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1 Introduction

The background and problem definition were given in the circulated document [1].
The problem was presented by Amir Kayani on Monday 16th April, and the pre-
sentation slides are available at [2]. In essence the problem takes 2 forms. One is
to compare point cloud data with a nominal profile and describe the perturbation
in as concise a way as possible, as consisting of certain bumps, steps and waves. In
the second form, there is no nominal profile, and the aim is to fit a smooth surface
through the point cloud data, and then again describe the residual perturbation
of the data from that surface in a concise way. During the Study Group, we had
very helpful teleconferences with Airbus with David Belfourd (Manufacturing), Nor-
man Wood and Paul Phillips (Aerodynamics), and Richard Burguete (Structural
Mechanics).

2 Wing structure

It is helpful to have in mind the general structure of a wing and of its construction.
The structure is built on the front and rear spars, which are long spanwise beams.
Joining these at fairly regular intervals are the ribs, which are chordwise beams
joining the 2 spars. The outer skin of the upper surface has stringers (spanwise
stiffeners) attached to its underside, and is attached to the ribs and spars at fixing
points (which may be of various kinds depending whether the structure is metal or
composite). Often the outer skin on the upper surface is formed from two parts:
one from the front spar back to the trailing edge, and another (the D-nose) forming
the leading edge which has its own internal stiffener structure (partly visible on
Slide 12 of [2]). There is therefore a join at the front spar between these 2 parts,
and this is one place where a step may occur.

3 Overview of the relevance of this problem

3.1 Laminar flow control

(3.1.1) Airbus wish to have a characterization of the deviation of a wing from
its ideal shape in order to assess whether the wing meets the design re-
quirements. These in turn depend critically on the extent of the chord
over which the boundary layer remains laminar. Anything that affects the
transition of the boundary layer to turbulence is important. Things that
affect that transition are both static and dynamic. The static features are
shape perturbations from ideal, and in particular

(a) roughness on the aerofoil surfaces (even roughness of the order of 1µ
could be significant for this),

(b) discontinuities of curvature in the surface.

The main dynamic mechanisms that can initiate the transition to turbu-
lence are believed to include at least:
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(a) free stream turbulence (though this is expected to be small at cruise
altitudes),

(b) noise and vibration: this includes not only the passive elastic re-
sponse of the wing to the engine noise and structural forcing, but also
flutter, i.e. effects involving the aeroelastic feedback loop in which
the elastic structural deformation affects the aerodynamic flow.

The interaction of the perturbations to wing shape with these unsteady
terms may initiate cross-flow instabilities (on a swept wing), and Tollmien-
Schlichting (TS) waves, and either of these will generally lead to the tran-
sition to turbulence in the boundary layer. The processes by which small
amplitude disturbances enter the boundary layer are called receptivity,
and the subsequent processes by which they grow are both linear and
nonlinear. There is a current (2011–2016) major EPSRC-funded research
programme entitled “LFC-UK: Development of Underpinning Technology
for Laminar Flow Control” at Imperial College, and the last of the 6 ma-
jor hurdles it aims to address is “How can we quantify the manufacturing
tolerances, such as say surface waviness or bumps, needed to maintain lam-
inar flow ?” Clearly it is important for Airbus to follow and participate
in the progress of this research programme. For TS waves, the receptiv-
ity of the boundary layer is determined by the local Fourier transform of
the deviation of the surface from ideal. At different parts of the profile,
different parts of the Fourier spectrum are important.

(3.1.2) There is also research being carried out as part of the Clean Sky Joint
Undertaking, [5], and the Topic Description document gives full details of
its aims in this area.

(3.1.3) A further cause of surface features in practice is the build-up of squashed
insects on the aerofoils. There have apparently been various attempts to
design insect-proof surfaces to avoid this problem.

(3.1.4) The wing is not a rigid body. In particular it is subject to at least

(a) structural vibration,

(b) thermal stresses,

(c) the weight of the wing and fuel and aerodynamic loading.

The first of these has already been mentioned as a possible contributory
effect to the transition to turbulence. Thermal stresses were mentioned
by Airbus in a teleconference as a contributory effect to twist of the wing.
The weight and aerodynamic loading will produce large length-scale de-
formations such as bending and twisting of the wing. Such deformations
are then likely to alter the amplitudes of any waviness structures within
the wing perturbation. Since the wing is designed to be light for the
load it supports, and these structures are made up of very thin panels,
the possibility of out-of-surface deformation of the wing panels has to be
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considered. In some designs this is avoided: in others, some panels are de-
signed with the view that at high loads some panels may begin to deform
in a direction normal to the surface (in the sense that the compressive
load is taken by other panels). These structural considerations are one of
the reasons why waviness deviations are required to be characterized.

3.2 Sampling rates

(3.2.1) Airbus are open to the fact that measurements to detect features of differ-
ent in-surface wavelengths require different in-surface sampling rates. It is
accepted that some areas of the wing may need to be scanned at different
rates from others.

3.3 Measurement process

(3.3.1) The measurement process can be carried out in various ways. One method
used is by an optical method that covers the surface by snapshots, each of
about 400mm×400mm. Each snapshot produces a set of (x, y, z) points
with some approximate regularity to it, but with irregularity of detail
that is visible on closer inspection. The successive snapshots, and the
movements of the scanner, are then combined together to produce an
(x, y, z) point cloud over the whole surface.

