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Executive summary: Demand Side Response management encourages elec-
tricity demand reduction during peak hours. One avenue for achieving this is
through Demand Side Units (DSUs). These are large electricity consumers who
can afford to reduce their demand on the electricity grid when required. Issues
with DSUs revolve around verification that the correct demand reduction takes
place, with limited monitoring capabilities from the electrical grid operator Eir-
Grid. This issue is studied here with the current methods thoroughly analysed
and new methods proposed. In this report six different forecasting methods
are presented, and their accuracy is compared using two different error metrics.
Due to inherent stochasticity in demand it is found that there is no one fore-
casting method which is unequivocally best, but the ‘Keep it simple’ weekly and
the temperature dependent models are identified as the most promising models
to pursue. Initial investigations suggest that a ‘proxy day’ mechanism may be
preferable to the current method of verifying that the correct demand reduction
takes place.

Keywords: Data Analysis, Prediction Models, Demand Side Response Manage-
ment
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1. Introduction

1.1 Demand Side Response Management
Demand Side Response can be defined as actions taken by consumers to cut
the amount of electricity they use at particular times in response to a prompt
from the grid operator. Demand Side Response has existed in Ireland since
2003 in the form of the Winter Peak Demand Reduction Scheme. This scheme
was introduced to reduce demand on the electricity grid at peak consumption
hours during the winter period. Demand Side Units (DSUs), which are typically
industrial customers, received capacity payments to reduce their load between
5.00p.m. and 7.00p.m.İn this way the demand on the grid was reduced, cutting
the need of the grid operator to call on peak power generators whose limitations
include their expense, inflexibility and high level of CO2 emissions.

The Winter Peak Demand Reduction Scheme ended after the winter of 2012-
2013 and is being replaced by the Peak Demand Reduction scheme. Under this
new scheme, DSUs can be asked to reduce their load, i.e., to dispatch, at any
time. However, dispatch is forecast to occur seldomly and DSUs will be given
notification of dispatch at least one day prior. DSUs requested to dispatch will
then have to reduce their demand on the grid for the dispatch period which
can last from thirty minutes up to two hours (see Figure 1 for an illustrative
example of dispatch ). Demand on the grid can be reduced by either reducing
energy consumption or by using power from back-up generators. DSUs receive
financial incentives for being available for dispatch, a key ingredient needed to
stimulate participation in the Peak Demand Reduction scheme (SEI, 2008).
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Figure 1: Electricity consumption of a DSU over a 24 hour period. Dashed
Blue line is usage with no dispatch. Continuous pink line is usage with 1MW
dispatch between 6.00p.m. and 8.00p.m.Ṫhe shaded region shows the reduction
in demand on the grid as a result of the dispatch.

DSUs must comply with the code of national grid operator EirGrid which
specifies operational standards and protocols. DSUs are also subject to on-going
performance monitoring checks to ensure a range of conditions are adhered to.
One of these conditions relates to one day ahead demand forecasts which a DSU
must submit on a daily basis. In particular, actual demand must be within ±5%
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of forecast values. Poor performance may result in the DSU being declared at
a lower availability resulting in a loss of revenue.

The problem brought to MACSI was by a DSU aggregator, Electricity Ex-
change. They are a third party company that aggregates the demand from a
number of DSUs, which include supermarkets, banks and hospitals, and act as a
single DSU. Their problem relates to the current DSU performance monitoring
regime.

1.2 Current DSU performance monitoring method
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Figure 2: Current performance monitoring method employed by EirGrid. Fore-
casts (dashed green) are submitted at 10.00a.m. for 24-hour period starting at
6.00a.m. the following day. This is monitored by EirGrid by continuously com-
paring it to the actual usage (purple). Dispatch is verified by subtracting the
actual from forecast usage in the dispatch period.

DSUs submit demand forecasts to EirGrid on a daily basis. Specifically,
a prediction is given at 10.00a.m. for the 24-hour period from 6.00a.m. the
following morning to 6.00a.m. the morning after that. The accuracy of the
prediction is monitored by EirGrid every 30 minutes throughout the 24-hour
period. Predicted values that differ from actual values by greater than ±5% are
flagged as poor predictions. As described in Section 1, a high number of poor
predictions can result in the DSU being declared at a lower availability with
financial implications for the DSU.

The reason for forecast monitoring is to verify dispatch. When a DSU dis-
patches, its demand on the grid should fall by the amount of electricity it was
requested to dispatch. However, EirGrid has no way of knowing what the DSUs
demand on the grid would have been had it not been asked to dispatch. Thus
calculating how much dispatch actually occurs becomes an issue. EirGrid cur-
rently verifies dispatch by measuring the difference between the forecast usage
and actual usage in the dispatch period and checking if this difference cor-
responds to the amount of dispatch requested. See Figure 2 for a graphical
illustration of the current DSU performance monitoring method.
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2. Description of the problem
The current performance monitoring scheme is seen as being quite strict and
difficult to adhere to. Early estimates are that DSU forecasts will fall outside
of the ±5% margin a large number of times per day. Electricity Exchange are
concerned about the likelihood of poor forecast performance and the effect that
will have on its business. With that in mind Electricity Exchange brought the
following questions to MACSI:

1. Which prediction algorithms are best suited to the task of predicting cus-
tomer demand?

2. Is there evidence of an improvement in accuracy if the prediction time
horizon is reduced from 48 hours?

3. Can any prediction model be guaranteed to have a forecast error within
±5% for all customer segments?

4. Are there more optimal ways of verifying dispatch?

The problem is tackled in the following manner. Forecasting models are
developed to predict usage for a time horizon of 48 hours ahead. The accuracy
of these models are compared for different customer segments, with different
models working best for different customers. The gain in accuracy by reducing
the forecast time horizon is then examined. Analytical and numerical results
are given to highlight the difficulty of keeping the forecasting error within ±5%.
Finally, alternative dispatch verification procedures are examined.
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3. Data description
Data was supplied by Electricity Exchange on twenty two DSUs (16 supermar-
kets, 1 bank, 2 hospitals, 1 plastic manufacturer, 1 cement manufacturer, and 1
steel manufacturer). For each data set, the demand at every half hour interval
over a period of one year was given. To visually observe trends, in this section
some sample time series of demand for the six different customer segments pro-
vided are graphed and discussed. All the figures in this section commence on a
Monday.

3.1 Supermarket Data
The data provided for twelve of the supermarkets runs for a period of one year
from 01/02/2012 to 31/01/2013. The data for the remaining four supermar-
kets (supermarkets 13 to 16) runs for a period from the 01/08/2011 to the
31/08/2012. In Figure 3 we plot a sample of the weekly demand for one super-
market. It can be seen clearly that there is a prominent daily pattern: electricity
usage begins at a low level at midnight, reaches a peak during the middle of the
day and falls back to a low level of usage again. This pattern repeats itself each
day.

Figure 3: Time series of the energy demand in kWh of one of the supermarkets
taken at half-hour intervals over a period of one week (336 half hours).

3.2 Bank Data
The data for the bank is provided for a period of thirteen months from 01/01/2012
to 31/01/2013. In Figure 4 a sample of the weekly demand for the bank is
shown. During the weekdays a daily pattern is observable: low electricity usage
at midnight and that usage peaks during office hours from 7am to 4.30pm. After
4.30pm the electricity usage reduces to a low level, however there is a small peak
briefly at around 7.30pm each day. It can be observed that the electricity usage
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is much lower during both Saturday and Sunday. From plotting three weeks’
demand in Figure 5 it is clear that this pattern continues each week.

Figure 4: Time series of the energy demand in kWh of the bank taken at half-
hour intervals over a period of one week (336 half hours).

Figure 5: Time series of the energy demand in kWh of the bank taken at half-
hour intervals over a period of three weeks (1008 half hours).

