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Executive Summary

The problem presented by ARUP to the Study Group was to investigate
methods for maximising the number of car parking spaces that can be
placed within a car park. This is particularly important for basement
car parks in residential apartment blocks or offices where parking spaces
command a high value. Currently the job of allocating spaces is done
manually and is very time intensive.

The Study Group working on this problem split into teams examin-
ing different aspects of the car park design process. We report three
approaches taken. These include a so-called ‘tile-and-trim’ method in
which an optimal layout of cars from an ‘infinite car park’ are overlaid
onto the actual car park domain; adjustments are then made to accom-
modate access from one lane to the next. A second approach seeks to
develop an algorithm for optimising the road within a car park on the
assumption that car parking spaces should fill the space and that any
space needs to be adjacent to the network. A third similar approach fo-
cused on schemes for assessing the potential capacity of a small selection
of specified road networks within the car park to assist the architect in
selecting the optimal road network(s).

This problem is a variant of the ‘bin packing’ problem, well known
in computer science. It is further complicated by the fact that two
different classes of item need to be packed (roads and cars), with both
local (immediate access to a road) and global (connectivity of the road
network) constraints. Bin-packing is known to be NP-hard, and hence
the problem at hand has at least this level of computational complexity.
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None of the approaches produced a complete solution to the problem
posed. Indeed, it was quickly determined by the group that this was
a very hard problem (a view reinforced by the many different possi-
ble approaches considered) requiring far longer than a week to really
make significant progress. All approaches rely to differing degrees on
optimisation algorithms which are inherently unreliable unless designed
specifically for the intended purpose. It is also not clear whether a rel-
atively simple automated computer algorithm will be able to ‘beat the
eye of the architect’; additional sophistication may be required due to
subtle constraints.

Apart from determining that the problem is hard, positive outcomes
have included:

• Determining that parking perpendicular to the road in long aisles
provides the most efficient packing of cars.

• Provision of code which ‘tiles and trims’ from an infinite car park
onto the given car park with interactive feedback on the number of
cars in the packing.

• Provision of code for optimal packing in a parallel-walled car park.

• Methods for optimising a road within a given domain based on
developing cost functions ensuring that cars fill the car park and
have access to the road. Provision of code for optimising a single
road in a given (square) space.

• Description of methods for assessing the capacity of a car park for a
set of given road network in order to select optimal road networks.

• Some ideas for developing possible solutions further.
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1 Introduction

(1.1) Plans for new urban developments such as office blocks or residential apart-
ments one very often include an integrated basement car park. Due to the
high value of car parking spaces the design of the car park is very impor-
tant. For example, in central London, a parking space may be worth up to
£100,000 whilst elsewhere across the country the value might still be as high
as £20,000. Thus, developers are very keen to ensure that they are max-
imising the potential capacity of the space. Typically basement car parks
are formed by an irregular polygonal boundary (rarely a simple rectangle)
and are subject to building design constraints. For example, the car park
may include columns which support the building above as well as larger
internal structures such as lift shafts and stairwells. In addition, there are
constraints imposed by access to parking spaces such as the car park en-
trance/exit which is often fixed by the position of the building in relation
to the road outside, as well as respecting limitations on vehicle manoeuvra-
bility Thus there are many constraints that need to be accommodated into
the design.

(1.2) Currently there are no design tools either to assist or automate parking space
allocation. An architect uses CAD tools to populate a space manually and
such is the value of spaces that positions of supporting columns and other
internal obstacles can be adjusted (within limits) to maximise the spaces
available. This is a time-consuming operation which can reportedly take up
to 3 weeks. Even then, there is no guarantee that the architect has found the
optimal solution. There is thus high value in producing algorithms which
automate or assist in the design of the car park.
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Figure 1: An example of a relatively simple surface car park with no internal obstacles.
The boundary is in red. There are 147 normal spaces and 8 disabled spaces. This
arrangement is clearly not designed to maximise spaces.
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2 Problem statement

(2.1) The statement of the problem is relatively simple. Given a car park perime-
ter, an entrance/exit positioned on the perimeter, the layout of any internal
obstacles and constraints such as the minimum size of parking spaces, widths
of road and turning circles of cars, how does one design a car park which
maximises the number of car parking spaces ?

(2.2) To make things simpler, we were allowed to assume that the car park bound-
ary is polygonal. We also make the assumption that obstacles such as nar-
row supporting columns are absent although we should attempt to include
larger internal obstacles.

(2.3) Three approaches are taken and described in sections 3, 4 and 5 below.
Additional code is supplied in the Appendices.

3 Tile and trim

(3.1) Consider a hypothetical hotel with a countably infinite number of

rooms, all of which are occupied. One might be tempted to think that

the hotel would not be able to accommodate any newly arriving guests,

as would be the case with a finite number of rooms. Suppose a new

guest arrives and wishes to be accommodated in the hotel. Because

the hotel has infinitely many rooms, we can move the guest occupying

room 1 to room 2, the guest occupying room 2 to room 3 and so on,

and fit the newcomer into room 1. By repeating this procedure, it is

possible to make room for any finite number of new guests.[1]

3.1 Physical Justification

(3.2) We first study the tiling of cars in a parking lot of infinite length, and
variable width a. By tiling we mean that the cars are arranged in a regular
pattern. Each pattern is then based on repetitions of a fundamental ‘cell’.

(3.3) For each value of a we to pick the tiling which is optimal, in the sense that
the tiling maximizes the density ρ of cars (within the fundamental cell):

ρ =
area occupied by cars

total area
. (1)

Heuristically, one can think of this parking lot as an infinite street of width
a, along which we wish to park rectangular (door-less) cars. For every
width a of the street we wish to have an optimal parking strategy, under
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the constraint that cars must still be able to drive along the road, possibly
only in one direction, park in every parking space, and exit any parking
space.

(3.4) We will study the density function ρ(a) for values w < a <∞.

a
w

h

Figure 2: The basic set-up. In an infinite corridor, cars are packed in a pattern to
maximize the density. The width a of the corridor is a variable. What is the optimal
packing strategy for given aspect of the rectangular tiles, and a given value of the corridor
width a ?

(3.5) We begin by studying, as in figure 4, a value of a so large that a single row
of cars can be stacked at an angle α with the horizontal, but so small that
there is no room for a second row of cars. Let the height of a car be h, and
the width w. The density in this situation can be calculated by considering
the parallelogram in figure 3.

a
w

h

Figure 3: The overall density is determined by the density within a given cell. This is
most easily calculated by taking as the cell the parallelogram illustrated in the figure.

(3.6) The base of the parallelogram is w sec(α), and the height is a. This paral-
lelogram is a cell which can tile the entire corridor. In the parallelogram,
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the car takes up an area of h · w, so

ρ1 =
hw

aw secα
=
h

a
sinα

a function which has its maximum at α = π/2, the ‘rectilinear’ stacking.

(3.7) This preliminary calculation has been for a single row of cars, without a
view to the repetition of rows and the ‘lane’ space, the width of the strip
with no cars, where the cars drive to enter or leave the parking spaces. We
now briefly consider this issue.

