one can quantify, in a statistical sense, such a metabolic
map. In particular where there are different levels of confidence for presence of different
parts of the map. The next and most important question is how one can design a
measurement strategy to maximise the confidence in the accuracy of the metabolic map.

2 Lipid Metabolism

Lipoproteins are a family of macromolecular complexes, which function to transport
dietary and endogenously produced lipids through the aqueous environment of the
plasma. Lipoprotein metabolism describes the way in which lipids are transported
throughout the various physiological compartments of the body. Chylomicrons (CM),
the largest lipoproteins, carry exogenous triglyceride (triglyceride) and cholesterol (C)
from the intestine via the thoracic duct to the venous system. CM are heterogeneous
particles consisting of a triglyceride and cholesterol ester (CE) core surrounded by a
phospholipid (PL) layer which contains free cholesterol (C) and various apolipoproteins.
In the capillaries of peripheral tissues such as adipose tissue and skeletal muscle, 90CM-
triglyceride is removed through the action of lipoprotein lipase (LPL). Fatty acids and
glycerol, derived from hydrolysis of CM, enter the adipocytes and muscle cells and are
used as fuel, stored or metabolised. As a result of repeated lipase action, progressively
smaller, triglyceride-poorer CM remnants (CMR) are formed. CMR are removed from
the circulation by the liver in a receptor-mediated process involving interaction with
apolipoproteins on CMR.
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The liver releases endogenous triglyceride and CE in very low density lipoproteins
(VLDL). VLDL can be separated into two subclasses, VLDL1 and VLDL2, which differ
in their triglyceride-content and hence size. Under conditions of increased hepatic
triglyceride content, the rate of production of triglyceride-rich VLDL1 released is
increased. The same lipases that act on CM quickly degrade endogenous triglyceride
in VLDL, giving rise to intermediate density lipoproteins (IDL) that have had much
of their triglyceride and surface apolipoproteins removed. IDL is further degraded by
removal of more triglyceride, producing low density lipoprotein (LDL). LDL has a plasma
residence time of 2 to 3 days. Approximately 70% of LDL is removed by the liver via
LDL receptors (LDLR) present on the surface of hepatocytes and other cells which bind
to apolipoprotein B100. In addition, a small but significant amount of LDL appears to
be removed from the circulation by non-receptor mediated pathways, including uptake
by scavenger receptors on macrophages that may migrate into arterial walls and form
foam cells which lead to atherosclerotic plaque formation.

Dysregulated lipoprotein metabolism is a feature of many disease states including obesity.
In the obese state there are many alterations in behaviour of the lipoprotein metabolism
system. Many obese subjects exhibit a reduced LPL activity compared to lean controls.
This results in an increased resonance time of CM in the plasma and increased delivery of
triglyceride-rich CM to the liver. The hepatic triglyceride content is further increased in
the obese state due to an increased flux of fatty acids entering the portal vein from adipose
tissue. Consequently, there is an increase in the amount of large triglyceride-rich VLDL1

produced, which due to the reduced LPL activity and competition from uncleared CM,
is converted to LDL at a reduced rate. In addition cholesterol ester transfer protein
(CETP) is upregulated in the obese state. This enzyme catalyzes the exchange of
triglyceride in VLDL and IDL for CE in LDL and the lipoprotein responsible for reverse
cholesterol transport, high density lipoprotein (HDL) as demonstrated in Figure 1. As
a result of this enzyme activity, the lipoprotein contents are remodelled resulting in less
C being returned to the liver via HDL and increased triglyceride content of LDL and
hence the generation of an altered LDL known as small dense LDL (sdLDL). Sd LDL
have an increased residence time in the plasma, hypothesised to be a result of a change
in conformation of apoB100 which prevents binding to the LDLR. In addition, LDLR
expression is down-regulated in obesity, further contributing to the increase in plasma
LDL-C. Consequently these atherogenic LDL particles are less likely to be returned to
the liver and more likely to contribute to the development of atherosclerotic plaques.

The main focus of the work undertaken here is to obtain kinetic rates for the production
of the VLDL, IDL and LDL lipoprotein species from experimental data from obese
individuals. The ultimate aim is to combine this kinetic data with other biological
measurements and to compare lipoprotein metabolism in healthy and obese subjects to
gain insight into what governs the formation of sdLDL.