3.3 Hospital Data
The data for the two hospitals is provided for a period of one year from 01/03/2011
to the 29/02/2012. In Figure 6 we plot a sample of the weekly demand for one
of the hospitals. We observe that during the week the electricity usage starts
at low usage at midnight, reaches a peak at about 11am each day and declines
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to low electricity usage again. There is much lower electricity usage during the
weekend. From plotting three weeks’ demand in Figure 7 it is clear that this
pattern continues each week.

Figure 6: Time series of the energy demand in kWh of one of the hospitals taken
at half-hour intervals over a period of one week (336 half hours).

Figure 7: Time series of the energy demand in kWh of one of the hospitals taken
at half-hour intervals over a period of three weeks (1008 half hours).

3.4 Manufacturer Data
The manufacturer data provided is from three different industrial sectors: plas-
tic, cement, and steel. The data is provided for a period of one year from
01/02/2012 to 31/01/2013.
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Plastic manufacturer data

In Figure 8 a sample of the weekly demand for the plastic manufacturer is shown.
It is observable that they do not use any electricity during the weekdays from
8.00am to 9.00pm, instead they use large amounts of electricity overnight from
9.00pm to 8.00am. During the weekend, the plastic manufacturer utilises elec-
tricity at all times, but at a lower level. There are no periods of zero electricity
usage during the weekend. From plotting three weeks’ demand in Figure 9 it is
clear that this pattern continues each week.

Figure 8: Time series of the energy demand in kWh of the plastic manufacturer
taken at half-hour intervals over a period of one week (336 half hours).

Figure 9: Time series of the energy demand in kWh of the plastic manufacturer
taken at half-hour intervals over a period of three weeks (1008 half hours).
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Steel manufacturer data

In Figure 10 a sample of the weekly demand for the steel manufacturer is shown.
It is observed that there is a regular pattern of usage from Monday to Friday. On
Saturday, the peak electricity usage does not reach the maximum peak reached
during the week, and on Sunday the peak electricity usage is lower again. From
plotting three weeks’ demand in Figure 11 it is clear that this pattern continues
each week.

Figure 10: Time series of the energy demand in kWh of the steel manufacturer
taken at half-hour intervals over a period of one week (336 half hours).

Figure 11: Time series of the energy demand in kWh of the steel manufacturer
taken at half-hour intervals over a period of three weeks (336 half hours).
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Cement Manufacturer Data

The cement manufacturer does not have as obvious a pattern as the other in-
dustries considered. In Figures 12 and 13 a sample of the weekly demand and
a sample of three weeks’ demand, respectively, are shown. The complete year’s
data for the cement manufacturer is shown in Figure 14. Unlike the other
DSUs, this DSU has no obvious consumption patterns, and therefore is not in-
corporated in any of the models developed in Section 4. This DSU is analysed
separately in Appendix A Stochastic DSUs.

Figure 12: Time series of the energy demand in kWh of the cement manufacturer
taken at half-hour intervals over a period of one week (336 half hours).

Figure 13: Time series of the energy demand in kWh of the cement manufacturer
taken at half-hour intervals over a period of three weeks (1008 half hours).
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Figure 14: Time series of the energy demand in kWh of the cement manufacturer
taken at half-hour intervals over a period of one year (17472 half hours).

3.5 Data Management Issues
The data provided was in half-hourly readings of power output in kilowatt hours
(kWh). Each data point represents the average power level monitored over the
following 30-minute interval, rounded to the nearest kWh.

Some periods of power usage levels were identified as being outliers and
not representative of common power consumption patterns. Examples of these
periods include the Christmas and New Year period during which all of the
DSU’s showed uncharacteristically low power levels. Similarly, the two-week
period for Builders’ holidays (late July to early August) was identified as being
non-representative in one DSU. These outlying periods are shown in Figure 15.
These identified outliers, along with rare incidences of missing data (possibly
due to a power cut), were fully included in the test data sets.

Figure 15: Typical consumption patterns for a steel manufacturer shown in
blue. The highlighted brown data shows two outlier periods which correspond
to builders’ holidays in July and the Christmas period.
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4. Forecasting Models and Methodologies
The first task was to build forecasting models that could predict demand based
on information available at the time of forecast. Data was supplied by Electricity
Exchange on each of its twenty two DSUs. For each data set, the demand at ev-
ery half hour interval over a period of one year was given. Furthermore, weather
data was supplied on daily mean temperatures, daily temperature ranges and
daily mean rainfall.

The demand data set for each DSU was split into two parts. The first 75%,
or 13140 entries, were set aside for the training data set. This was to be used
for model construction and fitting parameters. The last 25%, 4380 entries, was
the test data set which was to be used to test the quality of the model based on
certain metrics.

The data set is a time series of electricity demand, and this along with
weather data would be the basis of the models. Each model could take as input
the forecasted weather conditions and/or the previous electricity demand and
produce a forecast. Different models were examined, and a detailed explanation
of each is given here.

4.1 Forecasting Models
4.1.1 Seasonal ARIMA

In simple multiplicative models it is assumed that data at time t, Zt, is described
by an underlying trend Tr which varies because of a seasonal component S and
a residual (growth/decline) component R: Zt = Tr∗S∗R. The aim is to remove
seasonal and residual components so that the underlying trend can be identified
and forecast forward. The forecast trend is then re-adjusted to account for
seasonal and residual components.

Seasonal ARIMA models Yaffee and McGee (2000) are capable of describing
such data. These models consist of seasonal terms, differencing terms, autore-
gressive terms and moving average terms.

An autoregressive (AR) model of order p, AR(p), calculates a spot estimate
for time point t as a weighted average of the t−1 to t−p time series data points.
Weights are calculated as regression coefficients using, for example, maximum
likelihood estimation.

Consider a time series y1, y2, ..., yn. An autoregressive model AR(p) states
that yi is the linear function of the previous p values of the series plus an error
term:

yi = φ0 + φ1yi−1 + φ2yi−2 + ...+ φpyi−p + εi,

where φ1, ..., φp are weights that have to be determined, and the error εi is
normally distributed with zero mean and variance σ2.

A moving average model of order q, denoted MA(q), calculates a spot esti-
mate for time point t as a mean term of the series, ω0, and a moving weighted
average of current and previous white noise error terms, εt, εt−1, ..., εt−q.

yt = ω0 − ω1εt−1 − ω2εt− 2− ...− ωqεt−q + εt,

ω0, ω1, ..., ωq are constant coefficients.
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Combining AR and MA models, autoregressive moving average (ARMA(p,q))
models can be defined as:

yt = c+

p∑
i=1

φiyt−i −
q∑

j=1

ωjεt−j ,

where c is the combined value of the constants φ0 and ω0.
A time series showing a trend Tr is not stationary in mean, which is a

necessary assumption for ARMA models. Differencing is an operation that can
be applied to a time series to remove a trend. If after differencing the time series
is stationary in mean and variance, then an ARMA(p,q) model can be used.

Autoregressive integrated moving average (ARIMA) models remove trends
in time series by including differencing in the ARMA model. ARIMA(p,d,q)
models have an autoregressive part of order p, a moving average part of order q
and having applied d order differencing. The equation for a predicted point yt
in backshift notation is given by

(1−
p∑

i=1

φiB
i)︸ ︷︷ ︸

AR(p)

(1−B)d︸ ︷︷ ︸
I(d)

yt = c+ (1−
q∑

j=1

ωjB
j)︸ ︷︷ ︸

MA(q)

εt,

where B is the backshift operator defined as

Bkyt = yt−k.

ARIMA models can deal with time series that have trends but need to be
extended for time series that display seasonal behaviour. In the case of the
latter, a seasonal ARIMA model is required.

ARIMA(p,d,q)(P ,D,Q)s models incorporate seasonal behaviour into the ARIMA
model. They are defined by seven parameters.