(3.3.2) The example point cloud dataset provided by Airbus is that illustrated in
Slide 16 of [2]. It consists of 1514039 (x, y, z) points, covering Area 6 of
a particular scan (but not that shown in Slides 10–11 of [2]). The points
in the (x, y)-plane are shown in Figure 1, and the subsection −500 < x <
490,−500 < y < 490 is shown in Figure 2 to illustrate the way the points
are approximately regularly spaced, but with visible departures from exact
regularity.

4 Geometric approaches

In this section we shall describe some of the different geometric approaches to the
problem of decomposing the shape perturbation into bumps, edges, and waves.

4.1 Unwrapping

(4.1.1) Some approaches to analysing surface deviations can work directly on
the curved surface itself, but for most of our work we assume that the
deviations can be regarded as a function w(u, v) of 2 variables, giving
the perpendicular deviation w of the surface from its ideal position, as a
function of two in-surface coordinates (u, v).
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Figure 1: Region of the (x, y)-plane covered by the point cloud data

(4.1.2) To show how this could (in principle) be computed, suppose that the
design shape of the wing is a function φ(u, v) taking a certain region of
the (u, v) plane into the 3D shape in (x, y, z)-space. At the point φ(u, v)
on the surface, there is a unit normal n(u, v), and we now extend the
mapping φ to take (u, v, w) into (x, y, z)-space by

(x, y, z) = φext(u, v, w) = φ(u, v) + wn(u, v). (1)

Provided that |w| is less than the radius of curvature of the surface ev-
erywhere, this map remains 1-1, and we assume that the point cloud
measurements are within the region that is covered in this 1-1 way. (Any
failure of this would either indicate some gross artefact on the surface, or
some defect in the measurement system.) The point cloud data can then
be “unwrapped” back to (u, v, w)-space by φ−1

ext to provide a point cloud
where we are looking for deviations of w from zero, rather then deviations
of (x, y, z) from the design surface defined by φ.

(4.1.3) An equivalent way to define this inverse mapping is that (u, v) are chosen
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Figure 2: Enlarged view of the region −500 < x < −490,−500 <

y < −490 showing the approximate regularity of the point cloud.

to be the parameters of the point φ(u, v) on the surface that is closest to
(x, y, z), and then w is defined by (1).

(4.1.4) Not having the details of the CAD packages used, we do not know how easy
or difficult this unwrapping might be in practice. If the surface is given
analytically then finding the parameters of the closest point to (x, y, z) is a
minimization. But after this has been done for one point and then u, v, w
found by (1), we would expect that subsequent points can be processed as
small perturbations, solving (1) by (say) Newton iteration using (u, v, w)
from a nearby (x, y, z) point as starting values.

(4.1.5) If instead there is a CAD description of the surface, then it presumably
consists internally of some patchwise polynomial parameterization of the
surface. So it would be necessary to put together the local parameters of
each patch into a global (u, v) system first, and then proceed roughly as
stated above, but with perhaps extra care near the boundaries and corners
of the patches.
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5 Projection onto basis functions

5.1 Introduction

(5.1.1) This method was applied to the data after the unwrapping process, or
inverse map of the design intent. The basic idea is to build a set of
vectors, B, or fault vectors, that represent the faults we wish to find, then
“project” the unwrapped data onto these fault vectors in B. Then from
looking at the coefficients of this “projection” we choose only a few of
the most important vectors. Finally we re-project the original unwrapped
data onto these important vectors from B. Hopefully at this point we will
have a good representation of the wing along with the information of what
and where are the faults.

(5.1.2) Now we will carefully explain the steps of this method for a slice of data,
a 1D curve. It is possible that to apply the above to the full 2D surface
wing could be infeasible: however if describing the faults on an arbitrary
slice is well resolved then it should be rather straightforward to join these
slices to describe the total wing Faults.

Figure 3: Example: wing design intent and the measurement of the
manufactured wing: they are almost indistinguishable.

(5.1.3) To design these fault vectors we need to first recognize what the faults will
look like after the unwrapping. If the wing was produced with no flaws
whatsoever the unwrapped data slice, to be referred to as data from now
on, would be a straight line. For example if two plates were joined together
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Figure 4: The corresponding unwrapped design intent and the mea-
sured wing.

with a slight error, but both were angled correctly, then the unwrapping
of this data would produce a step as in Figure 4 below.

(5.1.4) The fluctuations from an exact step are due to errors in the measurement,
which at times can be on the same scale as the fault we wish to find. To
locate this step we construct a discrete basis for all possible steps and
then project the data onto these steps. An example of a few of these basis
elements can be seen in Figure 5.

(5.1.5) Mathematically speaking, each discrete step will be represented by bn
0 , a

vector in R
N (where N is the number of points in the data slice) defined

by

bn0 (m) :=

{

c0 if m ≥ n,

0 if m < n,
(2)

where c0 is a constant that will be chosen later. Let f represent the data.
Then we wish to find αn

0 ’s to solve the problem:

min
αn

0

F (α1

0, α
2

0, . . . , α
N
0 ), (3)

where F = ‖f −
N
∑

n=0

αn
0b

n
0‖ and N = number of data points.