2.1 Experimental Data and ODE models

The lipoprotein literature includes a number of experimental articles describing the rates
of transition from VLDL to IDL to LDL. Such measurements are generally obtained from
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Figure 1: A schematic representation of the main biochemical steps in lipoprotein metabolism between
the human gut, liver and peripheral tissue for a healthy person. The total triglyceride (TG) and cholesterol
(C) content of the lipoprotein molecules varies as they move through the metabolic process.
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Figure 2: A schematic representation of the main biochemical steps in lipoprotein metabolism between
the gut, liver and peripheral tissue for an obese person. Note the down-regulation of LPL activity, the
up-regulation of HDL and CETP leading to an increase in cholesterol and triglyceride transfer and a
reduction in liver-LDL receptor activity. The dotted lines indicate a down regulation in the function of
that pathway in comparison to a healthy individual.
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Figure 3: Current ODE models of lipid metabolism which rely on
knowing in vivo rates of lipoprotein production by the liver.

trials where the participants’ lipoprotein content are measured. Compartmental models
have been employed to estimate rate constants for the production and catabolism of
these lipoprotein species using measurements of changes in lipoprotein concentrations
over time. The Study Group participants sought to obtain parameter estimates from an
example of this work, Pont et al. (2002), but this proved difficult without access to the
raw data set and a detailed understanding of how and why the data had been normalised.

This work, however, highlighted the value of constructing dynamical compartmental
or ordinary differential equation (ODE) models in order to possibly obtain dynamic
rate parameters from future experimental data. In doing so it became clear that many
models, such as that shown in Figure 3, rely on being able to determine the rate of
production of the VLDL lipoproteins by the liver from human trial data. The Study
Group participants postulated that it may be more appropriate, if possible, to be able to
conduct experiments which did not necessarily rely on knowing the rate of production of
VLDL1, thus removing the need for human participant data. The remaining production
rates of VLDL2 could possibly then be determined using in vitro experiments. This
would then result in the revision of the compartmental models as shown in Figure 4.

The governing equations for the revised model result in a linear system of ordinary
differential equations (ODE). Applying a linear systems approach to the problem these
can be written as

ẋ = Ax + u (1)

y = Bx (2)

where x = {x1, x2, ..., xn}, A is the coefficient matrix and u represents the source terms
of each equation.
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Figure 4: A revised form of the ODE compartmental model shown
in Figure 3. This compartmentalisation removes the need for in
vivo data, and thus the rate constants can be inferred from in vitro
data.

Using such an approach experimental data will then allow us to estimate A, the
distributions for the values of the rate constants kij.

2.2 Experimental Insight

Lipoprotein subclasses have been traditionally classified in terms of physicochemical
properties (e.g. electrophoretic mobility and density after separation by
ultracentrifugation). As a lipoprotein is converted from one subclass to another the main
changes that occur are in: (1) triglyceride and cholesterol content; and (2) apolipoprotein
complement. It is this first difference which leads us to consider the formation of each
lipoprotein subclass within a predefined triglyceride-cholesterol (triglyceride-C) particle
number density space as demonstrated in Figure 5. We assume for the time being that
the changes in triglyceride-C will be large enough and sufficient to discriminate between
lipoprotein subclasses without the need for consideration of changes in apolipoprotein
content.

The total volume V of a lipoprotein molecule can thus be defined as

V = NT VT + NCVC , (3)

where NT is the number of triglyceride particles per lipoprotein molecule, NC the number
of cholesterol particles and VT and VC represent the respective volume of each triglyceride
and cholesterol particle.

Essentially it is the rate of change of lipoprotein molecule density which experimentalists
measure and from this data they wish to obtain an estimate of change in triglyceride
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Figure 5: The formation of each lipoprotein molecule within
triglyceride-cholesterol space.

particle activity. We can now formulate relationships between the state variables and
experimentally measurable parameters in order to obtain relationships between these
two quantities.

By considering Figure 5 we can define the ratio of NT and NC per lipoprotein to be given
by

tan θ =
NT

NC

, (4)

in essence defining a ‘pseudo-polar’ co-ordinate relationship.

