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Executive Summary

Problem Sensors record three-axis accelerometer, gyroscope and mag-
netometer data at high frequency (100 Hz) and GPS data (position in
three-dimensional space) at low frequency (=~ 1 Hz).

The goal is to combine these measurements into a trajectory of the point
holding the sensors. The trajectory, consisting of the time profiles for
position, orientation, velocity and acceleration, has to be suitable for
performance analysis and animation (so needs higher time resolution
and accuracy than the GPS data). Computations will be performed in
a post-processing step, not in real-time.

Proposed solutions Two algorithms to incorporate the GPS data
are proposed. The first is a simple generalization of the prior solution
provided by the problem presenter. It always produces a result quickly
and avoids drift. However, it relies on heuristically tuned “gains”. The
head orientation is not guaranteed to be correct, which is likely to have
knock-on effects on speed and acceleration.

The second approach applies a linear Kalman smoother iteratively. This
algorithm exploits the post-processing nature of the computations tak-
ing into account past and future measurements in an optimal manner.
It avoids heuristic gains and generates covariance matrices that give an
estimate of the error in the results.

Further investigations looked into the potential of wavelet smoothing
the measurements and potential applications for Android devices.
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1 Introduction

(1.1)

(1.2)

(1.3)

The presented problem is a data assimilation problem [1]. A dynamic model
describes how its internal state x(x) (in our case position, velocity, orien-
tation) evolves forward in time (from ¢;_; to t; for a large number of time
steps). As the initial state x(¢() is unknown and the model itself has uncer-
tainty and biases one expects systematic drift and inaccuracies. At the same
time a time series of measurements y(#x) is taken. These measurements are
typically only a projection of the full state x(¢). The measurements y(t)
are also affected by disturbances and they will be inconsistent with the cur-
rent belief of what the state has evolved to through the model. Thus, one
needs to “assimilate” the measurements into the current belief about the
true state. In general the result will be a probability distribution described
by a mean and a (co-)variance (this description is complete if the distri-
bution is normal, which is typically the case if disturbances originate from
many small independent sources).

If the problem is linear, that is, the model has the form
x(te) = A(t)x(t 1) (1)
and the measurements are known to be depending on the state via

y(te) = C(te)x(tr),

(A and C are matrices and both rules are assumed to be affected by dis-
turbances) then the solution known to be optimal is the Kalman smoother
11,2, 3, 5.

The presented problem does not fit into this class of linear problems because
the change of orientation creates rotations, which are nonlinear operations
(regardless of representation by quaternions, rotation matrix or Euler an-
gles). In our case this implies that the outputs depend nonlinearly on the
state: y(tx) = N(x(tx)). Since the sought trajectory is a small deviation
from the trajectory obtained from the GPS data, one can hope to apply the
Kalman smoother to the deviations from the GPS trajectory. This results
in the iteration process described in Section 4.

Section 3 describes a naive way to incorporate measurements, which does
not rely on linearity of the model (thus, Y(tx) = N(X(tx)) is permitted).
After each update step following the model (1) one computes the direction
c(tx) normal to the surface given by {x : N(x) = y(¢x)} and then applies
a correction along this normal to the state: Xo(tx) = x(tx) + gc(tx). The
advantage of this approach is simplicity and speed. The disadvantage is
that it relies on a heuristic factor (or gain) g. This factor is determined by
how trustworthy each component of the measurement is. One does not have
an objective estimate for this trustworthiness (in contrast to the Kalman
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(1.4)

(1.5)

smoother, which estimates variances along with means). The approach dis-
cussed in Section 3 is a generalisation of the approach to attitude correction
provided by the problem presenter. It comes with example scripts and demo
code.

The solution based on the Kalman filter is most likely the “best possible”
approach (optimal in some mathematical sense). At the moment the imple-
mentation does not follow through with the iteration described in Section 4.
Its author, Jacqueline Christmas, an expert on data assimilation, is inter-
ested in further collaboration to finish and improve the implementation.

The report consists of four pieces, independently written within a very short
time such that notation is not entirely consistent across all sections (es-
pecially, Section 3 and 4). On the other hand, the sections aim to be
self-contained, making it possible to read, for example, Section 4 without
Section 3. The report is accompanied by some demo code (Matlab/octave
compatible) and example data files to aid experimentation.

