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Introduction to FDBs for HDDs

• Fluid bearings have several advantages over ball 
bearings in spindles for modern hard disk drives.
– Quietness
– Very low non-repeatable runout
– Shock resistance

• Well known issues are:
– Oil-air interface instability (Asada et al.)
– Bubble ingestion (Asada et al.)
– Leakage  (Muijderman,  Bootsma,  Tielemans)

• They used a homogenized Reynolds eqn (8 = infinity)
– Numerical simulation of free boundary problem
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Oil shuttle motion
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FDB’s
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Last year’s problem – MPI 2004
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Capillary Couette flow with constant gap – is it stable?
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Average OAI deflection in a land-
groove geometry with symmetry

oil

periodic

Oil/air 
interface

oil

air

symmetry

periodic

moving wall



Copyright  2003 Hitachi Global Storage Technologies

State of the problem after 1 yr

• We know that capillary interfaces in land-groove 
geometries tend to form fingers in the grooves.  The oil 
film rises over land regions.

• We know that the number of grooves plays a crucial 
role in oil-air interface deflection (analytical result)

• We do not know the stability as a function  of Ca,  Re 
and   groove parameters: land/groove ratio and groove 
depth/clearance ratio.

• We know that averaging of the capillary interface 
across the fluid film is not (really) allowed. This is 
especially true in the grooves.   I.e.  There is no such 
thing as “the interface deflection.”
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Oil film on rotor /  Capillary Taylor- Couette flow

average interface (MPI 2004)
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MPI 2005  questions

• Describe the capillary interface in a land-groove flow 
field.    Relax (or drop) the averaging assumption.

• Investigate the stability of capillary Taylor-Couette flow
– Use average interface;  
– Eccentric,  if the centric case is trivial.

• Does one need to know the flow near the capillary 
interface to predict when bubble ingestion occurs?

• Does one need to know the detailed flow near the 
capillary interface to compute loads and torque of the 
bearing with “engineering precision”
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Intermag presentation
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Main observation

• Current HDDs use self-acting spiral groove and herringbone fluid dynamic 
bearings (FDBs) to achieve precise rotation of a disk pack.

• In some  FDB (“self-sealing”) designs oil-air interfaces occur.

• Oil-air interfaces become unstable under certain high stress conditions, 
expressed by 

– The Capillary number  viscous stress   / capillary pressure
– The Reynolds number inertial stress    /  viscous stress
– The fractional eccentricity  eccentricity /  clearance

• Reynolds eqn with Half-Sommerfeld (Gümbel)  or Reynolds  BCs is not 
satisfactory to describe the oil / interface dynamics:     Oil is not conserved.

• Modified “true cavitation” approaches are also problematic.
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Bootsma and Tielemans’ work 

• In 1977 Bootsma and Tielemans already suggested that
the stability of the oil-air interface involves the Capillary 
number and the Weber Number.   Because 

We  =   Ca Re      (we care!)

this is equivalent to involvement of the Reynolds 
number
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Fluid bearing with stationary shaft
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Lower spool of the bearing of 
stationary shaft design

The oil-air interface 
(OAI) is located 
among the rotating 
herringbone grooves.  

We wish to determine 
its evolution

Z( ,t)

This is a CAD model of the 
liquid!  Not the solid.
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Groove-fixed (rotating) coordinate system
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Continuity / Navier-Stokes /  Interface 
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Reynolds’ eqn / compact OAI 
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evolution equation of the interface:
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Oil-air interface evolution eqn.
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Shallow sine groove OAI evolution,
result of linearized theory 
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Linearized pressure distribution in a shallow, 
sinusoidally grooved herringbone
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Herringbone with sinusoidal groove

pressure axial flow 
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OAI evolution for a “tanh” groove profile
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BEM problem setup: step groove
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“Fingering” in a step groove profile
BEM solution
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Conclusions

• In  fluid dynamic bearings of hard disk drives the oil-air interface  
deforms largely in response to the flow in the bearing interior.
Surface tension has a regularizing effect.

• The OAI is drawn down into the grooves and squeezed upward in 
lands.   

• Interfacial fingering develops, possibly leading to tip streaming.   
The step groove  has the strongest fingering tendency.

• According to shallow groove theory the forced interfacial 
deflections are reduced exponentially as the number of grooves
increases while they are reduced algebraically as the groove angle
decreases.   This agrees with  experiments by Asada. 
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