3.2 The Lane Width

(3.8) The lane width in a given packing width is not a geometrically well defined
concept. Even assuming a standard width w for a car, and thus w as a
lower bound for the lane width of all lanes in all packings, realistic packings
must have a somewhat greater lane width.

(3.9) Various design manuals operate with the concept of the turning radius R
of a standard car; this is the radius of the smallest circle which the centre
point of the car is able to move in (figure (9). Using this concept provides
loosely an upper bound on the lane width, because cars (and most drivers)
are able to perform 3-point or 4-point turns, rather than merely a 2-point
manoeuvre.

R

L

Figure 4: The turning radius

(3.10) The most lane width demanding pattern is the packing with α = π/2. Often
a lane width of the order of w+h are seen in this design. Herringbone pack-
ings with values of α less than π/2 give easier access and exit manoeuvres,
and have smaller lane width.
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(3.11) For the sake of calculations, let us assume that the necessary lane with
varies with angle α as

L(α) = w + h sin(α) (2)

(3.12) This is a monotone function which has the value w for small values of α,
and the value w + h for α = π/2. Using this, we can now evaluate the
density of the infinitely repeated double-row pattern with variable angle α.

3.3 Infinite car park density function

Figure 5: Several rows of cars, in a herringbone pattern. The herringbone pattern permits
more rows, with a smaller lane width between the rows. Stacking with a value of α closer
to π/2 gives rows having a larger lane width (width of access roads) which decreases the
density, but also with a tighter packing which increases the density.

(3.13) A fundamental cell now has two car areas in it, and, for general values of
α, two small triangles with waste space. Using the geometry of figure 3.3,
we get that the density function is

ρ(α) =
2hw

[w + h sin(α) + 2w cos(α) + 2h sin(α)]w sec(α)
(3)

(3.14) A plot of this function: shows the value of ρ increasing towards the maximal
value:

ρ(π/2) =
2hw

[3h+ w]w
(4)

Thus, even is the lane width generally is smaller for the α < π/2 herringbone
pattern, the denser packing of the α = π/2 wins out.
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Figure 6: A plot of the density function ρ(α) giving the density of cars as a function of
herringbone angle α. Maximum occurs for the rectilinear packing, α = π/2.

(3.15) Thus, under quite general assumptions, the rectilinear double-row parking
pattern is the optimal way to tile (pack) the infinite plane with parking
spaces.

3.4 Bounded Areas

(3.16) For a plane figure of area A, a quick and rough estimate of the maximal
number of possible car spaces is therefore A/ρ(π/2).

(3.17) A slightly more refined estimate lies in the following strategy to estimate
the maximal number of parking spaces in a given finite connected polygon
in the plane:

1. Overlap the given finite polygon with the ‘best’ packing for the infinite
plane.

2. Turn and shift the given polygon to maximise the number of cars from
the background packing falling inside the polygon.

3. Trim away a small number of car spaces to provide connection between
otherwise unconnected lanes, ensuring that all spaces are accessible.

4. if there are pillars or obstacles inside the polygon, remove the conflict-
ing car spaces.

(3.18) We have written a code in the programming language PYTHON which per-
forms the above strategy. The source code is included in the appendix. A
screen-shot from the code is seen below.
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Figure 7: Output from the PYTHON code showing double rows (in green) of cars with
access lanes (in yellow) placed inside a test polygon. The small window insert shows
how the code keeps running track of the number of cars inside the polygon, allowing for
manual fine tuning of the placement of the rectangle relative to the background packing.

(3.19) This code enables the user very quickly to estimate within a number on the
order of the number of lanes visible, the optimal total number of car spaces.

(3.20) Note that we have only provided a proof that the rectilinear double-row
pattern is optimal among other herringbone patterns in the infinite plane.
It is possible that finite polygons permit a slightly better pattern that utilises
the particular shape of the given polygon. In particular, one or more rows
of α < π/2 spaces may be squeezed in, rather than dropping a full row of
α = π/2 spaces.

(3.21) In order to investigate significance of this effect, we went back to the infinite
strip of variable height, and constructed in MATLAB a code which optimizes
the number of cars in rows, allowing for α < π/2 rows, with correspond-
ing smaller lane width. This code is also provided in the appendix (Note:
MATLAB is a commercial package, requiring a license to run.

(3.22) The figure shows a value for a where there is no room for two double rows,
but there is room for a single double row plus one row with α < π/2. The
code provides the correct value of α, which is important, since we have seen
than one should use the maximum value of α possible, given the constraints.

(3.23) The code used to generate the results in this section of the report is con-
tained in Appendices 1 (components of MATLAB code) and 2 (python
code).
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Figure 8: Output from the MATLAB code showing

(3.24) For the Python code ones need the package pygame, downloadable from:
http://www.pygame.org/ To run the script, just evoke the main.py, with
the command:

> python main.py

4 Optimising the road

(4.1) Any allowable configuration of car parking spaces must be adjacent to a
road network that allows access to any space. In this section, we focus on
constructing this road, and treat the positioning of the cars as a problem
that can be dealt with separately.

4.1 Discrete approach

(4.2) In the discrete approach that we developed during the Study Group, we
also treat the road as a closed loop, but approximate it as a piecewise linear
curve connecting a set of nodes. We then try to determine the position
of the nodes that minimises a cost function, which we define in a manner
designed so that at its minimum (i) as much of the domain as possible is
within a distance lr of one of the linear parts of the loop, (ii) as little of the
domain as possible is is within a distance lr of more than one non-contiguous
segments of the loop, (iii) the angle at each node is between π/2 and 3π/2,
(iv) the loop is everywhere more than lr from the boundary of the domain.
Here, lr is the half-width of the road plus the length of a parking space.

(4.3) In order to define the domain, we use a set of points that lie within the

8



Optimisation of Car Park Designs ESGI91

domain. We experimented with various choices of points, and found that a
random distribution within the domain with density (2/lr)

2 works reason-
ably well. However, we only had time to experiment with a unit square.
Note that this means the smaller lr, the larger the domain relative to a
parking space.

(4.4) The cost function that we used is most easily explained using the MATLAB
code that we wrote during and immediately after the meeting.

function cost = cost(xys0,Nr,xyi,Ni,lroad)

%xys0 - a vector containing the coordinates of the nodes of

%the road

%Nr - the number of nodes in the road

%xyi - a vector containing the points that define the domain

%Ni - the number of points that define the domain

%lroad - the half-width of the road plus the length of a

%parking space

%Extract the nodes that define the road.

xys = xys0(1:2*Nr);

xys = reshape(xys,Nr,2);

%Make the road into a closed loop.

xys = [xys; xys(1,:)];

%Initialise the cost function.

cost = 0;

%Penalise heavily if a node is further than lroad from the

%interior of the unit square.

for i = 1:Nr

if xys(i,1)<lroad, cost = cost+1e12*(lroad-xys(i,1)); end

if xys(i,2)<lroad, cost = cost+1e12*(lroad-xys(i,2)); end

if xys(i,1)>1-lroad, cost = cost+1e12*(xys(i,1)-1+lroad); end

if xys(i,2)>1-lroad, cost = cost+1e12*(xys(i,2)-1+lroad); end

end
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%Penalise based on the position of the road relative to the