(5.1.6) This is accomplished by finding the critical point, i.e.finding the αn
0 ’s such
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Figure 5: Step vectors with different starting positions.

that
∂F

∂αn
0

= 0, for every n from 1 to N . (4)

Then we say that
∑

n α
n
0b

n
0 is the projection of f onto the step vectors.

(5.1.7) See Figure 6 for an example of the αn
0 ’s distribution for the fault in Fig-

ure 4. Clearly in this case the most relevant coefficient is α
N/2
0 ≈ 0.027.

This corresponds to a step that starts at x = 2, so we choose only this
coefficient and plot α

N/2
0 b

N/2
0 with the original fault resulting in Figure 7.

(5.1.8) Note that, for this example, if we were to remove the errors of the mea-
surement and compare the real fault with the projection of the measured
fault they would be almost identical. That is, by taking only the most rel-
evant coefficients of the projection we somewhat ignore the measurement
errors.
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Figure 6: The value of the vector αn
0 . The x-axis is labelled with

the step position corresponding to n.

Figure 7: The projection of the measured fault compared with the
measured fault itself.

5.2 The Minimal Projection Method

(5.2.1) To begin describing this method we present all the basis vectors which will
be used in this projection method. To do so, let the slice be composed of
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the N points {(x1, f(x1)), . . . , (xN , f(xN))} = (x, f(x)). Then the order-k
fault vector starting at xn is defined by

bn
k(m) :=

{

ck(xm − xn)
k if m ≥ n,

0 if m < n,
(5)

where ck is such that ‖b
N/2
k ‖ = 1.

(5.2.2) Later on we shall see that ck must be a constant so as to accurately locate
the position of the faults. It will be a result of all the fault vectors of
order-k having the same growth from their “starting” point: for example
the step vectors will have the same height. For the record, ck will be the
typical L2 norm of the vector

ck(m) :=

{

(xm − xN/2)
k if m ≥ N/2,

0 if m < N/2.
(6)

(5.2.3) Given these vectors, one may deduce from the introduction the following
method: project the data onto step vectors, then choose only the most
relevant coefficients βn

0 ’s, store them and let p0 ←
∑

n β
n
0b

n
0 , then remove

this projection from the data f ← f−p0. Now again project this remainder
data f onto the fault vectors of order-1, the line basis, choose only the
most relevant coefficients βn

1 ’s, store them and so on.

(5.2.4) At the end of this process all you need do is consult the coefficients βn
k ’s

to find what faults are present and their location. The major flaw in this
method lies in attempting to define carefully “the most relevant coeffi-
cient”, for the bn

k ’s are not linearly independent1, so the same fault will
be clearly detected by different order fault vectors. It would then be un-
clear what criteria we could use to determine if a coefficient αn

k is relevant
enough.

(5.2.5) Another crucial feature is that we want the least number of coefficients
to characterize the faults. To summarize, we want to represent the data
in terms of all these basis vectors while choosing only the most relevant
coefficients. Mathematically speaking, we want to find αn

k ’s such that,

min
αn

k

F (α1

0, α
2

0, . . . , α
N
K),

where F (α1

0, α
2

0, . . . , α
N
K) = ‖

N
∑

n=1

K
∑

k=0

αn
kb

n
k − f‖

2 + ω‖
N
∑

n=1

K
∑

k=0

αn
k‖

2

where ω is a weight that can be chosen. This is, in effect, a Tychonov
regularization of the problem, with ω as the regularization parameter.

1If we use basis vectors for k = 0, 1, 2, 3, 4, that would give us 5N fault vectors to represent an
N -dimensional space.
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(5.2.6) To minimize, we equate
∂F

∂αj
i

= 0

for every appropriate i and j, resulting in

∂F

∂αj
i

= < b
j
i ,

N
∑

n=1

K
∑

k=0

αn
kb

n
k − f > +ωαj

i = 0 =⇒

N
∑

n=1

K
∑

k=0

(

ωδikδ
jn+ < b

j
i ,b

n
k >

)

αn
k =< b

j
i , f >, (7)

where δik = 1 if i = k and zero otherwise, δjn = 1 if j = n and zero
otherwise. If we denote

α = (α1

0, α
2

0, . . . , α
N
0 , α

1

1, α
2

1, . . . , α
N
1 , α

1

2, . . . , α
N
K)

T ,

then equation (7) can be rewritten as a matrix equation,

(

BTB+ ωI
)

α = BTf, (8)

where,

B =
(

b1
0 b2

0 . . . bN
0 b1

1 b2
1 . . . bN

1 b1
2 . . . bN

K

)

, (9)

and I is a KN -dimensional identity matrix. Note that if ω > 0 then
BTB+ωI is invertible sinceBTB is certainly positive semi-definite. Hence,

α =
(

BTB+ ωI
)

−1
BTf. (10)

(5.2.7) If B’s columns were composed only of fault vectors of order-k and ω = 0,
then the above formula would give the coefficients for the projection of
the data onto the order-k fault vectors.

(5.2.8) Let us examine the distribution of the αj
i ’s for the data given in Figure 8.

