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1. Introduction
We consider a numerical control (NC) cutting machine which can cut only

line segments and circular arcs. Thermal cutting processes require constant tool

velocity because

• too slow velocity leads to overheating and melting,

• too fast velocity interrupts the cutting process.

The inputs with which the machine works are sets of points in a particular order

which are in Cartesian plane.

From a set of points (inputs) we must create a sequence of line segments and

circular arcs that pass through some of the points and are ”sufficiently close” to

the others – ϵ error condition. The case in which the points can be approximated

with straight line segments is well investigated. We are interested in the sets

of points which can only be approximated by arcs. Below we formulate this

particular task.

2. The problem
A sequence of N points is given. A curve must be created, composed of circular

arcs, such that:

– it passes through/nearby the given points in the same sequence;

– the Hausdorff distance between the points and the curve does not exceed a

certain value ϵ;

– it is composed of minimal number of arcs;

– the output should consist of sets of the type:

{(x1, y1), (x2, y2), (xc, yc), E},

where (x1, y1) and (x2, y2) are respectively the initial and the final points of a

certain arc, (xc, yc) is its center and E = +1 if the direction of the arc is counter
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clockwise or E = −1 if the direction of the arc is clockwise.

Remark. Local minimum – fitting an arc to each set of 3 points – is not a

solution of the task.

2.1. Summary of the approach

• We begin with a program for finding the center and the radius of a circle

that passes through three fixed points.

• Having such a program we make another one for finding the ”best” arc that

connects two fixed points (which have at least two inner points between

them). This arc passes through the two fixed points and through one of the

points between them.

• Next we find the ”best” arc between any two points (that have at least two

inner points) of the set of points we are given.

• From the set of arcs that we have created, we exclude those that do not

satisfy our error condition.

• From the arcs that are left we may choose different ways to get from the

initial point to the last. We chose such a path that contains minimal num-

ber of arcs. Usually the connecting points are spread almost uniformly

throughout the set we are given.

2.2. An arc through three fixed points

Let us have the points P1(x1, y1), P2(x2, y2), P3(x3, y3), Fig. 1. The midpoints

A and B of the line segments connecting (x1, y1) and (x2, y2) and (x2, y2) and

(x3, y3) have coordinates (xA, yA), (xB , yB). Obviously

xA =
x2 + x1

2
, xB =

x3 + x2

2

and

yA =
y2 + y1

2
, yB =

y3 + y2

2
.

The equations of the lines that pass through the points P1(x1, y1), P2(x2, y2) and

P2(x2, y2), P3(x3, y3) are respectively

l1 : A1x + B1y + C1 = 0

and

l2 : A2x + B2y + C2 = 0,
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Figure 1: The center C of the circle through P1, P2, P3

where A1 = y2−y1, B1 = x2−x1, C1 = −x1(y2−y1)+y1(x2−x1), A2 = y3−y2,

B2 = x3−x2, C2 = −x2(y3−y2)+y2(x3−x2). Now, since the vectors p1(A1, B1)

and p2(A2, B2) are orthogonal respectively to the lines l1 and l2 and we have the

coordinates of A and B, we can easily find the equations of the line bisectors of

the arcs that are orthogonal to l1 and l2 and pass respectively through (xA, yA)

and (xB , yB). We have

b1 : B1x − A1y + (−B1xA + A1yA) = 0,

b2 : B2x − A2y + (−B2xB + A2yB) = 0.

The center C(p, q) of the circle is where the two line bisectors intersect. Its

coordinates are the solution of the system

B1x − A1y + (−B1xA + A1yA) = 0,

B2x − A2y + (−B2xB + A2yB) = 0.

So we have that

p = −
−A2B1xA + A1B2xB + A1A2yA − A1A2yB

A2B1 − A1B2

,

q = −
−B1B2xA + B1B2xB + A1B2yA − A2B1yB

A2B1 − A1B2

As for the radius of the circle, it is equal to the distance between the center and

any point on it. We can use the point P1(x1, y1). We have that

r =
√

(x1 − p)2 + (y1 − q)2.
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The direction of the arc is positive (negative) exactly when the orientation of the

triangle
−−−−−→
P1P2P3 is positive (negative). This orientation is equal to the sign of the

determinant
∣

∣

∣

∣

x2 − x1 y2 − y1

x3 − x2 y3 − y2

∣

∣

∣

∣

.

2.3. “Best” arc

Let us consider the task for connecting two fixed points P0(x0, y0) and

Pn+1(xn+1, yn+1) (which have n inner points, n ≥ 2) of our input set. First

we build all the arcs that connect the two end points and pass through an inner

one - that makes n arcs. Let ri and Ci(pi, qi), i = 1, . . . , n be respectively the

radii and the centers of these arcs. For every arc with a center (pi, qi) and ra-

dius ri, (i = 1, . . . , n) we calculate its Hausdorff distance to the inner points Pj ,

j = 1, . . . , n.

di,j =
∣

∣

∣

√

(xj − pi)2 + (yj − qi)2 − ri

∣

∣

∣
.

We now denote

di := max{di,1, . . . , di,n}.

For the i-th arc di is its greatest Hausdorff distance to an inner point. We remind

that we now consider all the arcs that connect two fixed points and pass through

a third between them. For the “best” arc of such kind we chose the k-th arc for

which

dk = min{d1, . . . , dn}.