%interior points.

for i = 1:Ni

% Loop over interior points

v = zeros(1,Nr); dist0 = zeros(1,Nr);

dmin = 1e12;

for j = 1:Nr

%Determine the minimum distance from each line segment of

%the road.

dist1 = lsdist(xys(j,:), xys(j+1,:),xyi(i,:));

dist2 = lsdist(xys(j+1,:), xys(j,:),xyi(i,:));

dist = max(dist1,dist2);

dmin = min(dmin,dist);

if dist<=lroad

%Keep a record of road segments from which the interior node

%is less than a distance lroad away.

v(j) = 1;

dist0(j) = dist;

end

end

%If the node is less than lroad away from two

%noncontiguous segments, penalise.

if length(find(diff(v)))>2

cost = cost+(lroad-sum(dist0(v==1))/sum(v))/lroad;

end

%If the interior point is not within lroad of any

%segement of the road, penalise.

if dmin>lroad

cost = cost+(dmin-lroad)/lroad;

end

end

%Penalize small angles.
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%cb = (1+cos(angle between road segments))/2 and

%varies between zero and one.

%Calculate cb at the first node.

cb = 0.5*(1+cosbeta(xys(Nr,:),xys(1,:),xys(2,:)));

%If the angle is less than pi/2, penalise.

if cb>0.5

cost = cost+5*(cb-0.5)/0.5;

end

%Repeat for the other nodes.

for i = 2:Nr

cb = 0.5*(1+cosbeta(xys(i-1,:),xys(i,:),xys(i+1,:)));

if cb>0.5

cost = cost+5*(cb-0.5)/0.5;

end

end

%%

function lsdist = lsdist(a,b,c)

%Find the distance of the point with position vector c from

%the line segment between the points with position vectors

%a and b. This is either the shortest distance from the straight

%line through a and b or, if this point does not lie between

%a and b, the distance from the nearer of a and b.

cb = c-b; ab = a-b; lcb = norm(cb); lab = norm(ab);

if (lcb == 0)||(lab == 0)

lsdist = 0;

else

cbeta = dot(cb,ab)/lcb/lab;

if cbeta<=0

lsdist = lcb;

else

lsdist = lcb*sqrt(1-cbeta^2);

end

end

%%
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function cosbeta = cosbeta(a,b,c)

%Calculate the cosine of the angle between the lines ab and cb.

ab = a-b; cb = c-b;

cosbeta = dot(ab,cb)/norm(ab)/norm(cb);

(4.5) In order to minimise the cost function, we use repeated passes of firstly
a genetic algorithm and secondly the Nelder-Mead simplex algorithm, as
implemented in MATLAB (ga and fminsearch). This was done using the
default parameters, and better tuning may improve the rate of convergence.

(4.6) This approach was neither entirely unsuccessful nor an unqualified success.
When lr = 1/4(N − 1) for N = 2, 3, . . ., a likely optimal solution is fairly
obvious, and is shown in Figure 1 for N = 3, lr = 1/8. Figure 2 shows the
solution to which our algorithm converges in this case, which is very close.
If we start from an initial guess that is less good, as shown in Figure 3,
the algorithm sometimes converges to a reasonable solution, for example,
Figure 4, but more frequently, with a different seed in the random number
generator for the genetic algorithm, gets stuck in a plausible, but local
minimum of the cost function, as shown in Figure 5.

(4.7) When N = 4 and lr = 1/12, starting from the reasonable initial guess
shown in Figure 6, the algorithm converges to the local minimum shown
in Figure 7. Again, this is some distance from the likely optimal solution
shown in Figure 8.

(4.8) Although these results are not too encouraging, we also tried the intermedi-
ate case, lr = 1/10, for which the optimal solution is not obvious. Starting
from the initial guess shown in Figure 9, the algorithm converges to the
solution shown in Figure 10, which is unlikely to be the global minimum of
our cost function.
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Figure 1: Our initial guess of the optimum solution when lr = 1/8.
The dashed circles have radius lr, and indicate the area that each road
segment is meant to cover, but remember that the interior points (shown
as dots) should be within lr of each straight segment, not just the nodes.
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Figure 2: Final solution from initial guess shown in Figure 1.
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Figure 3: A poor initial guess when lr = 1/8.
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Figure 4: The final solution from the initial guess shown in Figure 3.
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Figure 5: The final solution from the initial guess shown in Figure 3,
with a different set of random numbers in the genetic algorithm to that
for the solution shown in Figure 4.
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Figure 6: A reasonable initial guess when lr = 1/12.
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Figure 7: The final solution from the initial guess shown in Figure 6.
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Figure 8: A probable best solution when lr = 1/12.
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Figure 9: An initial guess when lr = 1/10.
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Figure 10: The final solution from the initial guess shown in Figure 9.
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(4.9) In conclusion, although there is some potential to this approach, it was not
as successful as we had hoped. Further work in this direction could focus
on:

• global minimization methods that better suit the structure of the prob-
lem, since we do have evidence that the global minimum of the cost
function that we have defined does indeed represent a good solution
of the problem, but that it is extremely hard to find without an ex-
cellent initial guess, which is unlikely to be available in more complex
geometries.

• refining the choice of cost function with the aim of eliminating some of
the troublesome local minima and/or improving its structure so that
it is easier to search using a bespoke global optimization algorithm.

4.2 Variational approach

(4.10) Another approach to finding a road network through a car park Ω that
optimises the number of parking spaces that can be fitted around it is to
require that each point x ∈ Ω should be ‘near’ a desired amount of road.

(4.11) In this approach, the quality of the road network is defined as the spatial
integral (over Ω) of some function of the absolute value of the difference
between the actual and desired road length (at each point).

(4.12) For simplicity we consider only non-branching continuous paths through Ω,
i.e. paths given by the images of continuous functions of the form

f : [0, 1]→ Ω

(4.13) Physically, it may be appropriate to require that f be piecewise smooth or
at least piecewise continuously differentiable.

(4.14) Branching paths and more complex networks could be considered by re-
laxing the continuity condition on f to piecewise continuity, and forcing
boundary conditions on the discontinuity points zi ∈ [0, 1].

Physical Justification

(4.15) Finding the densest arrangement of parking spaces and road is equivalent to
finding a road network that covers the car park Ω (no point is too far from
a road) with sufficient road separation to allow car parking spaces between
roads, i.e. no point x should have too much road in the circle Bw(x) centred
around it with radius w, where w is equal to the length of a parking space
and half the width of a road.
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(4.16) So, finding a good road network is equivalent to minimising the average
of some function of the absolute difference between the actual and desired
road length in each Bw(x)

(4.17) It is not immediately obvious what the desired length of road in each Bw(x)
is, so we will define k to be the amount of road in Bw(x) divided by w.