The changes in lipoprotein density and activity can be found by differentiating
equations (3) and (4) with respect to time to obtain(

dV
dt
dθ
dt

)
=

(
VT VC

cos2 θ − sin2 θ
nT

)(
dNT

dt
dNC

dt

)
. (5)

Equations (3) and (4) also allow us to define the following relationship for the density of a
lipoprotein molecule in terms of the mass and volume of each triglyceride and cholesterol
particle

ρ =
m

V
=

mT + mC

NT VT + NCVC

=
mT tan θ + mC

VT tan θ + VC

. (6)

Differentiating this expression with respect to time reveals how the density of the
lipoprotein molecule varies

dρ

dt
=

(VCmT − VT mC)

(VC + cos θVT )2

dNT

dt
. (7)
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Thus the difference in change in lipoprotein density versus triglyceride content differs
by a pre-factor, dependent upon the mass and volume of the cholesterol and triglyceride
particles.

We note that any model formulated in (NT , NC) space will allow us to discern between
both the change in density of the lipoprotein molecule as well as the activity of the
addition and removal of triglyceride and cholesterol particles. Importantly molecules
which move along positive contours in (NT , NC) space will maintain a constant density,
whilst particles moving along negative contours will maintain a constant volume as shown
in Figure 5.

2.3 A PDE model of Lipid Metabolism

The previous section leads us to consider a description of lipoproteins which incorporates
both the dynamic details of their transition between each of their subclasses, and the
effect that changes in triglyceride and cholesterol content has on this transition.

We develop a model formulation which can account for lipoprotein particles containing
arbitary amounts of triglyceride NT and cholesterol NC , these being treated as continuous
variables. Thus we introduce a density function ρ(NT , NC , t) to describe at each time
the number density of particles having composition (NT , NC); the model could be
generalised to higher-dimensional composition spaces, thought this would compound
the computational difficulties. The total volume of particles is governed by equation (3).
The rate of change in triglyceride and cholesterol density is governed by

∂ρ

∂t
= −∇ · J + f(NT , NC), (8)

where J represents the flux of cholesterol or triglyceride molecules onto or off the
lipoproteins, f(NT , NC) is a source-sink term and

∇ =
∂

∂NT

i +
∂

∂NC

j. (9)

The flux of triglyceride and cholesterol onto the lipoprotein particles is governed by

J = uρ(NT , NC), (10)

where u represents the rate at which triglyceride or cholesterol is added or removed.
In the case of a healthy individual this process is purely governed by the activity of
LPL, such that u = kLL(x, t), where L(x, t) represents the density of LPL, kL the
rate of triglyceride transfer and x = (NT , NC). In the work which follows we assume
L(x, t) = L is constant.

However in the case of an obese person this activity is altered by the down regulation of
LPL and the up-regulation of CETP and HDL. CETP works by transferring a cholesterol
or triglyceride molecule onto each lipoprotein particle in exchange for an opposing type
of particle, i.e. cholesterol transfer from CETP to the lipoprotein results in the transfer
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of a triglyceride molecule from the lipoprotein to CETP and vice-versa. This activity
can be expressed by

u = −kLLi + αPC(i − j) + βPT (i − j) − PF (kFT i + kFCj), (11)

where PC , PT and PF respectively represent the concentration of CETP molecules with
bound cholesterol, bound triglyceride and CETP molecules which are free of either
molecule and α, β and kFL are the respective transfer rates. We note that this
formulation assumes equal transfer rates of triglyceride and cholesterol particles onto
and off the respective CETP molecules bound with either particle type, but these rates
can differ in the free CETP molecule case.

The changes in PT , PC and PF concentrations are governed by

∂PT

∂t
=

∫ Nm
C

0

∫ Nm
T

0

(αPC − βPT + kFT PF )ρdNT dNC (12)

∂PC

∂t
=

∫ Nm
C

0

∫ Nm
T

0

(−αPC + βPT + kFCPF )ρdNT dNC (13)

∂PF

∂t
=

∫ Nm
C

0

∫ Nm
T

0

−(kFT + kFC)PF ρdNT dNC , (14)

where Nm
C and Nm

T represent the maximum cholesterol and triglyceride content of the
lipoprotein particles. This leads us to express the total CETP concentration P as

P = PC + PT + PF . (15)

For the source-sink term, we note that the liver both produces the initial lipoproteins
and removes them, such that

f(NT , NC) = R̃(NT , NC) − R(NT , NC)ρ, (16)

where the rate of removal is assumed to depend upon the particle density.

