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Executive Summary

It has been observed that hurricanes that are close in time often follow
similar paths. If this can be shown to be statistically significant, it could
have implications for how insurance premiums are calculated in areas of
the US prone to hurricanes.

We developed two independent path distance metrics and while one
suggested that sequential storms within a given hurricane season are
more likely to follow each other than any other pair of storms within
that season, this conclusion was not supported by the other metric.

Some considerations of how local and large scale air pressure gradients
might affect hurricane paths were considered. A point vortex model in
the presence of a steering flow field was developed and used to simulate
the path of two time displaced vortices. In order for the vortices to follow
each other they had to be relatively weak compared to the steering flow
field. At realistic vortex strength, the trajectories became chaotic.

In summary, our metrics provided conflicting evidence towards the no-
tion of hurricane track memory. A large-scale steering flow field did not
appear to provide sufficient explanation for hurricanes following each
other, though this does not preclude hurricane track memory being due
to localised physical changes following a large storm.
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1 Introduction

1.1 Background

(1.1.1) The hurricane seasons of 2004 and 2005 led to extreme losses for the
(re)insurance industry. It appeared as though certain large scale atmo-
spheric structures (such as the ‘Bermuda High’) were steering storms into
the US. If, under some conditions, hurricane tracks are conditional on
either previous hurricanes, or other climate variables this could be very
significant for the insurance industry. It would suggest that storms may
cluster which would lead to a larger variance in financial results than is
typically modelled. If the conditions for clustering are expected to either
be more or less prevalent under a climate changing world again this is
very significant to the insurance industry over the coming decades.

(1.1.2) US landfalling hurricanes result in huge losses to the insurance industry.
For instance, Katrina caused USD 45bn worth of damage in 2005 and
in the same year, Rita caused USD 6bn and Wilma USD 11bn worth.
In 1992, a single hurricane (Andrew) caused USD 22bn and in 2004 a
collection of hurricanes caused USD 25bn worth of damage.

(1.1.3) The insurance industry typically models hurricane arrival rates as a Pois-
son process and this feeds into further modules that compute the 1 in 200
Value at Risk index, i.e. the value that is at risk in a single year with
probability less than 1 in 200.

(1.1.4) Recent storm seasons in the US appear to result in at least some hurricanes
following a similar path. One could think of this as storms having a
property which makes it more likely that further storms will follow in their
wake. If this is indeed the case, then the underlying statistical process
assumed to be generating the storms is not well aligned with what is
actually occurring.

1.2 Problem Statement

(1.2.1) Within a hurricane season is there a tendency, under some conditions, for
groups of hurricane tracks to follow a large scale steering pattern? Can
the steering pattern be identified in some sense?

(1.2.2) What is the unconditional probability a steering pattern will exist in a
given year? Can this probability be made conditional on large scale climate
variables with any skill?
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Category Wind speed
Tropical depression 0-38
Tropical storm 39-73
Cat 1 74-95
Cat 2 96-110
Cat 3 111-130
Cat 4 131-155
Cat 5 156+

Table 1: Saffir-Simpson hurricane scale. Note that wind speed refers to the one-
minute sustained wind speed in knots and that a Tropical Depression is defined as
such only if the wind circulation is closed.

2 Literature and orientation towards the problem

2.1 Some facts about hurricanes

(2.1.1) Hurriances are classified according to the Saffir-Simpson scale, as shown
in Table 1.

(2.1.2) As can be seen, a hurricane is defined as a storm with a sustained wind
speed of 74 knots or higher. Hurricane formation requires a number of
factors: sufficiently warm seas (at least 26.5◦C, to at least a depth of 50m);
high humidity in the low to middle troposphere; Coriolis Force powerful
enough (> 300 miles from equator); low vertical shear (< 22 knots).

(2.1.3) Maximum hurricane windspeed is reasonably well correlated with a low
central pressure, as shown in Figure 1.

(2.1.4) Hurricanes have a very definite season as shown in Figure 2.