Functional to be minimised

(4.18) The length of f(y) in a region is the integral of its first derivative. So, the
amount of road in Bw(x) is given by∫ 1

0

I‖f(y)−x‖2<w f ′(y)dy

(4.19) For simplicity, we choose to make our cost function equal to the square of
the difference between the actual and desired amounts of road, so the cost
function at each point is(∫ 1

0

I‖f(y)−x‖2<w f ′(y)dy

)2

and the total cost function (the functional to be minimised) is given by the
spatial integral

J [f ] =

∫
Ω

(∫ 1

0

I‖f(y)−x‖2<w f ′(y)dy − kw
)2

dx . (5)

Euler-Lagrange

(4.20) Rearranging (5), we can write J [f ] as an integral over the parameter of a
function L[z, f, f ′],

J [f ] =

∫
Ω

(∫ 1

0

I‖f(z)−x‖2<w f ′(z)dz − kw
)(∫ 1

0

I‖f(y)−x‖2<w f ′(y)dy − kw
)

dx

=

∫ 1

0

∫ 1

0

∫
Ω

(
I‖f(z)−x‖2<w f ′(z)− kw

) (
I‖f(y)−x‖2<w f ′(y)− kw

)
dx dy dz

=

∫ 1

0

L[z, f(z), f ′(z)]dz

where

L[z, f(z), f ′(z)] =

∫ 1

0

∫
Ω

(
I‖f(z)−x‖2<w f ′(z)− kw

) (
I‖f(y)−x‖2<w f ′(y)− kw

)
dx dy .
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Then the Euler-Lagrange equation

∂L

∂f
− d

dz

∂L

∂f ′
= 0

of this functional L is given by∫
Ω

((([
f ′(z) · (x− f(z))δ(‖f(z)− x‖2 − w)

] f ′(z)

‖f ′(z)‖2

+I‖f(z)−x‖2<w

[
f ′(z)

‖f ′(z)‖2

− f ′′(z) · f ′(z)

‖f ′(z)‖3
2

f ′(z)

])
×
∫ 1

0

(
I‖f(y)−x‖2<w‖f ′(y)‖2 − kw

)
dy

)
+

(([
f ′(z) · (x− f(z))δ(‖f(z)− x‖2 − w)

]
‖f ′(z)‖2 + I‖f(z)−x‖2<w

f ′′(z) · f ′(z)

‖f ′(z)‖2

)
×
∫ 1

0

I‖f(y)−x‖2<w
f ′(y)

‖f ′(y)‖2

dy

))
dx

=

∫
Ω

[
(x− f(z))δ(‖f(z)− x‖2 − w)‖f ′(z)‖2

] ∫ 1

0

(
I‖f(y)−x‖2<w‖f ′(y)‖2 − kw

)
dy

+
(
I‖f(z)−x‖2<w‖f ′(z)‖2 − kw

) ∫ 1

0

(x− f(y))δ(‖f(y)− x‖2 − w)‖f ′(y)‖2 .

5 Optimising over road networks

(5.1) The work in Section 4 describes an attempt to select an optimal road net-
work with the emphasis on making each part of the car park accessible from
the road. Presently, the work in Section 4 only considers a single continuous
road.

(5.2) The approach in this section bypasses this difficulty and starts with an
assumption that a car park designer can use intuition to readily identify
a small number of possible candidate road networks within the car park
which takes into account all of the complicated geometric features such as
the irregular shaped boundary, the position of the entrance and internal
obstacles such as lift shafts and stairwells.

(5.3) Presently, a designer would then have to make a detailed assessment of
each possible layout which might typically involve the time-consuming job
of fully populating parking spaces with cars and making small adjustments
to the position of the roads within each given layout to arrive at the total
optimal car park capacity for each layout. Only then would the designer be
confident of which layout is optimal.
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(5.4) It is the purpose of the present approach to develop a coarse algorithm
which takes each candidate road network and quickly decides which one
(or perhaps more than one) layout offers the best potential for maximising
capacity.

(5.5) The approach does not address the actual packing of cars distributed around
the network and within the parking lot. This would require a higher level
optimisation approach in which individual car parking spaces are distributed
in some optimal packing. We give some ideas as to how this might be done
in the summary section at the end of this part of the report. It may also
prove to be the case that a particular road network selected as ‘optimal’ by
our approach does not give the maximal number of parking spaces within
the lot. The algorithm that has been developed does give an output which
is indicative of the total capacity and so one ought to be able to identify
such cases if predicted capacities for multiple networks are close.

(5.6) The principal reason for this uncertainty is that we make some crude as-
sumptions in our model about how parking spaces are defined. Thus, we
adopt the general rule (established in Section 3) that ‘nose in’ parking (i.e.
parking 90 degrees to the road) provides the most efficient packing of cars.
Using this we assume that, along each linear segment of the road network,
we always attempt to park nose in and make no account for other types of
parking tiling patterns such as parallel parking or herring-bone. In spite of
this, the output of the algorithm does allow for (in fact, normally, require)
angled parking configurations as the nose-in parking stalls assigned in the
algorithm can overlap with the boundary of the car park, interior obstacles
or with other parking stalls, implying a necessity on angled parking to pop-
ulate stalls of reduced width. It is the purpose of the algorithm to minimise
this overlap and thus produce the most efficient parking solution available.

5.1 Details

(5.7) The user defines a (assumed small) set of plausible networks within the
parking lot. These are defined mathematically by a network with N vertices
and M line segments each attached to two of the vertices within the network.
One of the nodes of the network should be attached to the car park entrance.
There no internal obstacles in the examples seen in later figures, but these
are not precluded from the problem.

(5.8) It is envisaged that the position of the nodes within the network do not need
to be exactly specified by the designer and that it is the particular topology
of each network that is important. Thus, we envisage using an optimisation
procedure which iterates over the positions of the nodes within the network
to yield the maximum capacity for that particular network topology. This is
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very similar to the approach outlined in Section 4. However, if the designer is
able to supply an estimate of the position of the nodes within the network
close to what is perceived as optimal, the optimisation procedure can be
expected to converge to the optimal solution fairly rapidly. This is somewhat
different to the approach taken in Section 4 where initial configurations are
typically taken far away from the final optimised solution and struggle to
converge.

(5.9) It is now assumed that along each of the M line segments defining the road
network one wishes to park cars at 90 degrees to that segment on both sides
of the road (‘nose in’), this being optimal for very long line segments. Thus,
notionally attached to each line segment are two rectangles either side of
the network which include both the width of the road (3m either side of
the line defining the road) and the space occupied by cars parked nose in
(adding another 5m to the virtual width of that road segment).

(5.10) Thus, in total there are 2M rectangular domains assigned to the network
which now act as candidates for parking cars (and M rectangular sections
of road).

(5.11) A further set of rectangles are also created each of width 5m whose long sides
are aligned with the each of the line segments forming the exterior boundary
of the car park and all lie outside the car park itself. If the boundary has
B sides, then there are B such rectangles. They can be defined by the B
vertices that define the boundary.

(5.12) A final set of I rectangles are used to define internal obstacles within the
car park (they are all assumed to have rectangular components)

(5.13) We then make a number of calculations based on these 2M rectangular
parking stalls and the area of overlap with each of the following:

1. other parking stalls or the road – these areas are defined by Aij for
i, j = 1, . . . , 2M and clearly Aij = Aji. The total area of overlap
between all parking stalls in the car park is

A1 =
2M−1∑
i=1

2M∑
j=i+1

Aij;

which excludes double counting and stall overlap with itself.