We now have a full system of equations to describe a distribution of lipoprotein molecules,
accounting for the change in total cholesterol and triglyceride content, for both a healthy
and obese individual. Substituting equations (11) and (16) into equation (8) gives the
equation governing the change in lipoprotein density for an obese individual

∂ρ

∂t
− ∂(kLLρ)

∂NT

+ PC

(
∂(αρ)

∂NT

− ∂(αρ)

∂NC

)
+ PT

(
∂(βρ)

∂NT

− ∂(βρ)

∂NC

)

−PF

(
∂(kFT ρ)

∂NT

+
∂(kFCρ)

∂NC

)
= R̃(NT , NC) − R(NT , NC)ρ,

(17)

where the LPL activity is assumed to be constant and PC , PT and PF are governed by
equations (12)-(14). In the case of a healthy individual α = 0 = β = kFL.

In each case we assume the initial lipoprotein density is given by

ρ(0, t) = 0 (18)

and the initial concentration of each CETP type molecule is

PC(0) = PC0, PT (0) = PT0 and PF (0) = PF0. (19)
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2.3.1 Parameter Values

Our formulated model allows us to discern between the dynamic evolution of lipoprotein
molecules through their various states, i.e. VLDL1, VLDL2, IDL and LDL, and the
effect that an increase in triglyceride and/or cholesterol activity has on this transition.
However, data for our model, as mentioned in Section 2.1, was not available at the time
of the Study Group meeting. Hence it was necessary to make a number of assumptions
regarding parameter values based upon current understanding of the metabolic network.

We note that there is an elevated rate of hepatic VLDL production and that hepatic
LDL uptake is decreased in obese compared to healthy subjects. In the case of VLDL
production there is a 60% increase in production in the obese case. For simplicity we
take R̃ = 1 for the healthy state and thus R̃ = 1.6 for the obese case. In the obese case
LDL uptake is decreased by 64% and we assume in the case of a healthy person that
R = 20 and thus R = 11.2 for the obese case. We do not know the details of lipolysis
kinetics, but in principle kL could be a function of NT and NC ; here we assume kL is a
constant and take kL = 0.5 for a healthy person and kL = 0.4 for an obese person.

We note that the healthy person choice of kL = 0.5 gives us the required model behaviour,
i.e. the lipoprotein molecule is re-absorbed by the liver. We then assume that LPL
function is only slightly reduced for an obese person. For simplicity we take L = 1.0.

In the case of CETP activity we assume that the production rate of CETP molecules with
bound triglyceride and cholesterol particles is equivalent (α = β = 1.0). In addition we
assume that the rate at which free CETP molecules are bound with either a triglyceride
or a cholesterol particle are the same (kFT = kFC = 1.0). Finally we assume that initial
concentration of unbound CETP molecules is zero and that of CETP molecules bound
with either triglyceride or cholesterol is the same (PFO = 0.8, PT0 = 0.1 = PC0).

2.3.2 Solution Method

Our governing equations constitute a hyperbolic equation (equation (17)) and three
integral equations (equations (12)-(14)). Equation (17) is solved using the weighted
average flux method (WAF) as detailed in Toro (1999). We assume that the liver activity
is governed by

R̃(NT , NC) =

{
1, N3

T ≤ NT ≤ Nm
T , N3

C ≤ NC ≤ Nm
C

0 otherwise,
(20)

and

R(NT , NC) =

{
1, N1

T ≤ NT ≤ N2
T , N1

C ≤ NC ≤ N2
C

0 otherwise,
(21)

as demonstrated in Figure 6 for the 1-D case.

2.3.3 1-D Model Solutions

To begin the analysis of our model, we consider the case of a distribution of lipoprotein
molecules with constant cholesterol particle density. Solutions to the model in NT space
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Figure 6: The activity of the liver as a function of triglyceride
activity.
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Figure 7: The change in triglyceride density of a lipoprotein
molecule for a healthy person. In this case α = β = kFT = kFC = 0,
R̃ = 1.0 and R = 20.0 and kL = 0.5.
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will then allow us to see what effect each mechanism, in particular LPL and CETP, has
on the increase in triglyceride content for healthy and obese individuals.

Figure 7 shows the time evolution of the density distribution for a distribution of
lipoprotein molecules for a healthy individual. We note that the initial lipoproteins
(VLDL1) are produced by the liver and due to the activity of LPL, are slowly advected
towards the origin, thereby reducing their triglyceride density. As the triglyceride density
is reduced the resulting LDL molecules can be metabolised by the liver, thus removing
the lipoprotein particles as shown.