2.2 Supporting literature

(2.2.1) There are operational hurricane forecast models using both statistical and
physics-based approaches, see [4].

(2.2.2) The forecasting of where a storm makes landfall is greatly improved by
modelling the hurricane core as an elliptical vortex in a strain field instead
of a point vortex.

(2.2.3) The number of hurricanes that make landfall on US is almost the same
over a long term average (decadal). The North Atlantic Oscillation (NAO,
or Bermuda high) is caused by pressure difference between Iceland and
Azores and is parameterised as the NAO index (the difference in pressure
between Iceland and the Azores). With statistical significance, hurricanes
make landfall South of Florida when the index is less than 0, more often
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Pressure vs Windspeed

Figure 1: Pressure (mBar) vs wind speed (knots) for all hurricanes
in the HURDAT data set (1851-2009). Note the strong correlation,
but further note that the deepest recession ever recorded did not give
rise the the highest wind speed ever recorded.

North of Florida otherwise [1]. Another candidate for long-term atmo-
spheric variations could be the Quasi-biennial oscillation or the El Nino
Southern Oscillation (ENSO).

(2.2.4) Sea surface temperatures, which one would also expect to have a long
coherence time, are an important driver of hurricane intensity. They might
also have an effect on the trajectory, either directly or by influencing the
air pressure and humidity over the sea.

(2.2.5) A review of different atmospheric/hurricane models as they have been
developed between 1998 to 2005 is provided by [2]. Some models concen-
trate on weather conditions (which is not so interesting because this is
a very localised, short term effect for which we have no reliable historic
record). Others concentrate on pressure inside the hurricane, while others
discuss the transition from the uncoupled atmospheric model to the cou-
pled atmospheric model. The discussion of some of the models is rather
specialised.

(2.2.6) The likely path the hurricane will follow is considered by [3] (in the con-
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Month vs Windspeed

Hurricane Season

Figure 2: Maximum sustained storm windspeed recorded by month
(i.e. Jan=1 to Dec=12) for all of the hurricane data in the HURDAT
data set (1851-2009). The solid line shows the threshold point of
74 knots above which a storm is considered to be a hurricane.

text of Pacific cyclones). The authors propose that there are internal and
external factors affecting the path. Internal factors include the speed of
the storm, storm intensity, storm size and the Coriolis parameter. Exter-
nal factors include ambient pressure field and a parameter called surface
friction. Of most interest is the ambient pressure field, as we have access
to reliable data. The proposition is that a hurricane going Westward in
an anti-cyclonic pressure gradient field climbs the high pressure gradient
initially. There is a turning point as the storm crosses a line of equal
latitude with the centre of the pressure gradient, thereafter it starts to
descend the pressure gradient as it continues to track North. However,
the paper details many counter examples where such simple rules are not
followed.

2.3 Possible approaches towards the problem

(2.3.1) This could be approached as a data-driven problem, or by looking at
physical mechanisms that might persist over a hurricane season (or both).

(2.3.2) Weather forecasters can generate a huge range of possible tracks from
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best ensemble forecasts, even for a storm that is currently in existence
with fairly well known atmospheric conditions. The best that forecasters
can currently do is to propose a cone of uncertainty, but it is not to be
supposed that the hurricane is most likely to follow the central path of
that cone. Some of these background hurricane models used by Met Office
are described at [6].

(2.3.3) Vast amounts of data for statistical analysis are readily available from
NOAA’s National Geophysical Data Center [5] and [7]. A useful starting
data set is the HURDAT data set which contains around 40000 samples
of hurricane data since 1851 [8].

(2.3.4) Addressing ourselves to the problem statement (1.2) the first task is to
undertake analysis of the available data (e.g. [8]) to establish whether or
not there is consistent steering patterns within a single season, for at least
some seasons. If such a pattern can be identified, the subsequent task is to
relate seasons with the steering pattern and seasons without this pattern
to explanatory physical atmospheric phenomena.