Using equation (10) we can find α, shown in Figure 9.

Note that the the same fault vectors perceive the same events. Now we
choose the most representative coefficients to be the largest local maximum
of |α|, the absolute value of the components of the coefficient vector α.
This is done separately for the coefficients of each fault vector order. Then
we project the data onto the fault vectors of these coefficients. Note, if
ck’s in equations (5) were not constants then the critical points in Figure 9
would be dislocated and would not represent the position of the fault. The
result, which we call the reconstructed fault is shown in Figure 10 below.
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Figure 8: A Fault example.

(5.2.9) When measurement errors are present it is necessary to use higher order
fault vectors, defined in equations (5), to obtain better results. Figure 11
shows an example of a reconstructed fault where the data include mea-
surement errors. When dealing with measurement errors possibly the best
procedure would be to smooth the data, though we can apply the method
directly to the data.

(5.2.10) For the minimal projection method presented below let,

K be the largest order fault vector defined by equations (5),

Mk be the number of representative coefficients for the fault vectors of order-k,

|αk| = (|α1

k|, |α
2

k|, . . . , |α
N
k |),

then the method is illustrated by the algorithm below:

Minimal Projection Method

1. Choose K.
2. Choose each Mk for k from 1 to K.
3. For data f use equation (10) to obtain α.
4. Let βk be the Mk largest local maximum of |αk| .
5. Let Pf be the Projection of f onto the fault vectors of all the βk’s.
6. Check that Pf accurately approximates f , if not increase the Mk’s

that need more representatives and go back to item 4.
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Figure 9: Step and line fault coefficients. The line coefficients have
been multiplied by 20 to make them visible on the same scale as the
step coefficients.
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Figure 10: Fault and reconstructed fault.

Figure 11: Fault with measurement errors and reconstructed fault.
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5.3 Example of Application

(5.3.1) With the help of Dr. Richard Burguete we designed some synthetic data
that is closer to the scales and possible events that occur on a slice of
measured data from a wing. The chosen data imitates a bolt head, a
wave and a misaligned plate see Figure 12. If we consider the extension
of this slice to be 40 cm then: the bolt head protrudes 0.04mm above the
plate, the wave’s amplitude is 0.04mm and the plates are misaligned by
0.027mm. We have used only 1500 points on the slice so that there are
10 measured points on the bolt’s head.

Figure 12: Synthetic data with a bolt head, a wave and a misalign-
ment of two plates.

(5.3.2) We have modelled the measurement errors by Gaussian white noise with
an average amplitude equal to a third of the bolt head height. Now we
apply the minimal projection method to this data, that contains the mea-
surement errors, using fault vectors up to order-5, defined by equations (5),
and choose the 5 most representative coefficients for each order of fault
vector, i.e. M0 =M1 =M2 =M3 =M4 =M5 = 5.

(5.3.3) We compare the output of the method (reconstructed data), the data and
the original fault in Figure 13 and onwards.

15



ESGI

Figure 13: The green line is the fault, the blue is the measured data
and red the output of the method.

Figure 14: Close-up of wave.
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Figure 15: Close-up of bolt.

Figure 16: The misalignment.
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Figure 17: Close-up of the misalignment.

(5.3.4) We feel that this minimal projection method works very well and we pre-
dict it would have better results if the measured data was to be treated to
smooth these error measurements. Another possible method is to project
the data onto the fault vector of different orders, one-by-one, record all
the local minimums and maximums of the coefficients αk

n’s called β, then
finally project the data onto the fault vectors of all coefficients in β.

6 Wavelets

6.1 Introduction

(6.1.1) The Fourier transform is a powerful tool in providing information about
the frequencies of a signal, but it is not able to return the time interval
where these frequency components exist. Hence, the Fourier transform
is not well suited to analyse a signal that has time-varying frequency
content. (In the context of the Airbus problem, we are of course thinking
of a function of 2-dimensional space rather than a function of time, but
we shall use the time-frequency terminology here and leave the reader to
make the analogy with space-wavenumber.)

(6.1.2) The short-term Fourier transform tries to remedy this problem by dividing
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the signal into small segments, where these segments are assumed to be
stationary, then introducing a window function with width equal to the
length of the segment. One can take the Fourier transform of the convolu-
tion between the signal and the window function to obtain the frequency
components of that segment. The window is then shifted along and the
previous step is repeated.

(6.1.3) Due to the Heisenberg Uncertainty Principle, one cannot know the exact
time-frequency representation of the signal. The problem with the short-
term Fourier transform is that the width of the window function is fixed,
which results in poorer frequency resolution, i.e., we only gain informa-
tion about a band of frequencies that exist. Wider windows might achieve
better frequency resolution, but they may violate the stationarity condi-
tion we assume that the signal possesses. This can be summarised as the
following dilemma:

• a window of infinite length, which is equivalent to the usual Fourier
transform, gives perfect frequency resolution, but no time resolution;

• narrower windows give better time resolution but poorer frequency
resolution.