In the case of an obese person, the up-regulation of CETP activity and down-regulation
of LPL plays an important role in affecting the lipoprotein density as demonstrated in
Figure 8(a). The lipoprotein particles are again produced by the liver, however, with
decreased liver uptake and increased CETP activity as shown in Figure 8(b), not all of
the resulting lipoproteins are absorbed by the liver thus leading to a non-zero lipoprotein
density as NT → 0. Although LPL is down-regulated, the increased advection rate of
the lipoproteins through NT space as a result of increased CETP, leads to the observed
increase in the triglyceride density of the lipoproteins. We note from Figure 8(b) that
the activity of PC(t) and PT (t) is indistinguishable given α = β = 1. The concentration
of CETP molecules free of both triglyceride and cholesterol falls in time as expected and
that of CETP molecules bound with either triglyceride or cholesterol rises.

The results of Figure 8(a) show that the model does not reach a steady-state in the
specified time, indeed further simulations have shown that the time to steady-state is
exceedingly long given the parameter value estimates. We note that the model solutions
do show an increase in particle density which is unexpected and we believe this to be a
result of only considering model solutions in 1-D. As a result further model analysis is
required in 2-D before any further conclusions about the behaviour of our model can be
drawn.
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Figure 8: The change in triglyceride density of a lipoprotein molecule for an obese person (a) and the
corresponding change in CETP particle activity (b). Here liver uptake of LDL (R = 11.2) and LPL
activity (kL = 0.4) are both reduced and CETP activity is up-regulated (α = 1.0 = β, kFC = 1.0
and kFT = 1.0) with initial distributions of each CETP molecule given by PC0 = 0.1, PT0 = 0.1 and
PF0 = 0.8.
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3 Comparative Genomics

This section describes mathematical approaches that maybe useful in ‘comparative
genomics’. The notion of comparative genomics is described in section 3.2, along with
some of the challenges. Prior to this, however, section 3.1 describes a representation of a
metabolic network in terms of the network’s stoichiometric matrix. This representation
is helpful in providing a simple framework in which the application of mathematical
methods can be rigorously described. While it may not be the most appropriate
representation for certain types of problem, it should be straightforward to map the
principles outlined here onto other approaches. Section 3.3 considers some of the
issues associated with formulating a stochastic representation of a metabolic network,
which is an important aspect of data-based inference when the network structure is
uncertain. Section 3.4 considers the design question, concerning which aspects of a
partially-specified network to measure.

3.1 The stoichiometric matrix

The following is a brief summary taken in part from Bernhard Palsson’s notes, available
at http://gcrg.ucsd.edu/classes/4 slides Smatrix.pdf.

The stoichiometric matrix S is a compact way of representing a metabolic network
in terms of the metabolites (rows of S) and the reactions and transport processes
(columns of S). For the jth reaction, described by the column S(j), a positive value
indicates a metabolite that is formed, and a negative one a metabolite that is consumed;
reversible reactions are entered twice, once for each direction. The actual numbers are
the stoichiometric coefficients, representing the numbers of molecules involved. One
enzyme can catalyse a number of reactions and, conversely, the same reaction can be
catalysed by more than one enzyme. Thus there is not a 1-to-1 mapping between enzymes
and columns. However, enzymes can be associated with columns so that, for example,
the elimination of an enzyme (e.g. the removal of a gene from the genome) can be
accounted for by the removal of one or more columns from S. A well-formed S will
satisfy the property that the elements must balance during a chemical reaction, e.g.
the same number of molecules of hydrogen must be present both before and after the
reaction. It should also be balanced for charge and moiety.