2.4 Work plan

(2.4.1) Our approach then is to look at historical data in the first instance to see
how much evidence exists for hurricanes creating ‘tracks’ for other hurri-
canes to follow. The first task is to create a definition of ‘track distance’
that is reasonably consistent, so that we can then focus attention on spe-
cific seasons where clumping of hurricane tracks seems to have occurred.

(2.4.2) Using these distance metrics, can we identify storms that are close and
contrast these with storms that are distant from each other? Presuming
that we can identify such tracks, this leads to a number of interesting
follow-on questions.

(2.4.3) Are larger hurricanes more or less likely to follow paths? This is of great
practical importance. If larger hurricanes carve their own path regardless,
then any track following effect will not have a great impact on insurance
losses as smaller storms cause massively less damage than larger ones. On
the other hand if larger storms carve a path that smaller ones follow then
this may compound the disaster of a large hurricane.

(2.4.4) Consideration should also be given to broad isobar landscape. The Met
Service starts with data points over a very non-uniform grid (i.e. collected
by volunteer ships and planes historically, but more recently collected by
satellite). Atmospheric modelling is then used to interpolate this across
a uniform grid. Unfortunately these data are too coarsely sampled to see
hurricanes (the grid spans the entire globe).
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(2.4.5) Of course, isobars vary in three dimensions (although they are usually
only drawn on a 2-d map). Thus isobars define a manifold surface. In
practice, one considers 2-d maps of isobars at different heights. From 2-d
pressure data - can we infer the typical path a hurricane will follow? Can
a geometric analogy be sought, considering areas of high pressure as hills
and low pressure as valleys and thinking of a hurricane following a path
by rolling down the resulting hill, perhaps with a random likelihood of
jumping out of a particular valley?

(2.4.6) Using the closeness measure and the topology suggested by the 2-d pres-
sure data we can check if actual hurricanes in HURDAT ([8]) follow the
‘typical path’ suggested. We can then answer the following related ques-
tions. Which pressure level (if any) tends to drive the storms (e.g. 500
HPa or 750 HPa)? Call this the driving pressure level. Does the driving
pressure level change depending on storm size? Do large storms get driven,
or do they make their own mind up? This point is developed further in
Section 4.1.

(2.4.7) Assume a pair of time sequential storms A and B, where storm B is
generated within m miles of storm A’s track and within w weeks of the
time A was at that point. Does storm B tend to follow the path of
storm A? If so, then is this just the typical path, caused by the driving
pressure, or does hurricane A add steering over and above the ambient
atmosphere? What range of values of m are valid? What range of values
of w are significant?

(2.4.8) The pressure data is in netCDF format. This needs to be converted to a
format suitable for direct use in Matlab, R, etc.

3 Data analysis: finding steering patterns

3.1 Track closeness measures: definition

(3.1.1) The group considered two different ways of computing track difference
between two storms. The first track distance metric, the area ratio metric,
was based on defining an area around each hurricane path and computing
the ratio of the intersecting area to the total combined area swept out by
each storm. The second track distance metric, the absolute area metric,
was based on computing the area (or a proxy for the area) between the
two curves.

(3.1.2) Both metrics rely on some higher order decision making, such as: over
what length do we measure the path length; how do we normalise the
metrics so that long storm paths and short storm paths can be treated in
an equivalent way? If paths diverge dramatically at the end of the path
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period (or converge from distant points to the same path) then this is
interesting behaviour, but our metrics may not distinguish this behaviour
from two storms that seem to behave independently of each other over
their entire length. Additionally, the first metric requires a parameter
definition to convert the 1-d hurricane path into a swept 2-d area.

(3.1.3) The closeness of pairs of storms was measured only between latitudes 20◦

and 40◦ North.

(3.1.4) Not all storms transitted the 20◦ and 40◦ lines of latitude. To prevent
errors or distortions, the area ratio metric excluded such storms from
consideration. In HURDAT, covering the years 1851-2009, there are 76
years in which there is at least one pair of storms measurable by the area
ratio metric. There is a combined total of 259 storms in those years,
leading to 374 possible pairings of storms.