(6.1.4) Wavelets and Multiresolution analysis analyse the signal at different fre-
quencies with different resolutions, in particular they obtain

• good time resolution and poor frequency resolution at high frequen-
cies;

• poor time resolution and good frequency resolution at low frequen-
cies;

(6.1.5) The wavelet transform is developed as an alternative to the short-term
Fourier transform to overcome the resolution problem. The wavelet anal-
ysis is done in a similar fashion to the short-term Fourier transform anal-
ysis, in the sense that the signal is convolved with a function and the
wavelet transform is calculated separately for different segments of the
signal. The two main differences between the wavelet transform and the
short-term Fourier transform are

• the Fourier transform of the convolution is not taken;

• the width of the window is changed as the transform is computed
for every spectral component.

(6.1.6) Starting off with a fundamental function ψ, which is often called the
“mother wavelet”, the wavelet transform involves taking the convolution
of the signal S and translated/scaled versions of the mother wavelet ψ.
“Translated” relates to shifting the window through the signal, which cor-
responds to the time information and “Scaled” corresponds to the level
of detail. High scales (or low frequencies) correspond to a non-detailed
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global view of the signal and low scales (or high frequencies) correspond
to a detailed view of the signal.

(6.1.7) At the most basic level, the signal S is passed through two complementary
filters and emerges as two signals: The high frequency components are
encompassed in the Details and the low frequencies are summarised in
the Approximation. However, in passing through these filters we gain
twice as many sample points. Thus the next step is to downsample and
throw away every second data point. This is illustrated in Figure 1.

Figure 1: Wavelet Decomposition Diagram

(6.1.8) The filters used in the above decomposition usually arise from a family
of wavelet functions. Two common wavelet families are the Haar wavelet
(Figure 2) and the Daubechies family (Figure 3).

Figure 2: Haar wavelet
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Figure 3: Daubechies family of wavelets

(6.1.9) In passing the signal through a highpass filter, the Detail part of the de-
composition only contains the upper half of frequency band of the original
signal, hence the frequency resolution is doubled, but the downsampling
procedure halves the time resolution.

(6.1.10) One can repeat the decomposition on the Approximation segment of the
signal to build a multi-level analysis (Figure 4).

Figure 4: Multi-level analysis

6.2 Application

(6.2.1) Our first investigation into the application of wavelets to Airbus’ problem
is to distinguish the various types of defects that can arise during manu-
facture. We test the method on an artificial data set that consists of steps,
jumps in the gradient and in curvature. The data set is shown in Figure
5 and it consists of steps at x = −0.75, x = 0.5, jumps in the gradient at
x = −0.25, x = 0 and a jump in the curvature at x = 0.25. (We include
this jump in curvature because of the importance of such jumps for the

21



ESGI

aerodynamics as we mentioned earlier.) We use the wavemenu package
available in Matlab to analyse this data set with a 10-level decomposition
using the Daubechies-8 wavelet. Since we are only interested in the loca-
tion of defects, which compose the high frequency part of the signal, we
focus our attention on the Details (D1-D10).

Figure 5: Artificial data for defect identification

(6.2.2) The result is shown in Figure 6 and we observe that the steps are the most
prominent, followed by the jump in gradient. At first glance it appears
that the high frequency components are not able to pick out the jump in
curvature, but in Figure 7 we see that the jump in curvature has a much
smaller size ∼ 10−5 compared to the jump in gradient ∼ 10−3 and the
steps ∼ 10−1.

(6.2.3) This is mainly because the defect in curvature is smoother than either of
the first two kinds of defect and hence will have a less prominent signature
than the other two. It is currently unknown if there is a robust method of
identifying curvature defects in an arbitrary slice of data. One way to spot
them is to systematically identify and remove the largest signature from
the data, then apply the same wavelet analysis to find and remove the next
largest signature, and so on. Eventually the signature of the curvature
defects will show up once all other prominent defects are identified and
removed.

(6.2.4) Finally we note that the size of the defect has a positive effect on the size
of the signature, as observed in Figure 6 where the smaller step at x = 0.5
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Figure 6: Wavelet decomposition of artificial data

Figure 7: Zoomed-in view of D5
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has a smaller signature than the larger step at x = −0.75.

(6.2.5) Next we apply the wavelet method to a piece of data that has steps at
x = −1.5, x = −0.1548, and x = 0.5, plotted in Figure 8. The step at
x = −1.5 is 5 times smaller than the steps at x = −0.1548 and x = 0.5.
We introduce a certain level of noise into the data and observe how well the
wavelet method is suited to picking up these defects in the presence of noise
(which would correspond to measurement noise in Airbus’ application).
We recover the spatial locations of these steps using 2-level decomposition
with the Daubechies-2 wavelet in the absence of noise (not shown). Let
h denote the height of the step at x = −1.5: our specification of noise
level will be in terms of h, i.e.a noise level of 0.1h indicates that the data
fluctuates with magnitude equal to 10% of h.

Figure 8: Artificial data to test robustness of wavelet method in presence of noise

(6.2.6) We observed that with a noise level of 0.3h, we cannot differentiate be-
tween the noise and the first step at x = −1.5 using 2-level Daubechies-2
wavelet decomposition, neither does increasing the number of levels (with
Daubechies-2) nor using a higher Daubechies wavelet (with 2-levels) have
any significant effect in picking out this step. Only when increasing the
number of levels and using a higher Daubechies wavelet (6-level with
Daubechies-6 decomposition) do we pick out the location of this step (Fig-
ure 9 at D6). If we increase the noise to 0.5h then the step cannot be
differentiated from the noise even with the highest level of decomposition
and the highest Daubechies wavelet available in Matlab.