The flux through the reactions in the network at time t is denoted by v(t) ≥ 0; this
inequality holds because we have entered the reversible reactions twice. The dynamic
mass balance equation states that

ẋ(t) = S v(t) (22)

where x(t) is metabolite concentration at time t, and the dot denotes the time derivative
d/dt. There are a number of ways in which S may be decomposed in order that we can
better understand the evolution of x(t) and v(t). The simplest analysis concerns the
steady state. At steady state we must have ẋ(t) = 0, so that v̄ must be a point in the
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null space of S, where the overbar denotes the steady state flux. The null-space of S can
be described as a cone

C �
{

v̄ : v̄ =
k∑

i=1

αi pi, αi, . . . , αk ≥ 0
}

(23)

i.e. a non-negative linear combination of the k extreme pathways p1, . . . , pk. A complex
metabolic network can have a large number of extreme pathways, and a procedure for
analysing these extreme pathways further is described in Price et al. (2003). Extreme
pathways are very similar to elementary flux modes, as discussed in Schuster et al. (2000,
p. 326): “. . . a minimal set of enzymes [mapping the components of pi via the columns
of S] that could operate at steady state”. By ‘minimal’ is meant that where pi is the
only functioning pathway, inhibition of an enzyme involved in pi would cause the steady
state flux through pi to be zero. Schuster et al. (2000, p. 330) note a number of uses for
such an analysis, including drug target identification and the effect of gene deletion.

For our purposes below, we will assume that there exists a well-defined set of operations
on a given stoichiometric matrix from which we can draw a series of conclusions, h(S).
Following the above analysis, this might be conclusion such as “if we inhibit enzyme x
then the steady state flux through part A of the network is v̄A, but if we inhibit x′ then
the flux is v̄′

A”. In this case we might have h(S) = (v̄A, v̄′
A) or, if we are interested in the

relative performance of the two enzymes, h(S) = v̄A/v̄′
A.

3.2 Problems in comparative genomics

The problem posed by Unilever was how we should proceed when the stoichiometric
matrix is not completely known. In particular, (i) How should we use data from flux
measurements to ‘fill in’ the missing parts of the matrix? and (ii) What measurements
should we make in order to do this ‘filling in’ most effectively? In statistics this type
of question comes under the general heading of the design and analysis of computer
experiments ; Sachs et al. (1989), Koehler and Owen (1996) and Santner et al. (2003)
provide reviews of this area, which is the subject of much on-going research.

3.2.1 Calibrated prediction

In a computer experiment we seek a probabilistic assessment of some quantity of interest
subject to various sources of uncertainty. In the simplest case, our quantity of interest is
h∗ � h(S∗) and our uncertainty concerns S∗, the ‘correct’ stoichiometric matrix. Note
that the concept of a ‘correct’ value for S is not uncontroversial, and an important
aspect of computer experiments is accounting for ‘model inadequacy’ (see, e.g., Kennedy
and O’Hagan, 2001; Craig et al., 2001; Goldstein and Rougier, 2005a,b). For simplicity,
however, we will ignore the issue of model inadequacy in what follows. Rougier (2004)
provides further detail on the following calculations, at a fairly non-technical level,
although in the context of climate prediction.
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Our objective in this case is to compute, approximately, the distribution function

Fh∗(y) � Pr
(
h∗ ≤ y

)
=

∫
S

1
(
g(S) ≤ y

)
dFS∗(S) (24)

where 1(·) denotes the indicator function and FS∗ is the distribution function of S∗, i.e.
describes our uncertainty about S∗. In other words, for any given value of y we add up
all of the probability in FS∗ which corresponds to a value of g(S) which is less than or
equal to y. This type of calculation is often referred to as uncertainty analysis (Haylock
and O’Hagan, 1996), and Fh∗ is termed the prior predictive distribution for h∗.

In some situations we are able to perform an experiment to measure some of the fluxes in
a metabolic network, which we can duplicate using some function of the stoichiometric
matrix, g(S), say. In this case our measured data has the form

z = g(S∗) + e (25)

where e denotes (uncertain) measurement errors. For simplicity we assume that e has
a gaussian distribution with zero mean vector and known variance matrix Σe. Our
objective is now to compute the distribution function of h∗ conditional upon the event
that z = z̃, where z̃ is the observed value of z. Using Bayes’s theorem,

Fh∗|z(y) � Pr
(
h∗ ≤ y | z = z̃

)
= c

∫
S

1
(
g(S) ≤ y

)
Likz̃(S) dFS∗(S) (26a)

where ‘|’ denotes ‘conditional upon’, c � Pr(z = z̃)−1 and Likz̃(·) is the likelihood
function,

Likz̃(S) � Pr(z = z̃ | S∗ = S)

= φ
(
z̃ − g(S) ; 0, Σe

)
(26b)

where φ(· ; ·, ·) denotes a gaussian Probability Density Function (PDF) with given mean
and variance; here the likelihood function is the PDF for the measurement error. This
type of calculation is often referred to as calibrated prediction (Goldstein and Rougier,
2005a), and Fh∗|z is referred to as the posterior predictive distribution.