2. the B rectangles defining the exterior boundary – these are Bij where
i = 1, . . . ,M and j = 1, . . . , B. The total area of overlap of parking
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stalls with the boundary is

A2 =
2M∑
i=1

B∑
j=1

Bij;

3. the I rectangles defining the internal obstacles – these are Iij where
i = 1, . . . ,M and j = 1, . . . , I. The total area of overlap of parking
stalls with the interior obstacles is

A3 =
2M∑
i=1

I∑
j=1

Iij.

The value of A1, being representative of overlap between adjacent parking
stalls, acts as a summative ‘penalty’ or ‘cost’ associated with: (i) bends
in the road (the larger the angle the road turns through the higher the
cost); (ii) junctions in the network (with right-angled junctions costing less
than angled junctions); (iii) roads that are bunched too closely together for
optimal nose in parking.

(5.14) The value of A2, being a summative cost of parking stall overlap with the
boundary of the car park give the cost of: (i) roads too close to the wall
to allow optimal nose in parking against the wall (with increased penalty
with increased overlap); (ii) ends of the road branches which do not meet
the wall at right angles (with more cost assigned to more oblique parking
against a wall).

(5.15) The value of A3 acts as a cost for overlapping parking stalls with internal
areas, again in proportion to the area of overlap.

(5.16) A further cost can be calculated from the combined values of A1, A2 and
A3 above, in addition to knowledge of the areas of each rectangular parking
stall the road and the total area of the car park itself, all defined within the
algorithm. This is the ‘void’ area, including the area of the road itself in
which parking is not allowed. We call this A4.

(5.17) In an ideal network, A1, A2 and A3 are all zero whilst A4 is minimal. This
in fact can only happen for a linear car park comprised of a single straight
road with the exact amount of space (no more, no less) for exact nose-in
parking either side of the road. Any other network which includes non-trivial
geometry of the network increases A1, A2, A3 and A4 (as a percentage of
total car park area).

(5.18) Thus we may define a total cost function to be a combination of all A1, A2,
A3 and A4. The simplest such function would simply be a linear weighted
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sum of each component, namely

Atotal =
4∑

i=1

αiAi

where αi are user prescribed weights associated with each component. For
example, you may decide to penalise overlap with boundary more than
overlap between stalls.

(5.19) Another possibility is simply to use A1 to A4 along with the areas known
to the algorithm to define the total available non-overlapping area in which
cars can park, Apark, say. Then a crude estimate of the number of cars that
can be parked within the car park is given by

ncars = [Apark/Acar]

where [·] denotes integer part of and Acar is the area taken up by a parking
space. Then ncars can be become an objective function which one attempts
to maximise. This is probably the most sensible proxy for the cost and
this is the measure we use in the examples to define how well each network
operates.

(5.20) Another possibility is simply to take A4, the voided area of the car park
and minimise this.

5.2 Examples

(5.21) In these examples, the networks are prescribed by the user and have only
been ‘hand-optimised’. I.e., the positions of the nodes have been selected
manually to get the best parking solutions. In the examples, we are in-
terested in illustrating that one particular candidate network outperforms
other networks considered.

(5.22) Example 1 We start with an example which can be calculated by hand.
The car park is rectangular measuring 96m by 48m and has an entrance half-
way along the short edge with an opening of 6m. Throughout, roads are 6m
wide and parking bays are assumed to 5m by 2.5m. Then with network 1
(shown in figure 9) with horizontal aisles the analytic solution gives a total
packing of 211 cars. The algorithm predicts ncars = 205, amongst other
measures of fitness of the design, as shown below:

Total car park area: 4608.0 m^2

Stall area (total): 3120.0 m^2

Stall area (less all overlaps): 2570.0 m^2

Number parked: 205
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Total area per car: 22.4 m^2/car

Overlap area (stall/stall): 250.0 m^2

Overlap area (stall/road): 300.0 m^2

Overlap area (stall/extern): 0.0 m^2

Void area: 2038.0 m^2

(5.23) With network 2, which contains vertical aisles, the analytic solution gives a
total of 195 cars whilst the algorithm predicts ncars = 191.

(5.24) In both cases, the network used in the algorithm is prescribed to be exactly
that given by the analytic solution. The under prediction in capacity is
associated with the way in which parking is only aligned along the segments
between the nodes and not along the extensions of those stalls into corners
where there is still extra capacity.

(5.25) Example 2 We use the ‘model car park’ invented by the study group to
test different parking solutions. Its basic shape is that of a 60m by 30m
rectangle with a triangle cut off one corner and a square section removed
from the opposite corner. The entrance/exit is midway along the upper
right-hand edge. The parking spaces are now 4.8m by 2.4m.

(5.26) Here, we do not know which solution is optimal and hence a number of
possible networks have been selected by the team working on this problem.
The networks are shown in figures 10 and 11, and ncars given in the captions
for each. The candidate networks are of two broad classes, characterised by
largely ‘horizontal’ and ‘vertical’ road layouts (parallel to the long and short
edges of the domain respectively). The best of these four networks has a
capacity ncars = 285, an improvement of some 15% over the worst. In each
case, capacity is increased (by 5–10%) by removing circulation from the
road network, reducing it to a tree-structure. This makes intuitive sense
(minimises road usage), though will of course impact on other measures
of design optimality not considered here. On the other hand, the benefits
of the ‘horizontal’ over the ‘vertical’ network in the tree-structure case are
relatively small (ncars = 285 and 273 respectively), even though the number
of junctions is significantly smaller (4 and 9 respectively).

(5.27) Example 3 A real car park has been supplied by ARUP. There are 147
parking spaces in this arrangement which is clearly not designed to be op-
timal. Using the network provided by ARUP and defining the spaces to
be slightly longer than before (6.15m by 2.4m) to take some account of the
footpaths running alongside parking spaces. Here the algorithm predicts
ncars = 202: clearly parking spaces have been fitted into spaces left in the
original design; see figure 12(a). We improve the design still further, so
that ncars = 220 by simply moving the bottom perimeter road to a stall-
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Figure 9: Automatic network capacity calculation: example 1
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Figure 10: Automatic network capacity calculation: example 2, ‘vertical’ networks.
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Figure 11: Automatic network capacity calculation: example 2, ‘horizontal’ net-
works.
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length plus half-road-width from the edge of the domain; see figure 12(b).
A similar tactic for the right-hand road would presumably also work well.

(5.28) In figure 13 we show a different road network, motivated by the previously
observed design principles to (a) create a tree-structure road network, (b)
keep the outermost roads a constant distance from the edge of the domain,
and inner roads a constant distance from each other (so as to allow perpen-
dicular parking), and (c) attempt to maximise distances between junctions.
The algorithm predicts an increased capacity of ncars = 233.

5.3 Conclusions and possible extensions

(5.29) We have demonstrated a simple approach which quickly identifies how dif-
ferent road networks within a give car park compare with one another. In
a model problem for which analytic solutions are known, the algorithm ac-
curately identifies the better of two possible networks. In more complicated
examples, the algorithm also seems to correctly select the best networks
from a set of possible networks. The algorithm can be applied to compli-
cated geometries including those with internal obstacles and gives a good
approximation to the capacity of a particular network.