“Best” arc – new suggestions.

The input set is the same: two fixed points P0(x0, y0) and Pn+1(xn+1, yn+1)

(which have n inner points, n ≥ 2). The midpoint M of the segment P0Pn+1 has

coordinates (xM , yM ). Obviously

xM =
x0 + xn+1

2
, yM =

y0 + yn+1

2
.

The equations of the line that passes through the point M and is perpendicular

to the segment P0Pn+1 are:

c :

{

xC = xM + d ∗ y10/w

yC = yM + d ∗ x01/w

where: x01 = x0 − xn+1 , y10 = yn+1 − y0 , w2 = (x01)2 + (y10)2.
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For i = 1, . . . , n we calculate the oriented distance di from M to the Ci-center

of the circle through the points P0, Pi, Pn+1

di =
((xi − xM )2 + (yi − yM)2 − w2/4).w

2((xi − xM ).y10 + (yi − yM ).x01)
, d =

1

n

n
∑

i=1

di.

Next we define the center C of the optimal arc: C is at distance d from M . The

radius of the arc is r =
√

d2 + w2/4. We calculate the errors ei for the points Pi.

Note that ei =
√

(xi − xM )2 + (yi − yM )2 − r is the Euclidean distance between

Pi and the point Qi, which lies on this circle and on the radius through the point

Pi. At the same time ei is the Hausdorff distance between Pi and the optimal

arc. More precisely this is one-side Hausdorff distance from given points to the

found arc.

2.4. Next stages

Now we consider all the combinations of two points from our input set that

have at least two inner points. For all such pairs of points we take the best

(according to one of the ways previously described) arc that connects them. Since

not all these arcs are close enough to all of their inner points (for an example we

can rarely connect the first and last point with only one arc) we exclude those for

which the distance between them and their inner points (at least one of them) is

more than ϵ. Now we have a set of suitable arcs.

We may consider the problem for constructing a curve (made of arcs) from the

first to the last point as a question for finding a path in a graph. We consider

each point of the input set as a node and the arcs (connecting some of them and

satisfying the error condition) as ribs.

For construction of the adjacency matrix A = (aij)
j=0,...,N
i=1,...,N we first set A to

have only zeros. For i = 1, . . . , N − 3 (N is the number of the input points)

we consider the best arc (rib) connecting the i-th and the j-th points (j = i +

3, . . . , N). If this arc satisfies the error condition we predefine aij = 1.

We compare different paths by the length of their shortest arc (according to the

number of inner points). One approach is to find all the paths in the graph

we have derived and then chose the one in which the shortest arc is as long as

possible. However, we have adapted an algorithm for finding a path with smallest

amount of ribs. Usually the nodes we get are spread uniformly.
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3. Numerical experiments

We have applied our approach to real examples. On Figure 2 the black curve

consists of 200 points, that lie on the parabolic curve y = 300−200∗ (1−x/500)2

and the white inner segments are the arcs (6 is their number), approximate the

points.

Figure 2: Approximation of the data by 6 arcs

Figure 3: Approximation by 7 arcs (above) and the error of approximation (be-

low)
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On Figure 3 we show the approximation of the same data by 7 arcs and below

we demonstrate how the error of approximation changes. The maximal error with

5 arcs is about 0.0183, but with 7 arcs – less than 0.0085. The output data for

these two cases are:

Number of arcs is Narc = 5

A (500.000,300.000) (370.000,286.480) (500.58361, -337.37167) 1
A (370.000,286.480) (270.000,257.680) (514.73312, -404.07667) 1
A (270.000,257.680) (177.500,216.795) (553.71037, -509.27917) 1
A (177.500,216.795) ( 85.000,162.220) (628.01623, -652.46917) 1
A ( 85.000,162.220) ( 0.000,100.000) (744.77653, -828.28417) 1

Number of arcs is Narc = 7

A (500.000,300.000) (407.500,293.155) (500.20991, -331.25917) 1
A (407.500,293.155) (320.000,274.080) (506.36069, -370.56000) 1
A (320.000,274.080) (250.000,250.000) (525.32585, -436.58167) 1
A (250.000,250.000) (190.000,223.120) (556.08512, -513.63000) 1
A (190.000,223.120) (125.000,187.500) (602.69383, -607.08750) 1
A (125.000,187.500) ( 65.000,148.620) (669.89912, -719.13000) 1
A ( 65.000,148.620) ( 0.000,100.000) (761.34933, -850.08750) 1

4. Summary
To recap, the problem was how to create a sequence of arcs

• passing through some of the given points and being sufficiently close to the

others points,

• arcs must be as long as possible.

We did the following activities:

• examined the problem in the literature,

• developed an algorithm for constructing a sequence of arcs,

• tested our approach with a real data,

• improved the method,

• compared the results.

100



ESGI’104 Circular Arc Spline Approximation

References

[1] Kazimierz Jakubczyk. Approximation of Smooth Planar Curves by Circular

Arc Splines. May 30, 2010 (rev. January 28, 2012)

[2] O. Aichholzer, F. Aurenhammer, T. Hackl, B. Jüttler, M. Oberneder, and
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