(1−
p∑

i=1

φiB
i)︸ ︷︷ ︸

AR(p)

(1−
P∑

k=1

βkB
k∗s)︸ ︷︷ ︸

ARs(P)

(1−B)d︸ ︷︷ ︸
I(d)

(1−Bs)D︸ ︷︷ ︸
Is(D)

yt

= c+ (1−
q∑

j=1

ωjB
j)︸ ︷︷ ︸

MA(q)

(1−
Q∑
l=1

θlB
l∗s)︸ ︷︷ ︸

MAs(Q)

εt (1)

AR(p), MA(q), I(d) and c are as previously defined. ARs(P ), MAs(Q) and Is(D)
are seasonal autoregressive, moving average and differencing terms respectively.
These take into account the seasonality of the time series which may include
daily patterns, weekly patterns and so on. s is the period of the seasonal pattern
appearing. In this case, s takes the value 48 which corresponds to 48 half-hour
time steps or, equivalently, one day. Thus the seasonality incorporated in the
model is daily.

The Demand Side Units being considered consisted of sixteen supermarkets,
one bank, one steel manufacturing plant, one plastic manufacturing plant and
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two hospitals. The data for the DSUs were fitted with a seasonal ARIMA
model. The appropriate model was selected by using considerations such as the
autocorrelation and partial autocorrelation functions, residual normality tests,
data stationarity tests, AIC and prediction errors.

Following these consideration, it was found that the order of the optimal
model was ARIMA(3,0,1)(0,1,1)48. Inserting these parameter choices into Equa-
tion 1 and expanding out the backshift operator gives the following linear equa-
tion for the predicted demand yt:

yt =φ1(yt−1 − yt−49) + φ2(yt−2 − yt−50) + φ3(yt−3 − yt−51)

+ εt − ω1εt−1 − θ1(εt−48 − ω1εt−49) + c

Figure 16: Seasonal ARIMA predictions for one supermarket over a 48-hour
time period. The red line is actual electricity usage. The black line is pre-
dicted electricity usage. The green and blue lines are the upper and lower 95%
confidence intervals.

As an example of the seasonal ARIMA model, details are here given of the
model applied to one of the supermarkets. The model with parameters fitted
was as follows:

yt =0.9265(yt−1 − yt−49)− 0.0778(yt−2 − yt−50)− 0.0106(yt−3 − yt−51)

+ εt − 0.0979εt−1 + 0.9663(εt−48 − 0.0979εt−49)

The coefficients for the other fifteen supermarkets are given in Table 1.
Figure 16 shows the seasonal ARIMA predictions for the supermarket. In-

cluded in the plot is the actual electricity usage, the predicted electricity usage
under the seasonal ARIMA(3, 0, 1)(0, 1, 1)48 model, and the 95% percent con-
fidence interval of the estimation. This confidence interval is based on the
assumption that the residuals are normally distributed, and is given by

yt ± 1.96σ,
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ARIMA coefficients
DSU φ1 φ2 φ3 ω1 θ1
Supermarket 1 0.9265 0.0778 0.0106 0.0979 0.9663
Supermarket 2 0.1021 0.8223 0.2533 0.9784 1
Supermarket 3 1.4511 0.4138 0.0446 0.9044 0.9579
Supermarket 4 1.2182 0.5234 0.2019 0.1190 0.9547
Supermarket 5 0.539 0.1374 0.1479 0.4397 0.9593
Supermarket 6 1.182 0.4576 0.1362 0.1176 0.8879
Supermarket 7 0.9795 0.1031 0.0296 0.0226 0.9603
Supermarket 8 0.1595 0.5758 0.0964 0.6602 0.9821
Supermarket 9 0.3729 0.3630 0.0052 0.6850 0.9586
Supermarket 10 1.0979 0.2601 0.0065 0.1152 0.9176
Supermarket 11 1.8739 1.0304 0.1533 0.9504 0.9233
Supermarket 12 1.0867 0.0319 0.1945 0.1520 0.9570
Supermarket 13 0.5156 0.2113 0.1694 0.3799 0.9889
Supermarket 14 1.6079 0.6420 0.0250 0.6609 0.7753
Supermarket 15 1.1346 0.4216 0.1831 0.0328 0.9658
Supermarket 16 0.5208 0.3400 0.0431 0.6860 0.9891

Table 1: ARIMA coefficients (see Equation 4.1.1) for the sixteen supermarkets.
Note that c = 0 for all models.

where ŷt is the predicted value using the seasonal ARIMA model, 1.96 is the
normal distribution point for a 95% confidence interval and σ is the maximum
likelihood estimate of the innovations standard deviation based on the fitted
seasonal ARIMA model.

4.1.2 KIS models

For the purpose of benchmarking predictions from more sophisticated prediction
models, such as ARIMA, a series of simple forecasts dubbed the ‘Keep It Simple’
(KIS) models are used. These forecasts rely on the highly seasonal variation of
the data, particularly over daily and weekly timescales. In the first case, KIS
median, the weekday half-hour median of the training data is used as the forecast
for the corresponding weekday half-hour in the test data. Note that the weekly
forecast is the same for all weeks in the future. In the second case, KIS weekly,
last week’s energy use is used as a forecast for this week, i.e. at half-hour t the
forecast is

yt = yt−336. (2)

The use of more involved prediction methods can only be justified if they can out
perform simple predictors such as the KIS models. An example of the output
from the KIS weekly method is shown in Figure 17.

4.1.3 Temperature dependent model

The results of the KIS models were promising, so avenues for a possible extension
to these models were sought. The best possible extension was found to be that
of including weather data.

A temperature-demand dependence can be quite evident, as illustrated in
Figure 18. This relationship is strongest during periods of high demand. This
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Figure 17: Actual demand for week 1 (blue), predicted demand using the KIS
weekly model for week 2 (blue bold), and actual demand for week 2 (red) for
one of the supermarkets.

has a simple explanation, that DSUs require more electricity when the temper-
ature is higher. This requirement could be in the form of heat related consump-
tion, such as refrigeration, heating etc.

The KIS weekly model was extended to include temperature dependence. An
extra term was included in Equation 2 which takes into account the difference
in temperature between the time point to be predicted and one week previous.
The formula for the extended model is

yt = yt−336 +∆T · α,

where ∆T is difference between the temperature at time t (in this case it is
forecast) and time t−336, and α is the slope of the linear function. α was fitted
using ordinary least squares on all available historical temperature data.

4.1.4 ARIMA II

The ARIMA model (as described in Section 4.1.1) uses values from the previous
day to predict today’s electricity demand. In contrast, the KIS models use
values from the previous week. In order to study this contrast in more detail, a
correlation analysis was performed to see which days are more correlated with
their previous days and which days are more correlated with the same day from
the previous week.

Table 2 shows the percentage of time that each day was more correlated with
the same day from the previous week versus their previous day. For example, it
was found that Mondays were more correlated with the previous Monday 84% of
the time while Mondays were more correlated with their previous day (Sunday)
only 16% of the time. Table 2 shows that Mondays, Thursdays, Saturdays and
Sundays are more correlated with the same day from the previous week while
Tuesdays and Fridays are more correlated with their previous days (Mondays

17
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Figure 18: Demand at 10.00a.m. to 10.30a.m. (left) and 2.00p.m. to 2.30p.m.
(right) versus temperature for one of the supermarkets. A significant linear
relationship exists.

Day With same day previous week With previous day
Monday 84% 16%
Tuesday 45% 55%
Wednesday 51% 49%
Thursday 78% 22%
Friday 37% 63%
Saturday 82% 18%
Sunday 86% 14%

Table 2: The percentage of time that each day is more correlated with the same
day from the previous week versus its previous day.
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and Thursdays respectively). It is not clear which day Wednesdays are more
correlated to.

As a result of this analysis, the ARIMA model (described in Section 4.1.1)
was used with manipulated data. Instead of using the conventional daily pattern
of Monday, Tuesday, Wednesday etc., if one is predicting electricity demand
for a Monday, then data for Mondays only is fed into the model. If one is
predicting for a Tuesday then data for Tuesdays only is fed into the model
and so on. Because the ARIMA model looks at previous day’s values, when,
for example, data for Sundays only is being used, the previous day is in fact
the previous Sunday. This data manipulation incorporates seasonality into the
ARIMA model. When this is done in this report, the model is known as ARIMA
II.