2 Problem statement

(as provided by Simon Fowler)

2.1 Background

(2.1)

Performance analysis for extreme sports athletes goes beyond lap times and
heart rates to include details of their motion across challenging terrain. Vert
Systems is currently developing technology to allow the visualisation of this
motion, where the core of the system is an inertial navigation algorithm
which needs to generate not just a position estimate but also an estimate of
the velocity and acceleration of the user. The key requirement is to track
the local features of the motion, with absolute position accuracy potentially
less of an issue. The specific problem for the study group is based on a
mountain biking example, which provides a representative example of both
the highly dynamic movement and also the levels of noise inherent in the
motion over rough terrain.

2.2 Constraints

(2.2)

(2.3)

The sensor data that is available is 3-axis acceleration and rate (gyroscope)
inertial data, 3-axis magnetic field data, and GPS data. Although GPS data
is available as input to the algorithms, the system requires higher fidelity
detail of the motion than is available purely from GPS.

The motion of the user is likely to include relatively long duration external
forces, such as from cornering and braking, meaning that standard tech-
niques such as high pass filtering to remove the effect of gravity are poten-
tially inappropriate in this environment. The user motion will also include
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(2.4)

2.3
(2.5)

(2.6)

(2.7)

2.4
(2.8)

relatively high levels of noise, particularly in the vertical axis, due to the
features of the terrain. The attitude of the sensor relative to the direction
of motion is not fixed. The attitude will remain in a generally constant
position relative to the motion, but with short term variations likely.

The inertial sensors used will be relatively inexpensive MEMS devices, which
are relatively noisy and have limited accuracy. Basic calibration of the
sensors can be assumed but some level of estimation of sensor errors is
likely to be necessary based on the redundant information within the sensor
data; a goal is to minimise the required pre-calibration activities.

Potential Solutions

The ‘standard’ solution would be an estimation technique based on Kalman
filtering, but even within this general field there is significant room for
different solutions. The current solution uses basic estimators for both at-
titude and position, although one of the current key sources of error is the
propagation of attitude errors into the position estimate.

Solutions could take advantage of the dynamics of the user, where the mass
of the actual body in motion will limit the rate of change of velocity within
certain bounds, with short term variations based on movement of the sensor
relative to the centre of mass. Similarly, the mechanisms for change in
overall velocity (steering, pedalling, and braking) could be modelled to some
extent so that they can be isolated from gravity and noise.

The results do not need to be generated in real-time, and so techniques do
not need to be based solely on processing the data in a line-by-line manner.
Similarly, processing and memory requirements are not a primary concern,
as the processing can be performed off-line.

Aims for study group

The challenge for the study group is to bring a new perspective to this
problem, and investigate:

e What is the most appropriate and accurate technique for estimation
the motion based on the quality of data available in the target envi-
ronment?

e Techniques for automatic calibration or otherwise minimisation of sen-
sor errors such as bias, drift, and misalignment.

Sample data will be available for actual investigation/experimentation, and
further data can be collected for specific scenarios as necessary to support
the study group.
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output column in Data variable dimension frequency
acceleration 2—4 a R3 100 Hz
angular velocity o7 w R3 100 Hz
magnetometer 8-10 m R3 100 Hz
GPS position 11-13* p R3 ~ 1Hz

*if non-zero

Table 1: Variable names for measurement data

o = N

accelerometer (m/sz)
1
L

gyroscope (rad/s?)

1
N

1
«

2 4 6 8 10 2 4 6 8 10
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Figure 1: Example time profiles of measurement data for file 2, start-
ing from time point kg = 40,000. (a) a, (b) w, (¢) m including correc-
tion (4), (d) p, relative to the first point in p.

2.5 Test case data provided
(2.9) The data files (comma separated tables)

1. Cal_Data_l_no_calibration.csv,

2. INS_23_processed_test.csv,

3. Test_Ride_1 no_calibration.csv,

4. Test_Ride_2_no_calibration.csv
contained time profiles (as measured by sensors) in the format listed below
and in Table 1. We refer to the csv table as Data(:,:) using octave/Matlab

array notation, calling the number of rows N (equalling the number of
measurements).