Automating the design of the network

(5.30) It may be possible to generate a set of candidate networks for a given car
park by using a branching algorithm. In light of the optimal results illus-
trated in Section 5.2 we see that optimal network have minimal bends in
the roads and minimal branches in the networks. So it may be possible
to design networks by ‘growing’ them organically from the entrance with
branches being grown dynamically in order to fill the space. See for example
[3], [4].

Populating cars around the network

(5.31) Once a network has been optimised and parking stalls have been assigned
by the method described in this section, one needs to populate the stalls
with cars. One possible approach to do this automatically in a way which
is designed to optimise the use of the space within stalls of non-optimal
size and shape is the following. One assigns a negative ‘charge’ along the
road network and puts positive charges on the short edge of each individual
parking space. Then one populates the available parking spaces with (say)
10% more spaces than predicted by the algorithm above, but makes the
space 20% smaller so there is ‘plenty of room’. A piece of software is designed
which jiggles the spaces around and the spaces become electrically attracted
to the roads. Then, dynamically, the parking spaces are increased in size
and as this happens the spaces have to continuously realign themselves
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Figure 12: Automatic network capacity calculation: example 3, showing imple-
mented (left) and improved (right) road layouts.
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Figure 13: Automatic network capacity calculation: example 3, alternative road
layouts.
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within the confines of the stalls that have been assigned. At each part of
this dynamic growth of the spaces, if a space overshoots the given stall then
it is removed and the spaces thus continue to grow until they reach full size.
The idea is that at this point the stalls will be populated with the maximum
number of spaces, all capable of accessing the road sensibly.

The code to produce the results for this section has been written in MAT-
LAB and is available from M. Homer upon request.

A Appendices

A.1 MATLAB code for the tile and trim approach

(A.1) cf.m

function [y,ceq] = cf(alpha, b, h, n, a, r_inner, r_outer)

% This function is the constraint function for the optimization problem.

% What this function represents is the constraint that the total height

% of the cars and the lanes should be less than a.

% Compute the total height of the cars

y = (sum((ones(1,n)*b).*cos(alpha) + (ones(1,n)*h).*sin(alpha)) - a);

% Define function for computing height of lane

swing = @(alpha) 2*cos(alpha)*b + 2*sin(alpha)*h + r_outer - ...

1/2 *(sin(alpha)*r_outer + sin(alpha)*r_inner + sin(alpha)*b + ...

cos(alpha)*h);

H = @(alpha) 2*(b*cos(alpha) + h*sin(alpha));

% Compute height of lanes

for i = 1:2:(n-1)

y = y + max(swing(alpha(i)) - H(alpha(i))/2, swing(alpha(i+1)) - ...

H(alpha(i+1))/2);

end

% and possible one more lane at the top

if mod(n,2) == 1

y = y + swing(alpha(n)) - H(alpha(n))/2;

end

ceq = [];

(A.2) IP.m

% By Sherif A. Tawfik, Faculty of Engineering, Cairo University

% [x,val,status]=IP1(f,A,b,Aeq,beq,lb,ub,M,e)

% this function solves the following mixed-integer linear programming problem
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% min f*x

% subject to

% A*x <=b

% Aeq * x = beq

% lb <= x <= ub

% M is a vector of indeces for the variables that are constrained to be integers

% e is the integarilty tolerance

% the return variables are :

% x : the solution

% val: value of the objective function at the optimal solution

% status =1 if successful

% =0 if maximum number of iterations reached in he linprog function

% =-1 if there is no solution

% Example:

% maximize 17 x1 + 12 x2

% subject to

% 10 x1 + 7 x2 <=40

% x1 + x2 <= 5

% x1, x2 >=0 and are integers

% f=[-17, -12]; %take the negative for maximization problems

% A=[ 10 7; 1 1];

% B=[40; 5];

% lb=[0 0];

% ub=[inf inf];

% M=[1,2];

% e=2^-24;

% [x v s]= IP(f,A,B,[],[],lb,ub,M,e)

function [x,val,status]=IP1(f,A,b,Aeq,beq,lb,ub,M,e)

options = optimset(’display’,’off’);

bound=inf; % the initial bound is set to +ve infinity

[x0,val0]=linprog(f,A,b,Aeq,beq,lb,ub,[],options);

[x,val,status,b]=rec(f,A,b,Aeq,beq,lb,ub,x0,val0,M,e,bound);

% a recursive function that processes the BB tree

function [xx,val,status,bb]=rec(f,A,b,Aeq,beq,lb,ub,x,v,M,e,bound)

options = optimset(’display’,’off’);

% x is an initial solution and v is the corressponding objective function value

% solve the corresponding LP model with the integarily constraints removed

[x0,val0,status0]=linprog(f,A,b,Aeq,beq,lb,ub,[],options);

% if the solution is not feasible or the value of the objective function is

% higher than the current bound return with the input intial solution

if status0<=0 | val0 > bound

xx=x; val=v; status=status0; bb=bound;

return;

end
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% if the integer-constraint variables turned to be integers within the

% input tolerance return

ind=find( abs(x0(M)-round(x0(M)))>e );

if isempty(ind)

status=1;

if val0 < bound

% this solution is better than the current solution hence replace

x0(M)=round(x0(M));

xx=x0;

val=val0;

bb=val0;

else

xx=x; % return the input solution

val=v;

bb=bound;

end

return

end

% if we come here this means that the solution of the LP relaxation is

% feasible and gives a less value than the current bound but some of the

% integer-constraint variables are not integers.

% Therefore we pick the first one that is not integer and form two LP problems

% and solve them recursively by calling the same function (branching)

% first LP problem with the added constraint that Xi <= floor(Xi) , i=ind(1)

br_var=M(ind(1));

br_value=x(br_var);

if isempty(A)

[r c]=size(Aeq);

else

[r c]=size(A);

end

A1=[A ; zeros(1,c)];

A1(end,br_var)=1;

b1=[b;floor(br_value)];

% second LP problem with the added constraint that Xi >= ceil(Xi) , i=ind(1)

A2=[A ;zeros(1,c)];

A2(end,br_var)=-1;

b2=[b; -ceil(br_value)];

% solve the first LP problem

[x1,val1,status1,bound1]=rec(f,A1,b1,Aeq,beq,lb,ub,x0,val0,M,e,bound);

status=status1;

if status1 >0 & bound1<bound
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% if the solution was successfull and gives a better bound

xx=x1;

val=val1;

bound=bound1;

bb=bound1;

else

xx=x0;

val=val0;

bb=bound;

end

% solve the second LP problem

[x2,val2,status2,bound2]=rec(f,A2,b2,Aeq,beq,lb,ub,x0,val0,M,e,bound);

if status2 >0 & bound2<bound

% if the solution was successfull and gives a better bound

status=status2;

xx=x2;

val=val2;

bb=bound2;

end

(A.3) drawCarpark.m

function drawCarpark(alpha, b, h, a, r_outer, r_inner)

% Define some of the required functions

swing = @(alpha) 2*cos(alpha)*b + 2*sin(alpha)*h + r_outer - ...