4.1.5 Stepwise Linear Regression

Stepwise linear regression (SLR) is a procedure that uses a systematic approach
to building a model with a large number of predictor variables, McClave et al.
(1997). In the first step of the procedure a linear regression model is fitted using
the best predictor only. The regression with the best predictor is the one with
the smallest error defined by ∑

t

(ŷt − yt)
2, (3)

where ŷt represents the value predicted by the regression and yt the actual
value. At each of the next steps, another linear regression model is fitted,
each time with the next best predictor being added to to regression of the
previous step. This procedure continues as long as the error in equation (3)
decreases at each step. Once this error stops decreasing the procedure stops
and no more predictors are added. In this analysis 1000 predictor variables are
used to forecast yt. These are the demands yt−1, yt−2, ...yt−1000, i.e., the last
23 days of data. Therefore, this method incorporates both daily and weekly
patterns. Each linear regression is fitted using the first 5000 data entries. In
order to prevent over fitting to this data, the linear regressions found at each
step of the procedure are also cross-validated with the next 5000 data entries.
The linear regression with the smallest error (according to equation (3)) on the
cross-validation dataset is chosen as the model.

For each DSU a model consisting of N predictors is developed taking the
form

ŷt =

N∑
i=1

βiyt−ti , (4)

where βi and ti represent the coefficient and lag associated with predictor i,
respectively. For supermarket 1 a best fit linear regression model was found
with 12 predictors. The lags and coefficients associated with these predictors
are given in Table 3. Lags and coefficients associated with all other DSUs are
given in Appendix C.

4.1.6 Additional methods and forecasting practices

Further techniques such as Ensemble Methods and Support Vector Machines
are described in the literature but were not investigated by the study group due
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Predictor i βi ti
1 0.32 336
2 0.23 672
3 0.22 1008
4 0.16 97
5 0.06 288
6 −0.10 433
7 0.10 717
8 −0.06 380
9 0.05 240
10 −0.07 865
11 0.06 193
12 0.04 626

Table 3: Coefficients and lags associated with the Stepwise Linear Regression
(SLR) model for supermarket 1.

to time constraints. Neural Networks were studied, but the results were too
inconsistent to be considered for what needs to be a reliable model.

Javed et al. (2012) discuss approaches to forecasting domestic load and note
that weather in this sector has the strongest influence on demand. The use of
Short Term Load forecasting models to predict individual household demand
is investigated. Results are summarised using Multiple Linear Regression and
Neural Networks. Data includes time series usage, anthropological and struc-
tural information. The issues of accuracy when forecasting at the individual
house level compared to forecasting at the aggregate level is discussed, with
aggregate level forecasting preferred.

AEIC (2009) describe various methodologies used in the dispatch verification
process of demand response. Methods are proposed to estimate the difference
between what the customer actually used and what that customer would have
used if the dispatch call had not been issued, or the baseline. It is noted that
new methods of establishing baselines and measuring their accuracies are con-
stantly evolving as Smart Metering technologies evolve. Techniques used to
calculate baselines are day matching, regression analysis and a proxy day ap-
proach. Day matching attempts to select a baseline day that most accurately
matches the dispatch event day. Regression analysis involves using statistical
regression methods to create a model that best matches. A proxy day is one
that has the same characteristics as a dispatch event day; this is here examined
in Section 6. A comparison of the baseline techniques is shown in Figure 19.

Measurement and verification of demand reduction schemes are also dis-
cussed in Goldberg and Agnew (2013). A number of recommendations are
made about the characteristics that affect measurement and verification accu-
racy. Baseline adjustment methodologies are suggested. For example, in cer-
tain sectors weather has a strong influence on load so day-of-event adjustments
should be made to remove this bias.

Furthermore, a number of recommendations are put forward to limit gaming
opportunities of participants in demand reduction schemes. It is noted that only
consumption can be metered directly, not reduction in consumption. However,
forms of load simulation can be used to assess how well a particular baseline
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Figure 19: Baseline techniques, AEIC (2009)

method represents what would have happened in the absence of a demand re-
duction event.

4.2 Error Metrics
Error metrics are an important part of the analysis in both judging the strength
of each model and providing evidence that forecasts become less accurate as
the time horizon of a forecast increases. Three metrics are used here, with each
having having the absolute percentage error at their core. For a prediction pt of
the demand at time point t in a forecast, the absolute prediction error is defined
as:

εt =

∣∣∣∣pt − at
at

∣∣∣∣ ,
where at is the actual demand at time point t.

Two metrics are used to compare the forecasting models. The first, E5%, is
based on EirGrid’s performance monitoring mechanism, which flags predictions
if the absolute percentage error is greater than 5%. A dummy variable zt is
introduced to quantify this:

zt =

{
0 if εt < 0.05

1 if εt ≥ 0.05

The forecasting models predict demand every half hour for a period of 24-hours.
The fraction of these half hour predictions that lie outside ±5% for a forecast
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on a given day d is
1

48

48∑
t=1

zd
t

E5%, the average of this fraction over the whole test period of N days, is the
first metric used:

E5% =
1

N

N∑
d=1

(
1

48

48∑
t=1

zd
t

)
The second metric EM is based on the mean absolute percentage error

(MAPE). On a given day d, the MAPE is defined as the average absolute per-
centage error over the prediction time period:

Md =
1

48

48∑
t=1

εt

EM is then the average of this quantity over the whole test data set.

EM =
1

N

N∑
d=1

Md

Note that the two metrics are inherently different and should not be confused
with eachother. E5% gives the fraction of times that predictions in a forecast
do not lie within 5%. On the other hand, EM gives the average percentage
inaccuracy of a forecast over the whole length of the forecast. It is a standard
measure of accuracy for time series forecasting models.

Finally, a third measure ET
5% is introduced which is a modification of E5%.

This metric is used to show that models become more inaccurate as they forecast
further ahead.

At every half-hour h in the data set, of which there are Nh, a T -ahead
prediction is made. ET

5% is the fraction of times the final point T in the forecast
lies outside the ±5% margin:

ET
5% =

1

Nh

Nh∑
h=1

zh
T (5)

This metric is used in the analysis is to show how the accuracy of forecasts can
be improved by reducing the time horizon T from 48 hours.
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5. Results and Analysis

5.1 Forecasting Models
Each of the forecasting models outlined in Section 4 were compared by their
ability to forecast under the current Eirgrid forecasting scheme. The models
were tested on every one of the DSUs using the metrics E5% and EM . The
results are shown in Table 4. 1

The results differ depending on the DSUs sector. The supermarkets are quite
predictable, with the EM values for the best models always falling between 3%
and 10%. For the first set of supermarkets, the temperature dependent model
outperforms the other models in the majority of cases. Interestingly, the only
model that is better than it for some cases is the KIS weekly model. The fact
that these two models outperform the ARIMA model with daily seasonality and
the KIS median model indicates that weekly seasonality, along with tempera-
ture, is the important factor.

The models for the hospitals and the steel manufacturer also perform quite
well. In the case of the former, the weekly models perform best, while the KIS
median provides a good fit for the steel.

On the other hand, the demand of the bank and plastic manufacturer are
more difficult to predict. The errors associated with these are quite large, with
no one model providing good predictions across all the different customer seg-
ments.
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Figure 20: Left: Demand profile of supermarket 1 for a single day. De-
mand rapidly increases from 7.00a.m. to 10.00a.m. and rapidly decreases from
6.00p.m. to 9.00p.m.Ṙight: The MAPE at every half hour from 6.00a.m. to
6.00a.m. averaged over all supermarkets throughout the test period for the
ARIMA model (blue) and the KIS weekly model (red)

By analysing the error, it can be seen that there are periods throughout the
day that are more difficult to predict. Figure 20 shows the average error for
each half hour time point from 6.00a.m. to the following 6.00a.m. for both the

1Values listed for the ARIMA II model are averaged over the seven days of the week, daily
accuracy under both error metrics is given in Tables 5 and 8.
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ARIMA and KIS Weekly models. This error is averaged over supermarkets 1 -
12.