Comparing (24) and (26), we can see that introducing the data causes us to weight the
integrand according to how well each candidate value for S is able to replicate the data
z̃, subject to acceptable amounts of measurement error. In the extreme case where Σe

becomes large the likelihood becomes flat, and (26) becomes (24). This is the case where
the data are measured so imprecisely as to be useless in terms of selecting the correct
value for S. The value of Σe must be carefully specified, because it controls the curvature
of the likelihood function, and thus controls the degree to which observations on z can
tell us about S∗.
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3.2.2 Numerical approximations

The simplest approach to computing (26) is to use Monte Carlo integration, for which

F̂
(n)
h∗|z(y) �

n∑
i=1

wi 1
(
h(Si) ≤ y

)
(27)

where wi ∝ Likz̃(Si) and
∑n

i=1 wi = 1, and S1, . . . , Sn are sampled independently from
FS∗ . In other words, for any given value of y we sample n candidate values for S∗ from
FS∗ , and sum the (normalised) weights of those candidates for which h(Si) ≤ y. By the
Strong Law of Large Numbers (SLLN), we have

lim
n→∞

F̂
(n)
h∗|z(y) = Fh∗|z(y). (28)

In the case of uncertainty analysis, where we do not have any data, the same approach
is used, only all of the weights are set equal to n−1.

In practice, we can improve on our estimate of Fh∗|z, because there are usually better
alternatives to simple Monte Carlo integration. In particular, adopting importance
sampling with variance reduction techniques can have a dramatic effect on the quality of
our estimate (i.e. its rate of convergence to the correct value as a function of n). These
issues are covered in Ripley (1987), and discussed in more detail in Evans and Swartz
(2000, ch. 6).

The posterior predictive distribution calculation given in (26) and estimated in (27)
performs what is sometimes known as model averaging. We do not know the correct
value S∗, but we average h(·) over a number of candidate values, S1, . . . , Sn, according
to the posterior PDF for S∗

Pr(S∗ = Si | z = z̃) ∝ Likz̃(Si) dFS∗(Si) (29)

(informally). An alternative approach is to identify the single best candidate value for
S∗, and treat this as though it was the correct value, which would give us a point
prediction for h∗ but no measure of uncertainty. This is obviously a good approach
when the data z are highly informative about S∗ and n is large, because in this case we
would expect almost all of the probability to be concentrated onto one candidate value.
There are several ways of identifying a single best value. Statisticians usually choose the
posterior mean, for which the calculation involves an integration very much like (27).
An alternative is to choose the Maximum A Posteriori (MAP) estimate, which can be
found by optimisation, and may in some circumstances be much cheaper to compute.
For the MAP estimate we need to find

S∗
MAP � argmaxS Pr(S∗ = S | z = z̃) . (30)

To do this calculation effectively would require a discrete-state-space optimisation
algorithm such as TABU search (see, e.g., Battiti, 1996).

There is a catch, however, with using a point estimate such as S∗
MAP. Metabolic networks

are unlikely to give rise to a posterior PDF for S∗ which is highly concentrated, because by
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the fact that they have evolved, they display a high level of robustness. This is discussed
in Barabási and Oltvai (2004). ‘Robustness’ here means that there are many ways for
the network to function, and thus many ways in which the same data z might have
arisen: effectively g(·) is a many-to-one function. This is very bad news for calibration,
i.e. learning about S∗, but not necessarily bad news for prediction, i.e. learning about
h∗, since it may be that all the possible candidates which might give rise to z̃ give
roughly the same prediction for h(·). However, this is not something we can assert, and
consequently it is prudent to proceed on the basis that we will not be able to make a
reliable identification of S∗, and consequently when we think about h∗ we should favour
a model-averaging approach.

3.3 Priors on models

One point that has not been addressed is how we formulate FS∗ , the distribution function
on candidate stoichiometric matrices. The model-averaging and optimisation approaches
described above make two different demands on how we formulate FS∗ . For model-
averaging we need to be able to sample S from FS∗ , while for, say, the MAP estimate
ĥ � h(ŜMAP) we need to be able to compute the value dFS∗(S). For an optimisation
approach like TABU search we also need to define some kind of neighbourhood structure
over candidate values for S∗, so that we can imagine taking incremental steps through
S-space.