(6.2.7) To summarise

• The wavelet transform provides an alternative approach to analyse
data containing various kinds of defects. It is able to pick out steps,
jumps in gradient and jumps in curvature in the absence of noise.

• The signature of the defects depends on their smoothness and their
sizes. Steps and jumps in gradient can be picked out much more
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Figure 9: 6-level Daubechies-6 decomposition of data with 0.3h levels of noise

easily than jumps in curvature. Bigger steps can be picked out more
easily than smaller steps.

• There is currently no robust method to identify all types of defect
in an arbitrary piece of data. From these initial tests, the jumps in
gradient will have a signature of order 10−5, the jumps in gradient
will have a signature of order 10−3 and the steps will have signature
of order 10−1.

• In the presence of sufficiently low levels of noise, the wavelet method
is able to pick out the location of the steps.

We refer to [6], [7], [9] and [8] for a concise introduction to the theory and
applications of wavelets. For surface defect detection by wavelet analysis,
we refer the reader to [3].

6.3 Compressed sensing-style approach

(6.3.1) Compressed sensing is based on the idea that a function can often be
approximately expressed in terms of far fewer parameters than would be
needed to specify the whole function, i.e. that the function has a repre-
sentation that is sparse when expressed in the right form. In compressed
sensing this idea is used to measure an image with fewer measurements
than the full image, and one of the uses of this is to provide a compressed
form of the image that will, for instance, use less bandwidth in transmis-
sion.
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7 Radial Basis Functions

7.1 Transforming the Problem to Interpolation or Approx-

imation

(7.1.1) As pointed out by Wendland in the first chapter of his book Scattered

Data Approximation [10], surface reconstruction, especially the implicit

reconstruction of a surface through point cloud data, has been one of
the main motivations driving the development of Radial Basis Functions
(RBFs). In this section, we will first regard the original problem from
Airbus as a problem of surface reconstruction from point cloud data, then
transform it to an interpolation or approximation problem, and finally
discuss how the transformed problem can be solved by RBFs.

(7.1.2) The description of a surface can be either explicit or implicit. An explicit
(i.e. parameterized) surface can be represented as the graph of a function
f : Ω → R defined on some region Ω ⊆ R

d, where d is usually 2. In
our problem, if we divide the wing surface into different patches, then on
each patch we want to find a function f (i.e. a parameterization) to match
the given point cloud data. Thus the original problem reduces to a 2-D
interpolation or approximation problem on an irregular mesh: given data
sites {(xj , yj)} ∈ R

2, j = 1, 2, ..., N (which are the x,y-coordinates of the
data points), and the corresponding data values {zj} ∈ R, j = 1, 2, ..., N
(which are the z-coordinates of the data points), we want to find a function
f : R2 → R which interpolates the data: f(xj, yj) = zj, j = 1, 2, ..., N ,
or approximates the data: f(xj, yj) ≈ zj. The latter case is particularly
important if the data contain noise, and we could specify a certain norm
or semi-norm to specify how the approximation is to be quantified.

(7.1.3) Before introducing the concept of RBFs and how they deal with the above
problem, we shall also formulate the problem of implicit reconstruction of
a orientable surface. Instead of dividing the surface into several patches
and finding a parameterization for each patch of the surface, the implicit
approach tries to describe the surface S as the zero-level set of a single
function F , i.e. S = {x ∈ Ω : F (x) = 0}. The function F could give
a measure of how far away a point is from the surface, and changing F
describes the deformation of the surface. Also, the way to generate meshes
from this implicit representation has been well discussed. (See [11], [12],
and the related software found on their website.)

(7.1.4) Returning to our problem, what we have is the point cloud data xj ∈
R

3, j = 1, 2, ..., N , and what we want is an approximate function s : R3 →
R satisfying s(xj) = 0 for all xj. Obviously this condition alone does not
suffice to determine an accurate approximation to the surface, since the
zero function satisfies them. One common remedy for this problem is to
add additional off-surface points; and one way to do this is to compute
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the approximate surface normal at each point from a few of its nearest
neighbours, and then for each point and its (approximated) surface nor-
mal, add two off-surface points, one outside the surface, and the other
inside the surface, and then specify the s-values at these two off-surface
points to be the signed distance function (positive outside the surface and
negative inside).

(7.1.5) This idea of computing and orienting surface normals goes back to Hoppe
[13], [14], and has been successfully combined with RBFs to deal with
implicit surface reconstruction problems, see [15], [16].

(7.1.6) After adding those off-surface points, we denote the set of all these data
points by yj ∈ R

3, j = 1, 2, ..., 3N , and the problem is to find s : R3 → R

satisfying s(yj) = dj for all yj, where dj is the corresponding signed
distance, positive outside the surface, negative inside, and zero on the
surface. In other words, the implicit reconstruction of the surface also
turns out to be an interpolation or approximation problem through point
cloud data, except that these scattered points lie in 3-D.