The plot shows that certain periods throughout the day have higher fore-
casting errors. These periods are from 6.00a.m. to 10.00a.m. and from 6.00p.m.
to 11.00p.m.İnterestingly, these periods do not correspond to periods of high
usage. Rather, they are start-up and shut-down periods when the supermarket
opens and closes. Thus it is not the high usage period during the opening hours
that is difficult to predict, but the start-up and shut-down periods.

The plots also indicate that while the models have very similar accuracy
for most of the 24-hour period, the KIS Weekly model is superior at predicting
the more volatile period. The spike in the ARIMA model line around 8.00p.m.
shows that it is not effective at predicting the shut down period.

5.2 Improved accuracy for shorter time horizons

20 40 60 80
T

0.2

0.4

0.6

0.8

1.0
ET

5%

Figure 21: ET
5% as a function of the forecast time horizon T for one of the

hospitals. T increases from 30 minutes ahead to 2 days ahead in 30 minute
increments. The KIS weekly (blue) and KIS median (red) models accord no
notable decrease in accuracy as the time horizon T increases. The ARIMA
model (dashed mustard) does suffer significant loss of accuracy, especially during
the initial increase in T .

The effect of the length of the forecasting time horizon T on the accuracy of
the predictions was examined. The results for one of the hospitals is illustrated
in Figure 21. The metric to assess the accuracy was the ET

5% metric as given in
Equation 5 in Section 4.2.

It was found that T does not have a significant effect on the KIS models.
This result is easily explained. The weekly KIS models are a function of the
time point from one week ago, and so the prediction for a given point will be
the same as long as the value of T is less than a week. For the median KIS
model, the prediction for a time point is the median of that time point over the
whole year, and so will be the same no matter how long ago T it is calculated.

On the other hand, the ARIMA model suffers a significant loss of accuracy
as T increases. The initial decline of accuracy is quite sharp, yet after this it
continues to decline but at a slower rate.

Similarly, the temperature dependent model will become more inaccurate
as the time horizon increases. This is because the forecast temperature for the
next half hour will be significantly more accurate than the forecast temperature
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Figure 22: Contours of constant likelihood of exceeding the 5% precision thresh-
old for a forecast based on a random sample from a Gaussian distribution with
mean µ and standard deviation σ. Markers indicated (µ, σ) pairs calculated
from weekday half-hourly data for each of the datasets. Right panel is an en-
larged region of the left. The s1d data corresponds to daily half-hour averages
and standard deviations of the s1 (supermarket) data.

in 2 days time. The model is fit to exact actual temperatures and so the error
in the model will increase as the error in the forecast temperature increases.

5.3 Difficulties with 5% precision accuracy
Forecasting within the 5% accuracy required by Eirgrid is clearly difficult at the
level of individual DSUs. From the data, it can be seen that the DSUs’ energy
usage is quite volatile and so when attempting to forecast, it may be just noise
that is reproduced. The aim of the analysis was to quantify how often one might
expect to exceed the 5% accuracy threshold if each weekday half-hour forecast
was a random sample from a Gaussian distribution with the same mean µ and
variance σ as the corresponding data2. This provides another benchmarking
test for our models and allows us to identify a priori particular datasets that
would be difficult to forecast. The random forecast will exceed the 5% threshold
less than n times per 48 forecasts (i.e. every 24hrs) if the inequality

2

∫ ∞

1.05µ

1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
dx <

n

48

is satisfied. Since the integral on the left-hand side is a function only of the
parameter combination µ/σ, contours of fixed n correspond to straight lines in
(µ, σ) space.

In Figure 22 contours of fixed n along with the various (µ, σ) pairs for each
weekday half-hour of each dataset are shown. From this figure, it can be seen
that for the hospital (h) and steel (m1) data sets one would expect to exceed the
5% threshold more than 50% of the time. Even in the supermarket datasets,
which are much easier to forecast, one would still expect to exceed the 5%
threshold at least once a day.

2This assumes that the data is well approximated by a Gaussian distribution, which isn’t
necessarily the case, but the approximation is useful to provide insight into the source of the
prediction error
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6. Dispatch verification
The fundamental goal of EirGrid is to verify that dispatch occurred and that the
correct amount of energy was dispatched. The current way of doing this is based
on one day ahead forecasts as described in Section 1.2. DSUs submit a forecast,
and if that forecast adequately remains within the ±5% error bounds then the
prediction is considered accurate. When a dispatch occurs, then verification
that the amount dispatched is correct is easily calculated by subtracting the
actual usage from the forecast usage during the dispatch period.

There are pros and cons of the current dispatch verification method. The
main benefit to EirGrid is that the method inhibits potential gaming by DSUs.
This gaming would be in the form of DSUs increasing their forecast during the
dispatch period, making it appear that they dispatched more than they actually
did.

As it stands, DSUs are required to submit their forecasts at 10a.m. on the
previous day. DSUs are only made aware that they may be required for dispatch
after the forecast has been submitted, in which case it is too late to alter their
forecast.

The downside of the dispatch verification method is the difficulty for DSUs
to give an accurate 48-hour forecast which remains within the ±5% error bounds
all the time. As explained in Section 5.3, most realizable forecasting methods
will fall outside of the error bounds at least once during the forecast period,
causing a DSUs to be flagged. This defeats the purpose of the current system
to flag only DSUs with poor forecasts.

Alternative methods of verifying dispatch are known; for a review see AEIC
(2009). Like the approach of EirGrid, they involve estimating a baseline which
is what the DSU would have used had they not been called for dispatch. The
dispatch is then verified by subtracting the actual use from the baseline.

One of these prediction methods briefly analysed here is the method of proxy
days. Here, the half-hourly loads of a DSU on the dispatch day prior to dispatch
are compared to loads on the same half-hours from previous days. These loads
can be compared using various metrics, but in this case the correlation coefficient
is used. A number of days with the highest correlation coefficients are chosen,
and the average hourly consumption of these days is used to predict what would
have happened during the dispatch period on the dispatch day. Note that
a single proxy day can be chosen by picking only the day with the highest
correlation coefficient.

Results of the Proxy Day formalism indicate that it could be a successful av-
enue to pursue. Figure 23 shows the actual usage of one DSU on 01/02/2012 and
the proxy day and average daily mean prediction. To calculate this proxy day
estimate, the 10 days whose usage correlates best with the usage on 01/02/2012
before 3.00p.m. are chosen. The average demand of the 10 chosen days after
3.00p.m. adjusted so that the average demand at 3.00p.m. exactly matches the
actual demand at that time, is then used as the proxy day forecast for the rest
of the day.

It can be seen that the proxy day forecast generated in this manner lies
within ±5% for 4 hours after the forecast. Recalling that dispatch can last for a
maximum of two hours, this gives the required level of accuracy. Furthermore,
this prediction can be made even more accurate by choosing just the single proxy
day with the highest correlation coefficient (Figure 23). The prediction in this
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Figure 23: Proxy Day forecast (solid red line) made 3.00p.m. using average of
top ten highest correlated proxy days (left) and highest correlated proxy day
(right). The black line is the actual demand. The blue line is the demand for a
half hour period averaged over all the year. The pink line is the average demand
of the proxy day(s) prior to the forecast.

case is remarkably close to the actual usage for four hours after the forecast is
made.