(2.10) Data(:,1) time ¢ (unit: s), to be ignored, replace by

tr=k/100 (k=1,...,N).


Cal_Data_1_no_calibration.csv
INS_23_processed_test.csv
Test_Ride_1_no_calibration.csv
Test_Ride_2_no_calibration.csv

Inertial motion estimation for extreme sports modelling ESGI91

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

Data(:,2:4) accelerometer measurements of linear acceleration a(t;) € R?
(k=1,...,N) for times t; (unit: m/s?).

Data(:,5:7) gyroscope measurements of angular velocity w(t;,) € R? (k =
1,...,N) for times ¢, (unit: degree/s). We also store the vector w(t;) =
(W1, ws, w3)(tg) of angular velocities in the anti-symmtric matrix

) 0 @ —in
Q) = |—& 0 a. 2)
Wy —wn 0
Data(:,8:10) magnetometer measurements m(t;) € R* (k =1,...,N) for

times ¢, (unit: arbitrary). The magnetometer points toward the magnetic
north n, given by the problem presenter;

sin ng cosn;
n = |cosngcosn,; where n; = 66.727°, ng = —2.072°. (3)
sinn;

Prior experimentation by the problem presenter had shown that the cen-
ter of rotation of the magnetometer measurements was displaced from the
origin by a consistent offset m, € R3. Thus, for the investigations of the
study group we preprocessed the measurements by fitting Data(:,8:10) to
a sphere

% finds best fit mc for center
mc=sphereFit(Data(:,8:10));

using
. mo — Me

my

(4)

where my ;, = Data(k,8:10) and m, is the center mc obtained by sphe reFit!.

B |ﬁ10,k - mc‘

Data(:,11:13) (whenever non-zero) GPS position data p € R? (geo-location
[east-west, north-south, elevation| relative to (0°,0°) and zero elevation,
unit: m). Select the indices kgps at which Data(:,11) is non-zero:

kgps = find(Data(:,11)~=0)

and define Ny, as the length of kgs. Then p(t,, ;) is the GPS location at
time g, . ;-

Columns Data(:,14:end) were not used in the algorithms.

Figure 1 shows a 10-second part of the time profiles of a, @, m and p to
give a visual impression of the relative temporal and spatial resolution of
the sensor signals and their signal-to-noise ratios.

1http ://www.mathworks.co.uk/matlabcentral/fileexchange/34129-sphere-fit-least-squared
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3 Prior approach and naive solution

3.1
(3.1)

3.2
(3.2)

Internal state to be tracked

Table 2 lists the internal states to be tracked and their dimensions. The

state variable name dimension
position of sensor p(tk) R?
velocity of sensor v(ty) R?
attitude (orientation) of sensor R(ty) R3*3

Table 2: Variable names for internal states to be tracked for all times

p(k=1,...,N).

attitude (or orientation) of the sensor can be stored in many different ways.
Table 2 and the subsequent equations use the convention of storing it as
tripod of three orthogonal unit vectors, that is, R(#) is a 3 x 3 rotation
matrix satisfying

R(tr) R(ty) = (5)

o O =
—~ O = O
_— o O

Since R(t;)TR(t;,) is symmetric, condition (5) imposes 6 conditions (say,
the identities for the entries (1,1), (2,1), (3,1), (2,2), (2,3) and (3,3) in
condition (5)) on the 9 entries of R(t;). Storing an orientaton as a rotation
matrix is equivalent to storing it as a quaternion (a vector of length 4 and
unit length). Code for conversion between rotation matrix R and quaternion
was provided by the problem presenter.

Prior approach — attitude update and correction

The problem presenter provided a prior reference solution for one core issue
the trajectory recovery has to overcome, a correction and updating rule for
the attitude R (file attitude_est.sci attached). If one assumes that the
attitude R(t;) at the previous time ¢, is known and the gyroscope data
for the angular velocity Q(tk) is perfect, then the attitude at time t;, is
approximately

R(tes1) = exp ([trr1 — t6]Qeor(t)) R(11), (6)

where (except for the corrections below) Qeor(ts) = €(t,). This is the
explicit Euler formula for the update. The exp(...) term in (6) refers to the
matrix exponential of the 3x 3 matrix (¢;11—15)Q2(tx) (see Matlab’s/octave’s
built-in command expm).