(7.1.7) Both the explicit and implicit reconstruction problems can be dealt with
by radial basis functions in the same framework since they each reduce to
interpolation or approximation problems through scattered data points.

7.2 Solving the Interpolation Problem by RBFs

(7.2.1) A radial basis function is a function only dependent on the distance from
a certain central point, i.e. of the form φ(‖x−c‖); here c ∈ R

d is a known
central point, x ∈ R

d is the variable of the function, ‖ · ‖ is the 2-norm
in R

d, and φ is a function from R to R. By the definition of the radial
basis function, the univariate function φ : R→ R actually determines the
multivariant basis function provided that we have specified the central
point. Generally there are two types of radial basis functions, or two
kinds of φ. One is compactly supported, which means φ is non-zero only
in a closed interval and the resulting basis function is non-zero only on a
closed ball in R

d. An example would be

φ(x) = (1− x)+ =

{

1− x for 1− x ≥ 0;
0 for 1− x < 0.

(11)

The other type of RBF has global support, i.e. φ could be non-zero on the
whole of R, for example (see [16]) the thin-plate spline φ(r) = r2 log(r),
and the biharmonic splines φ(r) = r. Both types of RBFs have their prac-
tical uses in surface reconstruction: [16] uses globally supported RBFs,
while [15] uses compactly supported RBFs to reconstruct surfaces. As
we shall see, compactly supported RBFs will result a sparse linear sys-
tem which is desirable for fast solvers, and in the numerical tests in the
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following subsection we shall use compactly supported RBFs; Figure 10
shows a few examples of compactly supported RBFs in 2D with different
smoothness.

Figure 10: Compactly supported RBFs of different smoothness

(7.2.2) Suppose we have chosen a suitable φ and thus the radial basis functions,
and we want to interpolate a function at n data points cj, j = 1, 2, ..., n
by a linear combination of n radial basis functions centred at these points.
The resulting interpolated function thus becomes:

f(x) =
n

∑

j=1

wjφ(‖x− cj‖), (12)

where wj is the weight of the radial basis function positioned at point cj.
Then the question reduces to finding wj, such that

f(ci) =
n

∑

j=1

wjφ(‖ci − cj‖) = di, i = 1, 2, ..., n, (13)

where di are the data values at points ci.

(7.2.3) Putting the above equations into matrix form and defining φij = φ(‖ci − cj‖),
we obtain the following linear system:











φ11 φ12 · · · φ1n

φ21 φ22 · · · φ2n
...

...
. . .

...
φn1 φn2 · · · φnn





















w1

w2

...
wn











=











d1
d2
...
dn











(14)

(7.2.4) If we choose the basis functions wisely (e.g. see Wendland[10]), the matrix
of the linear system (14) is symmetric and positive definite, and thus has
a unique solution. Also, if φ is compactly-supported, the matrix is sparse
and thus the equations can be solved effectively by direct sparse solvers
or iterative solvers.

7.3 Numerical Example: Scattered Data on the unit square

(7.3.1) In this subsection we give an example for the explicit reconstruction by
RBFs, when the scattered data lie in 2-D. The 4 test functions (con-
structed by Shengxin Zhu) shown in Figure 11 are investigated by radial
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Figure 11: 4 test functions for interpolation from irregularly-spaced data values

basis function interpolation. Each test function could be regarded as a
possible shape on a certain patch of the aircraft surface.

(7.3.2) The fourth test function proves to be the hardest to recover, so we show
the results only for that function. Figure 12 shows the numerical recon-
struction of test function 4 from 2000 scattered data points in the unit
square and the pointwise error.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 12: 2000 data points: reconstructed function; pointwise error

7.4 Possible Future Work

(7.4.1) There are at least two possible improvements to the above approach. The
first one is to reduce of the number of radial basis functions. Since each
radial basis function corresponds to exactly one centred point, the total
number of basis functions we have used above is equal to the number of
data points given. However, in practice we would wish to represent the
surface by fewer basis functions, in order to have an efficient description
of the surface features. In [16, section 5], a greedy algorithm is introduced
to reduce the number of RBF centres. The algorithm iteratively chooses a
subset from the interpolation centres and computes RBFs to fit the data
of that subset until the desired fitting accuracy is achieved.

(7.4.2) Another issue is to deal with the noisy data from real measurement. As
mentioned in the beginning of the section, if the data contains noise we
might want to find a function to approximate instead of interpolating the
data. In general the approximation should both be close to the original
data and have some smoothness. Carr ([16] and [17]) suggests two ways
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to deal with noise. One is to look for a function s minimizing some semi-
norm, i.e. to solve the following problem:

mins ρ‖s(x)‖2H2 +
1

N

N
∑

i=1

(s(xi)− di)
2, (15)

where in 2D, ‖s(x)‖2H2 =
∫

R2(
∂2s
∂x2 )

2 + ( ∂
2s

∂y2
)2 + 2( ∂2s

∂x∂y
)2dx, and ρ is a reg-

ularization parameter balancing how smooth the approximation function
is and how close it is to the data.

(7.4.3) Another approach they have used is low-pass filtering by convolution.

(7.4.4) To conclude, radial basis functions provide a well-investigated approach
to deal with surface reconstruction problems, and might be useful here for
our problem.