Note however that more detailed analysis is required. Further examination
of the proxy day mechanism must be carried out, including the optimal number
of proxy days to take and the number of hours prior to dispatch that should be
taken to be correlated with other days.
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7. Conclusions, Recommendations and Further
Work

Three of the goals of the proposed project have been achieved. Firstly, models
were built to forecast the usage of DSUs. Secondly, these models were used to
show that the forecasting accuracy decreases as the time horizon of the forecast
increases. Thirdly, it was shown analytically that the natural variability of
usages leads to errors in forecast models that frequently fall outside the ±5%
margin, thus raising doubts of the current prediction flagging system.

A start was also made on alternate methods of dispatch verification. Pro-
visional results on the proxy day method look promising, but further in-depth
examination of this procedure will have to be carried out.

Suggested further work should focus on finding the optimal dispatch verifi-
cation scheme. The current one day ahead forecast system of EirGrid should
be compared to the proxy day and 6-hour rolling forecast methods. The latter
is a method put forward by EirGrid and Electricity Exchange where forecasts
are submitted every half hour on a rolling basis and the forecast time horizon
is six hours. While this method opens the possibility for gaming by DSUs, it
is hoped the short time horizon will give the opportunity for accurate forecast
that are constantly inside the ±5% margin, thus renewing the effectiveness of a
flagging type system.

Recommendations

In this report six different forecasting methods are presented, and their accuracy
is compared using two different error metrics. Due to inherent stochasticity in
demand there is no one forecasting method which is unequivocally best, but the
‘Keep it simple’ weekly and the temperature dependent models are identified as
the most promising models to pursue.

Initial investigations suggest that a ‘proxy day’ mechanism may be preferable
to the current method of verifying that the correct demand reduction takes place.

Ideas for further work

Parameters for the ARIMA and SLR models were obtained using data from
2012. As time goes on this data will become outdated, and hence an area of
further work is to update and refit these models using the most recent data.
The statistical package R, contains a function called auto.arima which fits a
Seasonal ARIMA model automatically. This could provide a fast automatic
approach to fitting a forecast model for new data or new customers. In general,
this approach will not produce as good a fit as a statistician who manually fits a
forecast model. Currently, approximately 1 year’s worth of data is available for
each DSU. When more data becomes available, yearly patterns, e.g., Christmas
could be incorporated.

The correlation analysis in Section 4.1.4 (see further Table 2) showed that
some days are more correlated to the same day the previous week versus the
previous day. An area of future work could be the development of separate
models for different days of the week.

Initial findings indicate that aggregating the 12 supermarkets may give a
more aggregate forecast. However, a larger number of customers is required for
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this analysis to be conclusive.
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8. Appendix

Appendix A: Stochastic DSUs
One of the DSUs in Electricity Exchange’s portfolio is a cement manufacturer.
This DSU has energy consumption patterns that were neither correlated with
time or with weather. This DSU is process driven, where energy demand can
change in jumps by large amounts due to the turning on or off of a process.
The large scale of the demand, between five and twenty MWh every half hour,
also meant that failure to accurately predict this DSU meant that the aggregate
prediction of all DSUs would be affected.
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Figure 24: Left: Time series of the energy demand in kWh of the cement man-
ufacturer taken at half-hour intervals over a period of 27 days. Right: Demand
histogram for the full period of one year.

Figure 24 show the energy demand profile of the cement manufacturer. The
stochasticity of the demand is clear. Large jumps in usage occur which are not
correlated with time. Furthermore, the size of these jumps can be as much as 15
MWh. The usage histogram for the whole year helps to give an insight into this
jumping process. Each data point falls into one of four clusters, which are hereby
referred to as states. These states correspond to low usage (2-6MWh), medium
usage (6-10MWh), high usage (10-15MWh) and very high usage (15-20MWh).

In forecasting ahead, the most important consideration is the state that will
precede the current state, and when this switch will occur. Fluctuations within
each state are of the order 100 kWh, which are insignificant in comparison to
the large jumps between states.

Tables are constructed quantifying the probability of going to a state from
the current state i.e.

p(Xj |Xi) (6)

These give definite behaviour for the low usage and very high usage state.
Medium usage will precede low usage with certainty, while high usage will pre-
cede very high usage with probability 0.96. However, the states following the
medium and high usage states are inconclusive. This problem remains unre-
solved when the previous two or more states are considered, i.e.

p(Xj |Xi, Xk) (7)

While the states following the high or medium states become more predictable,
there is still a significant probability that they will not always go to these states,
thereby removing the possibility of a deterministic model.
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Figure 25: Histogram of the amount of time spent in the low usage state before
switching state.

Further to the issues regarding predictions of preceding states, the time at
which the process switches states is highly variable. The process can remain in
a state for anything between 30-minutes to the order of days. Figure 25 shows
the waiting times in the low state before switching. These values range from
30-minutes to 5 days, and follow an exponential distribution.

The conclusion of the analysis is that the cement manufacturer’s demand
profile cannot be accurately predicted with a deterministic model. Liaison is
required between the manufacturer and Electricity Exchange to provide infor-
mation about exact state switching times. These correspond to the turning on
or off of a process. The inter state behaviour was not examined here, but it is
hypothesized that ARIMA model could be suitable to model this behaviour.
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Appendix B: ARIMA II model

ARIMA II E5%

DSU Mon Tues Wed Thurs Fri Sat Sun
Super 1 0.15 0.25 0.35 0.35 0.60 0.50 0.45
Super 2 0.40 0.30 0.20 0.55 0.70 0.35 0.65
Super 3 0.90 0.90 0.90 0.85 0.65 0.90 0.75
Super 4 0.90 0.80 0.75 0.70 0.70 0.60 0.45
Super 5 0.40 0.35 0.50 0.65 0.75 0.40 0.30
Super 6 0.75 0.45 0.45 0.75 0.80 0.70 0.40
Super 7 0.45 0.60 0.25 0.90 0.85 0.40 0.35
Super 8 0.80 0.65 0.75 0.70 0.70 0.80 0.45
Super 9 0.65 0.55 0.60 0.65 0.55 0.45 0.65
Super 10 0.45 0.50 0.25 0.85 0.50 0.55 0.50
Super 11 0.45 0.55 0.45 0.60 0.65 0.15 0.25
Super 12 0.55 0.45 0.40 0.50 0.55 0.50 0.45

Table 5: The accuracy of the same day previous week model for each DSU under
the E5% metric.

ARIMA II EM

DSU Mon Tues Wed Thurs Fri Sat Sun
Super 1 0.07 0.07 0.07 0.07 0.07 0.07 0.07
Super 2 0.07 0.06 0.05 0.07 0.07 0.06 0.07
Super 3 0.09 0.09 0.08 0.08 0.09 0.07 0.07
Super 4 0.13 0.12 0.11 0.11 0.10 0.09 0.10
Super 5 0.06 0.06 0.06 0.06 0.06 0.05 0.05
Super 6 0.10 0.09 0.08 0.08 0.09 0.10 0.07
Super 7 0.09 0.07 0.07 0.07 0.08 0.08 0.08
Super 8 0.12 0.10 0.09 0.09 0.09 0.08 0.07
Super 9 0.10 0.09 0.24 0.09 0.09 0.08 0.08
Super 10 0.09 0.08 0.07 0.08 0.09 0.08 0.08
Super 11 0.07 0.07 0.07 0.06 0.07 0.06 0.08
Super 12 0.07 0.06 0.19 0.06 0.06 0.06 0.06

Table 6: The accuracy of the same day previous week model and the previous
day model for each DSU under the EM metric.
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Appendix C: Stepwise Linear Regression Model

Predictor i βi ti
1 0.42 336
2 0.23 1008
3 0.19 97
4 0.22 672
5 −0.13 433
6 0.08 239
7 −0.07 912
8 0.05 192

Table 7: Coefficients and lags associated with the Stepwise Linear Regression
(SLR) model for supermarket 2.