(3.1.5) The absolute area metric considered storms that only partially transited
these latitude boundaries by introducing a normalisation factor, which is
fully described later in bullet point (3.4.3). The absolute area metric could
then consider 156 years in which there is at least one pair of qualifying
storms, leading to 4761 possible pairings over all storms in the HURDAT
data set.

(3.1.6) An improvement on this rather arbitrary latitude bracketing would be to
consider the Caribbean as the start point. East of this area the steering
pattern of the Azores anti-cyclone is the dominant pattern, which will
distort the metric.

(3.1.7) A further consideration for either metric is to consider the pair of hurri-
canes A and B. Suppose hurricane A is long (and occurs at time t), and
hurricane B is short and occurs at time s > t). B’s track follows a portion
of A’s exactly, but they then diverge. We would like to ensure that either
metric considers A and B to be close. This could perhaps be achieved if
we normalise by the length of the shortest path. Currently, neither metric
addresses this problem.

3.2 Area ratio metric

(3.2.1) The area ratio metric defines an epsilon-width buffer region around the
path of each hurricane. For any two hurricanes the area of the buffer region
intersection is calculated. This area is then divided by the combined area
of both buffer regions to give a number between 0 and 1.

(3.2.2) More formally, let two hurricane paths be given as p1(x, y) and p2(x, y).
Let [p(x, y) ± ε] represent the 2-dimensional buffer region defined by two
curves lying either side of p(x, y), a constant distance ε away. Then define
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two area measures based on the intersection and union of the two buffer
regions generated by each pair of hurricane paths,

AN = [p1(x, y)± ε] ∩ [p2(x, y)± ε]
AU = [p1(x, y)± ε] ∪ [p2(x, y)± ε] (1)

The area ratio metric, mA, is computed as

mA = AN/AU (2)

By definition, we see that 0 ≤ mA ≤ 1.

(3.2.3) The main implementation simplification was that the buffer regions were
discretized and interpolated onto a grid, which led to significant coding
problems. In particular, calculating area was done by checking if a point
was in a buffer region, which was defined by two boundary curves. However
due to the interpolation, sometimes these curves were ill-defined, making
this difficult. The solution used was to discretize the curves onto a 10000×
10000 grid, while using a 100×100 grid for the area calculation. The effect
of these simplifications is to introduce some rounding (or quantization)
errors; however it is believed that such errors should be small enough so
as not to effect the results materially.

3.3 Area ratio metric in action

(3.3.1) Application of the metric in the case of hurricanes Rita and Katrina is
shown in Figure 3. Figure 4 shows the actual paths followed by these two
storms.

3.4 Absolute area metric

(3.4.1) A simple area measure can be computed as follows. Define ∆x to be the
longitude difference of two curves at a given latitude, y. An incremental
area ∆A can then be defined between y and y + ∆y as,

∆A = |∆x∆y| (3)

so giving the total area between the curves as our metric,

mB =
∑

∆A (4)

There are several practical implementation problems and solutions dis-
cussed below.

(3.4.2) The data in HURDAT ([8]) are not uniformly sampled, so it is not possi-
ble to compute the metric directly. The solution used was to interpolate
each curves longitude at fixed intervals of latitude yi, {0 < i < n}. In-
terpolation of the longitude for equal intervals of latitude was preferred

8
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Figure 3: Showing the regions of intersection (AN ) in red of the paths
of hurricanes Rita and Katrina, with the green regions displaying the
non-intersecting region AU \AN . The value of the metric in this case
was mA = 0.3289 with ε = 2. The actual paths followed by Rita and
Katrina are shown in Figure 4.

because storms are more likely to be monotic in their procession through
lines of latitude (they frequently double back on lines of equal longitude)
and non-monotonicity introduces errors into the interpolation function.
All such errors (due to non-monotonicity in latitude) are ignored by the
metric, but are not thought to be of great importance to a first order.
Clearly this needs to be fixed at some point, if further use is to be made
of the code.