8 Other approaches

8.1 Global geometric invariants

(8.1.1) Global geometric invariants of a surface, such as its area or total curvature,
characterise it in ways that are different from those that arise from study-
ing its local properties. Some of these global invariants arise from studying
the spectrum of the Laplace-Beltrami operator ∆g on the surface. If it
has eigenvalues

λ0 ≤ λ1 ≤ λ2 ≤ . . . (16)

and if ξj is a complete set of corresponding normalized eigenfunctions, so
∆gξj = λjξj, then the fundamental kernel (Green’s function) of the heat
equation on the surface is

K(t, x, y) =
∞
∑

0

exp(−λjt)ξj(x)ξj(y), (17)

and the trace of this is

Z(t) =

∫

K(t, x, x) dx ∼ (4πt)−1

∞
∑

0

akt
k, (18)

and these coefficients ak are a sequence of geometric invariants of the
surface. For instance, a0 will be the area, and a1 is related to the curvature.

(8.1.2) If these invariants are known for the ideal form of a patch of the surface,
then calculating these invariants for the actual produced surface would
give new measures of the departure of the actual surface from the ideal.
These measures of departure would be quite different from those studied
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elsewhere in this report, in that they are not looking at the local structure
but at its global properties over an area. It is possible therefore that
they would detect deviations of different kinds from those that could be
detected by the other methods in the report.

8.2 Defect signature approach

(8.2.1) Our aim here is to give a digital description of possible defects on a sur-
face, and we shall do this in the 1-D case. So we assume that we are given
the departures vi of the actual shape from the ideal shape at an ordered
sequence of positions xi, as illustrated in Figure 13. From these we con-

Figure 13: Schematic of deviations of surface from ideal, in one dimension.

struct finite difference approximations v′i and v′′i to the first and second
derivatives of v at xi,

v′i =
1

2

(

vi+1 − vi
xi+1 − xi

+
vi − vi−1

xi − xi−1

)

, v′′i =
1

2

(

v′i+1 − v
′

i

xi+1 − xi
+
v′i − v

′

i−1

xi − xi−1

)

.

(19)

(8.2.2) If there were no defect, then we would expect that v would be subject to
only measurement noise, and so we could hypothesize that v is distributed
as a Gaussian with mean 0 and standard deviation σ, v ∼ G(0, σ2). Then
v′ and v′′ will also be Gaussian, with mean 0, and variances σ2

1, σ
2
2. Sup-

pose we choose suitable estimates of σ, σ1, and σ2, and divide v, v′, v′′ by
these to produce standardised versions that should be standard Gaussians.
Of course, they will not be independent, but we indicate the general idea.

(8.2.3) Then we can form defect measures such as

di =
√

v2i + v′2i + v′′2i , di = v2i+v
′2

i +v
′′2

i , di = |vi|+|v
′

i|+|v
′′

i |, (20)

and we can let Fd be the cumulative distribution of d. Then large values
of d tend to imply the presence of a defect, and so for a statistical way of
estimating defects we could say that if Fd(di) ≥ 1 − α then the point at
index i belongs to a defect, at significance level 1− α.

(8.2.4) Then in any region of x-space, we can form various characteristics of the
shape. For instance we might form the area deviation a =

∑

vi, the
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variation var =
∑

|vi|, the maximal slope s = max |v′i|, and the maximal
curvature c = max |v′′i |. But there could be many other characteristics
also formed from the data. Then for a defect we would form the vector
(a, var, s, c) and then convert that into a vector of ± signs: + if the null
hypothesis is rejected, − if it is confirmed/accepted.

(8.2.5) Some examples are shown in Figure 14, along with the kind of defect
signature they might generate.

(a, var, s, c) = (+,+,+,+)

(a, var, s, c) = (−,−,−,+)

(a, var, s, c) = (−,+,−,−)

Figure 14: Schematic of deviations and the kind of defect signature they might
generate.

(8.2.6) In two dimensions, it would be necessary to consider other measures nat-
urally, appropriate to 2 dimensions, but the same kind of methods would
be used, and would again lead to a digital signature of each defect.

8.3 Two-stage method

(8.3.1) On the small length-scale, what is wanted is the Fourier transform of the
disturbances. So, over the area of 400mm×400mm that is covered by a
single snapshot, there is enough information to extract the small length-
scale information, and this can be done without combining that snapshot
with any others.

32



ESGI

(8.3.2) One way of doing this would be to apply an interpolation procedure to
the irregularly spaced data over perhaps a 50mm or 100mm square, to
extract the high wavenumber components, which are of interest for laminar
flow control. Then, discarding those high wavenumber components, we
have the information that is needed for detecting waviness. Since we
have an interpolant, we have a smooth function for the low wavenumber
component, and when we come to assemble these over a larger area for
the wave-extraction problem, we can evaluate these smooth interpolants
at a suitable regularly-spaced grid of points, to make the wave-extraction
problem easier.

9 Conclusions

We have outlined some of the possible approaches to this problem from the math-
ematical point of view. In particular, we have given some detail of the methods
of projection onto suitable basis functions, and of wavelet methods, and of radial
basis function methods. Further, we have suggested a method that could lead to a
digital signature of each defect that could be used to classify it.
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