Predictor i βi ti
1 0.25 336
2 0.30 97
3 0.10 1007
4 0.10 240
5 0.11 672
6 −0.04 436
7 0.06 192
8 0.08 288
9 0.08 1010
10 0.06 144
11 −0.04 915
12 −0.05 433

Table 8: Coefficients and lags associated with the SLR model for supermarket
3.

Predictor i βi ti
1 0.41 336
2 0.26 97
3 0.18 1008
4 0.06 189
5 −0.15 433
6 0.07 674
7 0.10 144
8 0.07 671

Table 9: Coefficients and lags associated with the SLR model for supermarket
4.
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Predictor i βi ti
1 0.39 336
2 0.20 1008
3 0.19 97
4 0.19 672
5 0.09 190
6 −0.12 433
7 0.05 242

Table 10: Coefficients and lags associated with the SLR model for supermarket
5.

Predictor i βi ti
1 0.31 336
2 0.28 97
3 0.05 1007
4 0.17 672
5 0.10 240
6 −0.11 433
7 0.07 288
8 0.14 1008
9 0.05 668
10 −0.05 864

Table 11: Coefficients and lags associated with the SLR model for supermarket
6.

Predictor i βi ti
1 0.35 336
2 0.20 1008
3 0.27 97
4 0.05 670
5 0.18 240
6 −0.15 432
7 0.16 672
8 −0.05 577
9 0.04 524
10 −0.05 911

Table 12: Coefficients and lags associated with the SLR model for supermarket
7.
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Predictor i βi ti
1 0.31 336
2 0.24 1008
3 0.25 97
4 0.07 239
5 0.11 671
6 −0.09 433
7 0.08 288

Table 13: Coefficients and lags associated with the SLR model for supermarket
8.

Predictor i βi ti
1 0.47 336
2 0.20 1008
3 0.25 97
4 −0.20 433
5 0.09 287
6 0.15 672
7 0.14 148
8 −0.11 820

Table 14: Coefficients and lags associated with the SLR model for supermarket
9.

Predictor i βi ti
1 0.32 336
2 0.26 672
3 0.24 97
4 0.07 1007
5 0.06 191
6 −0.09 768
7 0.09 287
8 −0.08 433
9 0.05 146
10 −0.07 481
11 0.10 1009
12 0.05 383
13 −0.08 337
14 0.05 144

Table 15: Coefficients and lags associated with the SLR model for supermarket
10.
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Predictor i βi ti
1 0.36 336
2 0.15 1008
3 0.21 97
4 0.01 671
5 0.09 240
6 −0.16 433
7 0.12 1010
8 0.06 192
9 −0.06 912
10 0.15 672
11 0.04 812
12 0.06 288
13 −0.04 340

Table 16: Coefficients and lags associated with the SLR model for supermarket
11.

Predictor i βi ti
1 0.48 336
2 0.15 1008
3 0.22 97
4 −0.17 433
5 0.17 671
6 0.11 240
7 −0.07 575
8 0.10 1010
9 0.02 189
10 −0.06 863
11 0.11 192
12 −0.06 529
13 −0.04 341
14 0.06 775
15 −0.03 104

Table 17: Coefficients and lags associated with the SLR model for supermarket
12.
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Predictor i βi ti
1 0.31 336
2 0.22 1008
3 0.24 97
4 −0.02 671
5 0.05 239
6 0.20 672
7 −0.07 769
8 0.03 862
9 −0.09 433
10 0.05 288
11 0.04 480
12 0.04 384

Table 18: Coefficients and lags associated with the SLR model for supermarket
13.

Predictor i βi ti
1 0.31 144
2 0.14 336
3 0.13 1008
4 0.38 97
5 −0.30 145
6 0.13 288
7 0.12 672
8 0.16 240
9 0.06 915
10 −0.09 242
11 −0.05 385

Table 19: Coefficients and lags associated with the SLR model for supermarket
14.
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Predictor i βi ti
1 0.45 336
2 0.22 1008
3 0.05 144
4 0.17 672
5 0.14 97
6 −0.09 433
7 0.12 286
8 −0.08 622
9 0.10 192
10 −0.07 385
11 −0.07 190
12 0.02 909
13 0.02 723

Table 20: Coefficients and lags associated with the SLR model for supermarket
15.

Predictor i βi ti
1 0.38 336
2 0.24 1008
3 0.21 97
4 0.25 672
5 −0.06 434
6 0.12 287
7 −0.09 768
8 0.10 1056
9 −0.11 385
10 −0.05 623
11 0.03 145
12 −0.04 959
13 0.02 862

Table 21: Coefficients and lags associated with the SLR model for supermarket
16.
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Predictor i βi ti
1 0.33 336
2 0.25 1007
3 0.24 672
4 0.30 97
5 −0.16 433
6 −0.11 769
7 0.13 144
8 −0.06 480
9 −0.08 814
10 0.03 290
11 0.07 722
12 −0.07 1057
13 0.05 135
14 −0.12 1096
15 0.06 425
16 0.05 713
17 0.10 1010
18 0.05 959
19 −0.05 628

Table 22: Coefficients and lags associated with the SLR model for the bank.
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Predictor i βi ti
1 0.13 337
2 0.39 97
3 0.07 1005
4 −0.05 433
5 0.02 670
6 −0.07 766
7 0.11 289
8 −0.03 576
9 −0.11 1096
10 0.05 856
11 0.05 1050
12 0.08 130
13 −0.09 558
14 0.09 675
15 0.05 328
16 −0.08 156
17 0.08 1011
18 0.03 214
19 −0.03 422
20 0.08 344
21 −0.07 779
22 0.05 105
23 0.05 504
24 −0.06 446
25 0.10 669
26 0.05 256
27 −0.06 593
28 0.05 836
29 −0.04 799
30 0.05 660
31 0.08 333
32 0.07 114
33 −0.06 162
34 −0.05 406
35 0.03 733

Table 23: Coefficients and lags associated with the SLR model for the steel
company.
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Predictor i βi ti
1 0.30 336
2 0.25 1008
3 0.26 97
4 −0.16 433
5 0.09 293
6 −0.06 821
7 0.09 149
8 0.19 672
9 −0.04 629
10 0.11 165
11 −0.07 837
12 −0.05 486
13 0.07 332
14 0.07 1024
15 −0.07 449
16 0.10 308
17 −0.07 877
18 0.06 208
19 −0.07 644

Table 24: Coefficients and lags associated with the SLR model for the plastic
company.

Predictor i βi ti
1 0.32 336
2 0.27 672
3 0.29 97
4 −0.13 433
5 0.20 1008
6 −0.14 769
7 0.12 191
8 −0.04 863
9 0.12 287
10 −0.11 1096
11 0.09 760
12 −0.07 912
13 0.07 385

Table 25: Coefficients and lags associated with the SLR model for hospital 2.
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Predictor i βi ti
1 0.19 336
2 0.26 1008
3 0.20 672
4 0.05 97
5 −0.08 433
6 0.10 288
7 −0.01 960
8 0.05 335
9 0.05 1057
10 0.15 144
11 −0.12 816
12 −0.05 911
13 0.09 192
14 −0.08 529
15 0.10 337
16 0.05 720
17 −0.04 430
18 0.06 334
19 −0.07 436
20 0.09 99

Table 26: Coefficients and lags associated with the SLR model for hospital 2.
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Appendix D: Pseudocode

# Let yt represent actual demand at time t.
# Let ŷt represent predictions at time t.

ARIMA Model
# Load data for DSU of interest

ŷt =φ1(yt−1 − yt−49) + φ2(yt−2 − yt−50) + φ3(yt−3 − yt−51)

+ εt − ω1εt−1 − θ1(εt−48 − ω1εt−49) + c

# To determine the coefficients φ1 − φ3, θ1, ω1 and c for this type of model
# use Table 1, or else use the R function
#"model=arima(data,order=c(3,0,1),seasonal=list(order=c(0,1,1),period=48))".
# Each εt is determined from the standard normal distribution
# If you wish to develop a new ARIMA model, i.e., one with different
# orders to above, use the R function "auto.arima".
# It may be appropriate to do this for new customers.