(3.4.3) As previously described in bullet point (3.1.3), both metrics consider
storms between latitudes 20◦N and 40◦N. The area metric also consid-
ers storms that do not fully transit through these latitudes by dividing
by a normalisation factor, which we now describe. Define x1,2 and y1,2 to
be (respectively) the pairwise longitude and latitude series of the pair of
storms under consideration, lying between 20◦N and 40◦N. The range of
longitude (kx) and latitude (ky) for the storms under consideration is then
given as,

kx = min[max(x1),max(x2)]−max[min(x1),min(x2)]

ky = min[max(y1),max(y2)]−max[min(y1),min(y2)] (5)

The normalisation factor, z, is then computed as,

z =
√
k2x + k2y (6)

9
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Figure 4: The actual paths followed by Rita (crosses) and Katrina
(circles) that are used as inputs to the area ratio metric calculation
of Figure 3.

Effectively, we approximate the valid storm path by a straight line in the
latitude-longitude plane, and divide the area metric by the length of this
line.

3.5 Absolute area metric in action

(3.5.1) Using the absolute area metric (mB) we consider each possible pairing
of storms within a given season. Figure 5 shows the minimum distance
between a pair of storms in each year over the HURDAT data set.

3.6 Metric comparison and sequential storm hypothesis test-
ing

(3.6.1) We compared the storms shown in Table 2. Corresponding plots for two of
these contrasting storms are are shown in Figure 6 (Jeanne and Frances,
mA = 0.0901, mB = 0.76) and Figure 7 (Gustav and Hanna, mA = 0.0,
mB = 5.32).

(3.6.2) Scatterplots of the storm distance are shown for the area ratio metric

10
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Figure 5: Using the absolute area metric mB we consider each possi-
ble pairing of storms within a given season. What is plotted is mB for
the pair of storms within the season that gave the minimum distance
in that year.

Year Storm Pair mA mB

2004 Charlie and Ivan 0.1476 0.96
2004 Jeanne and Frances 0.0901 0.76
2004 Jeanne and Ivan 0.1145 1.61
2005 Katrina and Rita 0.1027 0.67
2008 Gustav and Hanna 0.0 5.32

Table 2: Comparison of some recent storms using the mA and mB metric. Recall
that the mA metric varies between 0 (no match) and 1 (perfect match). The mB is
a distance metric such that mB ≥ 0. A low value of mB is a good match, higher
values indicate more distance curves.

(mA) in Figure 8 and for the absolute area metric (mB) in Figure 9. For
a storm pair to be considered, storms must be within the same season
and the start time of both storms have to be separated by no more than
35 days. (Thirty-five days was chosen somewhat arbitrarily, but seemed
like a reasonable time span within which path memory effects should be

11
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Figure 6: Storms Jeanne (1332) and Frances (1336), following a a
similar path. In this case, mA = 0.0901 and mB = 0.76. For further
comparisons, see Table 2.

apparent.) As can be seen, these scatterplots seem to give little support
to the theory of track memory. However, it must be borne in mind that
there may be a hidden subgroup within this seemingly random pattern,
a subgroup that could be identified by some other measure (e.g. starting
location, or time of year, or wind speed, or some combination of these
properties).

(3.6.3) We tested the hypothesis: H0: Hurricanes are equally likely to be similar
to ANY other hurricane within the season; H1: A hurricane is MORE
likely to be similar to its nearest neighbour (i.e. the hurricane which
immediately precedes or follows it) than it is to other hurricanes within
the season.

(3.6.4) Using the absolute area metric, we reject the null hypothesis H0 at the 99%
level, supporting the theory of hurricane path memory. However, using
the area ratio metric, we accept the null hypothesis with most choices of
parameters.
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Figure 7: Storms Gustav (1401) and Hanna (1402), which are rela-
tively far apart. In this case, mA = 0.0 and mB = 5.32. For further
comparisons, see Table 2.

(3.6.5) In summary, the absolute area metric seems to suggest there is evidence
that sequential hurricanes follow each other within-season over and above
what might be expected by chance, but this is not confirmed by the area
ratio metric.