This is an area where expert judgement is crucial. At a preliminary assessment, though, it
seems as though sampling candidate values for S∗ will be the easier task. This is because
there seems to be a reasonable understanding of how complex metabolic networks arise
from simpler ones, and this includes a stochastic description of processes that give rise
to characteristic features of metabolic networks such as their scale-free and hierarchical
topology (see, e.g., Barabási and Oltvai, 2004, Box 2, p. 105). Thus it ought to be
possible to start with a known stoichiometric matrix S1, which represents the bits of the
network that are to be taken as known, and to propose a method for ‘growing’ it in a
stochastic manner to come up with a candidate for the complete stoichiometric matrix
S∗, which has a larger collection of metabolites and reactions.

3.4 Design issues

Finally, we consider briefly the design question: which fluxes ought to be measured? We
imagine a number of candidate measurements, z′, z′′ and so on. What makes z′ a better
set of measurements than z′′? The usefulness of any particular measurement should be
directly related to the inference that is to be drawn from the experiment. In our case,
the inference is summarised in the distribution function of h∗, and it is natural in this
case to propose that our yardstick for valuing a measurement is in terms of how much
that measurement allows us to reduce our uncertainty about h∗, relative to where we are
at the moment, using z.
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If we actually had the actual measurements z′ = z̃′ and z′′ = z̃′′ then we could compare
the two quantities

v(z̃′) and v(z̃′′) (31a)

where
v(z̃′) � Var

(
h∗ | (z = z̃, z′ = z̃′)

)
(31b)

and likewise for v(z̃′′). That is, we could augment our data z̃ with the additional
measurements one at a time, compute the predictive uncertainty in terms of the posterior
predictive variance of h∗, and choose whichever of z̃′ and z̃′′ gives rise to the largest drop
in uncertainty, i.e. choose to measure z′ rather than z′′ if and only if v(z̃′) < v(z̃′′).

To get around the problem of not actually having z̃′ and z̃′′, we use pseudo-data. That
is, we generate ‘fake’ data on the basis of a reasonable choice for S∗, using the function
g(·). This type approach has been suggested in the context of computer experiments by
Craig et al. (2001, section 8). To a limited extent the result depends on the values of the
pseudo-data. But in fact it often turns out that the actual value z̃′ is less important that
the fact of measuring z′. A good example where this is completely true is the multivariate
gaussian distribution. If the collection (h∗, z′, z′′ | z = z̃) is gaussian, then v(z̃′) does
not depend on the actual value z̃′ at all, but only on the joint variance structure of the
marginal distribution (h∗, z′) | z = z̃; likewise for v(z̃′′). Therefore an objective function
for choosing between measuring z′ and z′′ that is based on the predictive variance can
often be quite insensitive to the precise values of the pseudo-data.

F-20



4 Conclusions and Future Work

The focus of the work presented here has been two-fold. Firstly the issue of normal and
dysregulated lipoprotein production and metabolism has been considered in a number
of contexts. Initial compartmentalisation of the various lipoproteins particles (VLDL,
IDL, and LDL) led us to consider the application of ODE type models to the problem.
However, during the course of the Study Group it became apparent that the evolution
of the lipoprotein particles through each of their states reflects a change in triglyceride
and cholesterol density of the particle. This has led to a PDE continuum description of
a distribution of lipoprotein particles in triglyceride and cholesterol space.

Initial 1-D results from the model have shown that it produces the qualitatively observed
behaviour of particle production and uptake by the liver for a healthy person and
difficulties in particle uptake in the obese case. However, further model analysis in
2-D is required to fully understand and capture the model behaviour.

The second problem related to comparative genomics has highlighted a number of
statistical based methods for dealing with the issue of comparing unknown networks
to those which are better understood. The importance of the stoichiometric matrix
has been highlighted along with priors (in the Bayesian case) as well as the design of
experiments for measuring parameter values.

In order to progress the modelling presented in this report the following is a suggested
list of future work.

• Obtain more detailed parameter estimates in order to further populate the PDE
model.

• Solve the PDE based model in 2-D in order to account for changes in both the
triglyceride and cholesterol particle density for a given lipoprotein particle.

• Consider the affect of upregulated HDL activity.
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