1/2 *(sin(alpha)*r_outer + sin(alpha)*r_inner + sin(alpha)*b + cos(alpha)*h);

H = @(alpha) 2*(b*cos(alpha) + h*sin(alpha));

% Plot the overall parking space

spaceWidth=100;

xv = [0 0+spaceWidth 0+spaceWidth 0 0];

yv = [0 0 0+a 0+a 0];

figure(1), plot(xv,yv); axis([0 100 0 a]); axis image;

hold on;

% Loop over each of the rows

y_offset = 0;

% The distance from the bottom of the entire park to the bottom of this row

for i = 1:length(alpha)

% Plot each of the cars in the row

car_width = 2/sin(alpha(i));

num_cars = 100/car_width;

for j = 1:num_cars % We randomly decide on 10 such cars

angle = pi/2 - alpha(i);
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x = (j-1) * 2/sin(alpha(i)) + h*cos(alpha(i));

xv = [0 b b 0 0];

yv = [0 0 h h 0];

R = [cos(angle) -sin(angle);sin(angle) cos(angle)];

y = y_offset;

XY = R * [xv;yv];

figure(1), plot(XY(1,:) + [x x x x x],XY(2,:) + [y y y y y]);

end

% Update the vertical offset for this row

y_offset = y_offset + 1/2*H(alpha(i));

if mod(i,2) == 1 && i < length(alpha)

y_offset = y_offset + max(swing(alpha(i)) - H(alpha(i))/2, ...

swing(alpha(i+1)) - H(alpha(i))/2);

end

end

hold off;

f.m

function [y] = f(alpha, b, h, n, a)

% This is the cost function for the optimisation problem.

% What we want to "minimize" is the negative density.

% The density is computed numerically by looking at a strip of width 100.

totalArea = 100*a;

carsArea = 0;

for i = 1:n

carWidth = 2/sin(alpha(i));

numCars = 100/carWidth;

carsArea = carsArea + b*h*numCars;

end

y = -carsArea/totalArea;

(A.4) mildlyadvanced.m

% This script solves a mixed integer program.

% The problem solved is a simplification where we have fixed the

% rotation to be orthogonal.

clear all;

close all;
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clc;

width = 2;

height = 5;

lambda = 1.5;

a = 15;

n = 10;

% Now we define each of our vectors/matrices

% A, b, f, lb, ub, M

b = [a;0];

f = - ones(1,n) * width * height;

lb = zeros(1,n);

ub = ones(1,n);

M = 1:n;

% Start with an empty A

A = zeros(2, n);

for i = 1:n

A(1,i) = (1 - (-1)^(i-1))/2 * height + (1 + (-1)^(i-1))/2 * ...

(height+lambda*height);

A(2,i) = -((1 + (-1)^(i-1))/2 - (1 - (-1)^(i-1))/2);

end

% Integrality tolerance

e = 2^-24;

[x v s] = IP(f, A, b, [], [], lb, ub, M, e)

rho = -v / (a*width)

(A.5) notlp.m

% This script solves the non-linear optimisation problem for Hilberts

% car strip.

clear all; clc;

% Specify parameters

width = 2;

height = 5;

a = 26;

r_inner = 4;

r_outer = 7;

% and parameters for the optimisation function

options = optimset(’MaxFunEvals’,1000,’MaxIter’,1000);
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bestfval = 0;

% Try 1 to 50 rows of cars

for n = 1:50

lb = ones(n, 1) * atan(width/height);

ub = ones(n, 1) * pi/2;

% Find optimal solution x. The parameter ones(1,n)*0.3806 is a

% starting guess which is not in any of the ends.

[x,fval,exitflag] = fmincon(@(x) f(x, width, height, n, a), ...

ones(1,n)*0.3806, [], [], [], [], lb, ub, @(x) ...

cf(x, width,height,n,a,r_inner,r_outer), options);

number = n

density = -fval

% If there is no solution, just stop

if exitflag < 1

break;

end

% If we get a better solution, save it

if fval < bestfval

bestx = x;

bestfval = fval;

end

end

% Write out the angles

bestx/pi*180

% and draw the carpark

drawCarpark(bestx, width, height, a, r_outer, r_inner);

A.2 Python code for the tile and trim approach

(A.6) main.py

import sys

import pygame

from pygame.locals import *

from colors import *

from carspace import *

from room import *

# Init pygame
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pygame.init()

# Define screen size and the color white

size = 1300, 750

white = 255, 255, 255, 255

# Create screen layer

screen = pygame.display.set_mode(size, pygame.DOUBLEBUF)

# Create a convex polygon to be the room

roompol = [(300, 0), (1200, 0), (1200, 400), (1000, 400), (1000, 600),\

(0, 600), (0, 300)]

carpark = room(roompol)

# Make a list of parking spaces

parkingSpacesUp = [carspace(21*i-40, 585-j*194, 0, True) \

for i in range(0, 65) for j in range(0, 4)]

parkingSpacesDown = [carspace(21*i-40, 595-j*194-90, 0, False) \

for i in range(0, 65) for j in range(0, 3)]

parkingSpacesTotal = parkingSpacesUp + parkingSpacesDown

# First we fill the background with cars

screen.fill(white)

for c in parkingSpacesTotal:

c.draw(screen, False)

pygame.display.flip()

print "Press space to place polygon, arrows to move and x/z to rotate"

while 1:

for event in pygame.event.get():

if event.type == pygame.QUIT:

sys.exit()

screen.fill(white)

for c in parkingSpacesTotal:

if c.collidesWithWalls(carpark):

c.draw(screen, True)

key_pressed = pygame.key.get_pressed()

if key_pressed[K_LEFT]:

carpark.posx -= 2

if key_pressed[K_RIGHT]:

carpark.posx += 2

if key_pressed[K_UP]:

carpark.posy -= 2
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if key_pressed[K_DOWN]:

carpark.posy += 2

if key_pressed[K_z]:

carpark.rotation += 0.5

if key_pressed[K_x]:

carpark.rotation -= 0.5

if key_pressed[K_SPACE]:

print "Time to cut!"

break

if key_pressed[K_ESCAPE]:

pygame.quit()

sys.exit()

carpark.draw(screen)

pygame.display.flip()

not_clipped = []

for c in parkingSpacesTotal:

if c.collidesWithWalls(carpark):

not_clipped.append(c)

screen.fill(white)

carpark.draw(screen)

for c in not_clipped:

c.draw(screen, False)

pygame.display.flip()

print "Total of: " + str(len(not_clipped)) + " cars"

raw_input("Done!")