3.7 Hypothesis testing: details

(3.7.1) The details of how this hypothesis testing was carried out for the mB

metric are as follows. Identify the most similar storms in each season over
the entire data set in HURDAT, so resulting in 76 pairings1. Compute
the total number of possible sequential storm sequences in the data (ks =∑
ni − 1, where n is the number of storms in year i). Further compute

the total possible number of intra-season pairings that can occur (ku =∑
ni(ni − 1)/2!). Compute the probability that a sequential pairing will

arise for the most similar storms in a given season, assuming independence,

1Due to simplifying heuristics in the computation of the mB metric, not all potential pairings
can be considered.
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Figure 8: Scatter plot using the area ratio metric, mA (no storm
pair had a value of greater than 0.35). The x-axis shows the number
of days between the storm pair under consideration.

i.e. pi = ks/ku. Compute the number of times a sequential pairing actually
occurs and divide this by the number of trials (i.e. number of years, 76 in
this case) to get pa.

(3.7.2) For the years 1851-2009 the probability of the most similar storms also be-
ing sequential is pi = 0.2168, assuming independence between the storms.
However, using the absolute area metric (mB) to identify the closest storm
pairing in any season, we find that the actual probability of the closest
storms being sequential is pa = 0.2564.

4 Track modelling: explanations and hypotheses

4.1 Evidence from air pressure data

(4.1.1) In the long list of parameters that are assumed to determine the track of
a hurricane it is commonly assumed that the air pressure plays a major
role. We want to use the available data on the daily air pressure in our
area of interest to investigate this hypothesis and, if valid, detect driving
patterns. Our area of interest is the North Atlantic, between latitudes

14
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Figure 9: Scatter plot using the absolute area metric, mB. The
x-axis shows the number of days between the storm pair under con-
sideration.

20◦ and 40◦, as described in bullet point (3.1.3). A number of research
questions come to mind.

(4.1.2) Can we determine and visualize the pressure that a hurricane experiences
during its journey? In particular: Does the experienced pressure decline
over time?

(4.1.3) Can we determine and visualize the pressure landscape locally around the
hurricane track? In particular: Does the hurricane tend to move locally
in the direction of the lowest pressure?

(4.1.4) Unfortunately there are several issues that complicate the investigation
of the two research questions above. First, hurricanes are 3d-objects and
thus experience several air pressures at the same time. As noted in bullet
point (2.4.6), amongst all of these pressures, we can ask if there is a driving
level (possibly depending on the size of the hurricane). If not, can we then
detect more subtle properties of the pressure field and assess their influence
on the storm track? These other properties might include such things as
the position of the largest pressure gradient with respect to height in the
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vicinity of the storm.

(4.1.5) For the second research question, we also have to take into account that
a moving hurricane has some momentum. So even if a hurricane prefers
areas with a lower pressure, we may not necessarily see a strict decline
of the hurricane’s experienced pressure over time. This phenomena might
be quite apparent if the direction of the steepest decent of the pressure
landscape does not coincide with the direction of the momentum of the
hurricane.

(4.1.6) We can ask similar questions when regarding two hurricanes following a
similar path. Can we compare the experienced pressures of close storms?
Can we compare the pressure landscape of two close storms? Are these
experienced pressures and pressure landscapes similar to each other? If so,
this would strengthen the hypothesis that two hurricanes tend to follow
each other’s path. Interestingly enough, this would allow the following
competing explanations (which could be resolved if we are able to compare
the pressure landscapes of similar storms).

(4.1.7) Perhaps two hurricanes are likely follow each other’s path, because the first
hurricane influences the pressure landscape around its track in a way that
makes it attractive for the second hurricane. Conversely, two hurricanes
may follow each other’s path, because the first hurricane does not influence
the pressure landscape around its track so that the second hurricane finds
a similar pressure landscape and is drawn to this path by the same proceses
as the first hurricane.