ARIMA Weekly Model
# The same as above but if, for example, you’re predicting a Saturday,
# then load data for Saturdays only

KIS Weekly Model
# Load data for DSU of interest
ŷt = yt−336

# For each time point use the previous week’s value
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KIS Median Model
# Load data for DSU of interest
for h = 1 → 48 do

Arrange the values yh+48, yh+96, .., yh+48N in ascending order.
if N is odd then

ŷh = ((n+ 1)/2)th value in this ordered set
end
else

a = ((n+ 1)/2)th value in this ordered set
b = (n/2)th value in this ordered set
ŷh = a+b

2

end
end
# This model uses the median demand, over a number of previous days N ,
# to predict each half-hour time point.

Temperature dependent model
# Load data for DSU of interest.
# Let Tt represent temperature at time t.
# Load temperature data.
ŷt = yt−336 + α(Tt − Tt−336)
# where α is determined using ordinary least squares on all available
historical temperature data, using the ‘polyfit’ or ‘regress’ function in
MATLAB.

Aggregation
# To aggregate forecasts, repeat the above for any of the different formula
# and sum up predictions.

Error metrics
# For more details on error metrics, see Section 4.2.
εt =

|yt−ŷt|
yt

Ft =

{
0 if εt < 0.05

1 if εt ≥ 0.05

# Let N represent number of days

# Eirgrid metric
E5% = 1

48×N

∑48×N
t=1 Ft
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# MAPE metric
EM = 1

48×N

∑48×N
t=1 εt

# Time point average The index h represents half hour period
Mh = 1

N

∑N
i=h εi+48

# Rolling metric Let T represent the length of forecast period
ET

5% = 1
T

∑T
t=1 Ft

Proxy day code
# let ydt be the demand on day d at time t where yd1 is demand at 12:00 AM
# let t = ĥ be the beginning of the dispatch for day D
if dispatch occurs then

# find correlation (rD,d) between actual demand on day D and all days
# from d = 1 to d = D − 1 using time periods from y1 to yĥ−1 only.
for d = 1 → D-1 do

rD,d =

∑ĥ−1
t=1 (y

D
t − yD)(ydt − yd)√∑ĥ−1

t=1 (y
D
t − yD)2

∑ĥ−1
t=1 (y

d
t − yd)2

(8)

end
# yd represents the average demand on day d over the time period
# from t = 1 to t = ĥ− 1.
# The day with the largest correlation (rD,d) is the proxy day.
# There are in built functions in both MATLAB and R to
# calculate Equation 8.

end

Algorithm 1: Pseudocode for algorithms

analyse_all.m

###############################################################

## Data about data

###############################################################

## Names of data files

names={"supermarket1.txt";

"supermarket2.txt";

"bank.txt";

"manufacturing1.txt";

"manufacturing2.txt";

"hospital.txt"};

## Numbers of columns in each file

sizes=[12; 4; 1;1; 1; 2];
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## Output files

tablefile=fopen("fitting.dat","w");

modelfile=fopen("models.dat","w")

## Some constants

day=48; week=7*48; ## Number of half hours in a day and week

N=5000; M=1000; ## Size of datasets to fit

##N=10; M=5;

###############################################################

## Main Program Loops

###############################################################

## Loop over datafiles

for ii=1:length(names)

## load data

filename=names(ii){1};

aaa=load(filename);

## Reverse entries

aaa=aaa(end:-1:1,:);

for jj=1:sizes(ii)

## extract column of data

y=aaa(:,jj);

## Split into parts

## Create matrices to hold data

y1=ones(N,1); xxx1=ones(N,M); ## Model is fitted with this data

y2=ones(N,1); xxx2=ones(N,M); ## Cross validation: goodness of fit

## is calculated with this dataset

y3=ones(N,1); xxx3=ones(N,M); ## Spare.

## Fill matrices

for i=1:N

y1(i,1)=y(3*i-2);

y2(i,1)=y(3*i-1);

y3(i,1)=y(3*i-0);

for j=1:M

xxx1(i,j)=y(3*i-2+2*day+j); ## xxx’s contain data delayed by 2days

xxx2(i,j)=y(3*i-1+2*day+j); ## 2days + 1/2 hour, 2days+2*1/2 hour,

xxx3(i,j)=y(3*i-0+2*day+j); ## ..., 2days+M*half hour. (M

## M is defined above.

endfor

endfor

#################################################################

## Fit model to data by calling code in stepwise_regression.m

#################################################################

stepwise_regression

#################################################################

## Calculate goodness of fit measures

#################################################################

## Fraction of fitted results INSIDE +/-5% envelope

## Note it is fraction of results OUTSIDE envelope written to file.

five_percent=sum((y2fit>0.95*y2).*(y2fit<1.05*y2))/length(y2);

## Mean absolute fractional deviation
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mean_abs=mean(abs(y2fit-y2)./y2);

#################################################################

## Write results to file

#################################################################

fprintf(tablefile,"%20s %3d %f %f\n", filename,jj,1-five_percent,mean_abs)

fprintf(modelfile,"==========================================\n")

fprintf(modelfile,"%s\n",filename)

fprintf(modelfile,"%20s %20s %20s\n", "Coefficient",

"Delay (1/2 hour)", "Delay (day)")

for k=1:length(b)

fprintf(modelfile, "%20.10e %20d %20.6f\n",

b(k),2*day+x_index(k),2+x_index(k)/day)

endfor

endfor

endfor

## Close output files

fclose(tablefile);

fclose(modelfile);
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stepwise_regression.m

xx=xxx1; ## Holds columns not used in the model, initially full

xx_index=1:size(xx)(2); ## Holds indices of columns not used in model

disp("Stepwise linear regression with cross validation")

x=[]; x_index=[]; ## Columns and indices of columns used in model

## initially empty

chi_sq=[];

## Keep fitting as long as fitting extra columns of data

## to dataset 1 yeilds a model which reduces chisq

## for dataset 2.

fitting=true;

while(fitting);

chi_sq_test=[];

for i=1:size(xx)(2)

## Generate a trial model by adding each unused column to the data

## for each trial model calculate fitting parameters and chisq

## using dataset 1

x_trial=[x,xx(:,i)];

a=x_trial\y1;

y1fit=x_trial*a;

this_chi_sq=sum( (y1-y1fit).^2 );

chi_sq_test=[chi_sq_test; this_chi_sq];

##disp([100,i,this_chi_sq])

endfor

## Find the trial model with the lowest chisq

[b,k]=min(chi_sq_test);

## Add the new column of data and its index to the model

x=[x,xx(:,k)]; x_index=[x_index,xx_index(k)];

## Remove the column of data and its index from the unused data arrays

xx(:,k)=[]; xx_index(k)=[];

## Calculate fitting parameters for the new model

b=xxx1(:,x_index)\y1;

## Calculate fitted values anc chisq values for dataset 2

y2fit=xxx2(:,x_index)*b;

this_chi_sq=sum( (y2-y2fit).^2 );

chi_sq=[chi_sq;this_chi_sq];

bounded=sum((y2fit>0.95*y2).*(y2fit<1.05*y2))/length(y2);

disp([chi_sq(end),bounded])

## If the new model has reduced chisq for dataset 2

## carry on fitting

## otherwise set fitting to false to break ot of fitting loop.

if (length(chi_sq)>1)

fitting=(chi_sq(end)<chi_sq(end-1));

endif

50



endwhile

## Remove last index which increased chisq

x_index(end)=[];

## Recalculate model (without discarded last index

b=xxx1(:,x_index)\y1;

y2fit=xxx2(:,x_index)*b;

## Plot results.

plot(y2,y2fit,’r+’,y2,0.95*y2,’b+’,y2,1.05*y2,’b+’)

sum((y2fit>0.95*y2).*(y2fit<1.05*y2))/length(y2)
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