(A.7) carspace.py

import pygame

from colors import *

from math import *

from room import *

class carspace:

height = 50

width = 20

def __init__(self, posx, posy, rotation, up):
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self.posx = posx

self.posy = posy

self.rotation = rotation

bbox_height = 60

bbox_width = 20

turn_width = 50

turn_height = 50

bboxup = [(self.posx+40, self.posy+50), # upper left car

(self.posx+40-turn_width, self.posy+50-turn_height),

# upper left turn

(self.posx+bbox_width+40+turn_width, \

self.posy+50-turn_height), # upper right turn

(self.posx+bbox_width+40, self.posy+50),

# upper right car

(self.posx+bbox_width+40, self.posy+bbox_height+50),

(self.posx+40, self.posy+bbox_height+50)]

bboxdown = [(self.posx+40, self.posy),

# upper left car

(self.posx+bbox_width+40, self.posy),

# upper right car

(self.posx+bbox_width+40, self.posy+bbox_height),

# lower right car

(self.posx+bbox_width+40+turn_width, \

self.posy+bbox_height+turn_height), # lower right turn

(self.posx+40-turn_width, \

self.posy+bbox_height+turn_height), # lower left turn

(self.posx+40, self.posy+bbox_height)] # lower left car

self.up = up

if self.up:

self.polyg = bboxup

else:

self.polyg = bboxdown

self.carsprite = pygame.sprite.Sprite() # create sprite

if up:

self.carsprite.image = \

pygame.image.load("images/car_full2.png").convert_alpha()

# load ball image

else:

self.carsprite.image = \

pygame.image.load("images/car_full3.png").convert_alpha()

# load ball image

self.carsprite.rect = self.carsprite.image.get_rect()
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# use image extent values

self.carsprite.rect.topleft = [0, 0]

# put the ball in the top left corner

def collidesWithWalls(self, room):

roompolyg = room.getActualPolygon()

for c in self.polyg:

translated_point = (c[0], c[1])

if not inside_complex_polygon(translated_point, roompolyg):

return 0

return 1

def rotate(self, degrees):

self.rotation += degrees

def draw(self, screen, collides):

if collides:

#self.carsprite.set_alpha(50)

screen.blit(self.carsprite.image, (self.posx, self.posy))

else:

#self.carsprite.set_alpha(255)

screen.blit(self.carsprite.image, (self.posx, self.posy))

(A.8) colors.py

white = 255, 255, 255, 255

black = 0, 0, 0, 255

blue = 0, 0, 255, 255

red = 255, 0, 0, 255

green = 0, 255, 0, 255

gray = 100, 100, 100, 255

brown = 200, 150, 150, 255

pink = 255, 100, 180, 255

(A.9) room.py

import pygame

import random

from pygame.locals import *

from math import *

from colors import *

class room:

#A class for holding an entire parking lot to be filled with parking spaces
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posx = 0

posy = 0

rotation = 0

def __init__(self, polyg):

self.polyg = polyg

self.color = white

self.width = self.computeWidth()

self.height = self.computeHeight()

def computeWidth(self):

minx = 100000

maxx = -100000

for p in self.polyg:

if p[0] < minx:

minx = p[0]

if p[0] > maxx:

maxx = p[0]

return maxx-minx

def computeHeight(self):

miny = 100000

maxy = -100000

for p in self.polyg:

if p[1] < miny:

miny = p[1]

if p[1] > maxy:

maxy = p[1]

return maxy-miny

def getActualPolygon(self):

centerx = self.posx + self.width/2

centery = self.posy + self.height/2

polygonToDraw = [rotate2d(self.rotation, (e[0] + self.posx, \

e[1] + self.posy), (centerx, centery)) for e in self.polyg]

return polygonToDraw

def draw(self, screen):

pygame.draw.polygon(screen, black, self.getActualPolygon(), 2)

def createRandomRoom(cx, cy, diameterx, diametery, numpoints):
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p = makeRandomData(numpoints, diameterx, diametery)

conH = list(convexHull(p))

coords = []

for i in conH:

l = list(i)

l[0] += cx

l[1] += cy

coords.append(tuple(l))

coords = tuple(coords)

return room(coords)

def inside_complex_polygon(r, P):

# Determine if the point r is inside the polygon P

polySides = len(P) # Number of corners of polygon

polyX = [e[0] for e in P]

polyY = [e[1] for e in P]

x = r[0]

y = r[1]

j = polySides - 1

oddNodes = False

for i in range(polySides):

if (polyY[i] < y and polyY[j] >= y) or \

(polyY[j] < y and polyY[i] >= y):

if (polyX[i] + (y-polyY[i]) / \

(polyY[j] - polyY[i])*(polyX[j]-polyX[i]) < x):

oddNodes = not oddNodes

j = i

return oddNodes

def inside_convex_polygon(r, P):

# Determine if the point r is inside the polygon P

sign = 0

n_vertices = len(P)

for n in xrange(n_vertices):

segment = P[n], P[(n+1) % n_vertices]

affine_segment = (segment[1][0] - segment[0][0], \

segment[1][1] - segment[0][1])
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affine_point = (r[0] - segment[0][0], r[1] - segment[0][1])

k = x_product(affine_segment, affine_point)

if k != 0:

k = int(k / abs(k)) # normalized to 1 or -1

if sign == 0: # the first case

sign = k

elif k != sign:

return False

else:

return False

return True

def x_product(a, b):

return a[0]*b[1]-a[1]*b[0]

def myDet(p, q, r):

#Calc. determinant of a special matrix with three 2D points.

#The sign, "-" or "+", determines the side, right or left,

#respectivly, on which the point r lies, when measured against

#a directed vector from p to q.

# We use Sarrus Rule to calculate the determinant.

# (could also use the Numeric package...)

sum1 = q[0]*r[1] + p[0]*q[1] + r[0]*p[1]

sum2 = q[0]*p[1] + r[0]*q[1] + p[0]*r[1]

return sum1 - sum2

def isRightTurn((p, q, r)):

#Do the vectors pq:qr form a right turn, or not?

assert p != q and q != r and p != r

if myDet(p, q, r) < 0:

return 1

else:

return 0

def makeRandomData(numPoints=10, sqrLength=100, sqrHeight=100):

#Generate a list of random points within a square.
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# Fill a square with random points.

xmin, xmax = 0, sqrLength

ymin, ymax = 0, sqrHeight

P = []

for i in xrange(numPoints):

rand = random.randint

x = rand(xmin+1, xmax-1)

y = rand(ymin+1, ymax-1)

P.append((x, y))

return P

def convexHull(P):

# Calculate the convex hull of a set of points.

# Get a local list copy of the points and sort them lexically.

unique = {}

for p in P:

unique[p] = 1

points = unique.keys()

points.sort()

# Build upper half of the hull.

upper = [points[0], points[1]]

for p in points[2:]:

upper.append(p)

while len(upper) > 2 and not isRightTurn(upper[-3:]):

del upper[-2]

# Build lower half of the hull.

points.reverse()

lower = [points[0], points[1]]

for p in points[2:]:

lower.append(p)

while len(lower) > 2 and not isRightTurn(lower[-3:]):

del lower[-2]

# Remove duplicates.

del lower[0]

del lower[-1]

# Concatenate both halfs and return.

return tuple(upper + lower)
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def rotate2d(degrees, point, origin):

# A rotation function that rotates a point around a point to

# rotate around the origin use [0,0]

# The idea is to first translate the point such that the

# rotation is about the origin, rotate and then move it back again.

x = point[0] - origin[0]

y = point[1] - origin[1]

newx = (x*cos(radians(degrees))) - (y*sin(radians(degrees)))

newy = (x*sin(radians(degrees))) + (y*cos(radians(degrees)))

newx += origin[0]

newy += origin[1]

return newx, newy
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