(4.1.8) Finally, here are some ideas we were not able to elaborate, because an
algorithm to detect the meeting point and breaking point is yet to be
developed. Are the pressure landscapes of two close hurricanes particularly
similar at the meeting point, that is, the point from which we first consider
their tracks to be close? Conversely, do the pressure landscapes of two
close hurricanes differ significantly at the breaking point, that is, the point
from which the respective tracks of the evolving storms are not considered
close?

4.2 The point vortex model

(4.2.1) The simplest PDE model of large scale atmospheric motion is the barotropic
potential vorticity equation on the β-plane. The β-plane assumes that
the Earth can be modelled as flat with Cartesian coordinates, x and y,
representing the longitudinal and latitudinal coordinates respectively. β
denotes the northwards variation of the Coriolis parameter. The equation
describes the time evolution of a two-dimensional field, ψ(x, y, t), which
should be thought of as modelling the geo-potential averaged in some way
in the vertical direction.
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(4.2.2) The equation reads as follows:

D

D t
[ζ − Fψ − β y] = 0 (7)

(4.2.3) D
D t

represents the advective derivative:

D

D t
=

∂

∂t
+ ux

∂

∂x
+ uy

∂

∂y

where

u(x, y, t) = (ux, uy, 0) =

(
∂ψ

∂y
,−∂ψ

∂x
, 0

)
= ∇× ψ(x, y, t) z (8)

is the geostrophic velocity. This is two-dimensional since all vertical mo-
tions are assumed to have been averaged out in this model.

(4.2.4) ζ = −∇2 ψ is the relative vorticity.

(4.2.5) F controls the amount of vertical vortex stretching due to variations in
the geo-potential. Since the model does not contain vertical motions,
vortex stretching enters the model only through this term which acts as
a source for the ageostrophic velocity which imparts a weak apparent
compressibility to the two-dimensional velocity.

(4.2.6) If we neglect the Earth’s rotation and vortex stretching due to variations
in the geopotential (β = 0 and F = 0) then (7) and (8) become

Dζ

D t
= 0 (9)

u(x, y, t) = ∇× ψ(x, y, t) z

(4.2.7) This is the stream-function formulation of the two-dimensional Euler equa-
tion. The equation says that vorticity is conserved along streamlines of the
fluid flow. If we further assume that the vorticity is entirely supported on
a set of N point vortices located at positions xi(t) = (xi(t), yi(t)) having
strengths (circulations), κi, i = 1 . . . N :

ζ(x, t) =
N∑
i=1

κiδ(x = xi(t)), (10)

then it turns out that (9) are equivalent a set of ordinary differential
equations for the positions of these vortices. These differential equations
describe a Hamiltonian system

κi
dxi
dt

= −dH
dyi

(11)

κi
dyi
dt

=
dH

dxi
(12)

(13)
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where the Hamiltonian is

H = − 1

4π

∑
i6=j

κiκj ln |xi(t)− xj(t)| (14)

(4.2.8) Since we do not have time to make detailed studies of the questions of
whether vortices in the Barotropic Potential Vorticity equation follow each
other we may at least use these equations to study how usual hydrody-
namic vortices interact in the presence of a large scale steering flow.

(4.2.9) We used the point vortices to study how the interactions between pairs of
point vortices can influence their paths in the presence of a dominant large
scale steering flow. From now on we take N = 2. There is no steering flow
in (11) so we impose one by adding some terms to the right hand side.

(4.2.10) Furthermore, we take both vortices to have the same circulation, κ1 =
κ2 = κ. The equations which we solved are then written in complex
coordinates, zi(t) = xi(t) + i yi(t) (i = 1, 2) for brevity,

dz∗1
dt

= − i κ

z1 − z2
− i Vext(z1) (15)

dz∗2
dt

= − i κ

z2 − z1
− i Vext(z2) (16)

where the external steering flow is

Vext(z) =
1

z − a1
+

1

z − a2
. (17)

(4.2.11) Here a1 and a2 are the complex coordinates of the centres of a pair of
steering vortices. We took a1 = 2 and a2 = −2 to produce the large scale
steering flow plotted in Figure 10. The interesting feature is that the flow
has a hyperbolic point at (0, 0). With κ = 0 the point vortices simply
follow the streamlines shown in Figure 10.

(4.2.12) We performed a number of numerical experiments to show how κ 6= 0
affects this passive advection of vortices. Figure 11 shows the tracks of
two vortices having κ = 1 × 10−4 which start from (1.84923,−0.992499)
separated in time by 2.2 time units. In order to gauge the scale, the
circulation of the steering vortices is 1 and the initial spatial separation
corresponding to a delay of 2.2 time units is about 1.4 spatial units. From
the figure, it is clear that both vortices follow essentially the same path
(imposed by the large scale steering flow).

(4.2.13) Figure 12 shows the same situation with the intensity of the point vortices
increased to κ = 5× 10−4. In this case, the two vortices follow each other
for a while but undergo rapid separation as they approach the hyperbolic
point. This is because hyperbolic points can produce large amplification
of small perturbations in trajectories.
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Figure 10: Large scale steering flow within which our simulated
vortices will move.

(4.2.14) The conclusion to be drawn from this simple model is, as one might expect,
that the question of whether vortices follow each other is not straightfor-
ward even in this simplest case. Trajectories which come close to hyper-
bolic points of the steering flow are very difficult to predict.

(4.2.15) Finally, it is worth pointing out that if the intensity of the vortices is
comparable to the intensity of the steering flow, a situation which is closer
to reality, the point vortex model exhibits very complicated trajectories
and is probably chaotic. See Figure 13.

5 Conclusions and next steps

5.1 Conclusions

(5.1.1) In this report, we define two metrics used to assess the closeness of a pair
of curves. We applied these metrics to analysing the hurricane track data
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Figure 11: Two relatively weak vortices (κ = 1e − 4). Both follow
the same track.

in HURDAT and while one metric suggested that sequential hurricane
tracks were much more likely to be closer than non-sequential tracks, this
was not confirmed by the other metric.

(5.1.2) A point vortex model in the presence of a large scale steering field was
developed. This was simulated for the case of two time-sequential vortices.
When the vortices were very weak compared to the steering pattern, they
followed each other. When the vortex strength was increased slightly, but
still significantly below the strength of the steering flow, they followed
each other initially until they reached the hyperbolic point of the steering
flow field, at which stage they diverged. When the vortex strength was
comparable with the strength of the steering flow field (as would be the
case with hurricanes) the trajectories of the vortices within the flow field
appeared to be chaotic.
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Figure 12: Two slightly stronger vortices (κ = 5E− 4). Both follow
the same track, initially, but note deflection near a hyperbolic point.

5.2 Next steps

(5.2.1) We have two metric that disagree about the likelihood of the closest storms
within a single season also being sequential storms. This can be investi-
gated further, and probably resolved quite easily.

(5.2.2) Both curve distance metrics introduced various simplifications in order
that they could be coded and run in the short time available. These
simplifications would need to be examined more carefully, to ensure that
the metrics are behaving in a sensible way.

(5.2.3) Some thought should be given to how we assess confidence in any results. If
we appear to show that track memory effects are real, then how confident
are we in that statement? Given the political nature of this area this
becomes quite important.

(5.2.4) In some cases it is not subsequent storms that follow each other, but
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Figure 13: Trajectories of a pair of vortices having strengths com-
parable to the steering flow. When followed over a long period of
time, it can be seen that the point vortex model exhibits complicated
trajectories and is probably chaotic.

storms that are separated by 2 or 3 others e.g. Katrina and Rita (2005)
were separated, as were Frances and Jeanne (2004). In both cases, they
followed similar paths for a section of their track (in the 2004 case, the
similar trajectory was over land, causing more damage to already weak-
ened structures). The distance metrics and subsequent hypothesis testing
could be modified to include time separation and time dependence of any
observed effect. They could also be modified to include genesis location.
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