However, two additional pieces of information are incorporated to modify
the rotation, making ., (t;) different from €2(¢;). The magnetometer mea-
surement should equal the magnetic north, m(ty, 1) = R(tx11)"n, and, most

6


attitude_est.sci

Inertial motion estimation for extreme sports modelling ESGI91

(3.4)

of the time, the acceleration a(tx,1) points upwards. The error is expressed
as

_ a(ty1) T 0
e, = fm(tk> Ifl(tk_._l) X [R(tk)Tn] . (8)

In (7) and (8), f, and f,, are heuristic prefactors (between 0 and 1) depend-
ing on how trustworthy m(¢;1) is (lower if w(tx) is large) and how likely
a(ty) is pointing upward (lower if |a(k)| differs strongly from 9.81m/s?).
The operation x is the vector cross product and n is the magnetic north
vector defined in Equation (3). The magnetometer measurement m is al-
ready scaled to unit length according to Equation (4). The second term in
the cross products in (7) and (8) applies the inverse R(#;,)” of the previous
attitude to express the upward direction (0,0,1)” and the magnetic north
n in the coordinates aligned with the previous orientation R(ty).

The overall error
e=-e;+e, 9)

modifies the rotation Q. in (6) via a PI control term:

€int (tr+1) = €int(te) + (thr1 — tr)e(tr) (10)
wcor(tk) = "b(tk) + gpe<tk) + ginteint(tk)' (11>

In (11) the prefactors g, and gy are control gains chosen (heuristically) to
avoid introducing an instability but controlling the error e to zero in the
absence of disturbances.

Finally, the matrix Q.o (f) is constructed from we, in the same way as

~

Q(ty) from w(ty) (see Equation 2).

3.3 Problems left open from the prior approach— drift

(3.5)

The attitude correction (6),(11) alone cannot correct a disturbance-driven
drift in the position and velocity. That is, if one updates the other states
in the natural way

P(te+1) = p(te) + (L — te)v(te) (12)
V(tes1) = v(tr) + (tea — t)R(tr)a(ty) (13)

then the disturbances in the measurements a and the uncertainty in the
initial position and velocity p(to) and v(ty) will introduce rapidly increasing
errors in p(tx) and v(tx).

The PI control approach to attitude adjustment relies on a number of heuris-
tics (gains, error factors, etc). It is not clear if the attitude is maintained

7
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correctly, and if /how errors in the attitude R translate into errors in position
P, linear velocity v and linear acceleration

V(trs1) — v(te)
thr —te

a(tk+1) ~

3.4 Smoothing and interpolation of the GPS position data

(3.7)

(3.8)

o

gps position x,y,z (m)

gps position y (m)
1
S

L o 4

L
(=]
gps velocity x,y,z (m)
|
N

1
N
(=]
1
W

-5 0 5 0 2 4 6 8 10
gps position x (m) t(s)

Figure 2: Illustration of simple smoothing and interpolation algorithm
based on linear midpoint interpolation. Example time and z-y profiles of
measurement data are for file 2, starting from time point kg = 40, 000.
(a) Illustration of algorithm, see paragraph (3.8), (b) curves are the
resulting time profiles of GPS positions (“0” symbols original data, blue=
x, green= y, red= z), (c) resulting time profiles of velocities obtained
from time differentiation of spline interpolated smoothed GPS positions

(blue= z, green= y, red= z).

Several of the simple demonstration algorithms developed during the study
week are assuming GPS data at the same frequency as the sensor data. The
true GPS signal comes with a low time resolution and aligns along a grid of
several meters resolution in space. Thus, a simple approach to connect the
GPS data with the assumptions of the algorithms shown in 3.5 is smoothing
and interpolation.

Figure 2 illustrates a simple smoothing algorithm. Suppose we are given a
sequence of GPS points p; € R? at times tgps; (j = 1,. .., ngps, see circles
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in Figure 2(a) and (b)). We define

1 .
S0 = tgps,ly S = 5 [tgps,j-f-l -+ tgps,j]7 (j = 1, ooy Ngps — 1),
Sngps = tgpsyngps7
1
QO:IA)lv q:_[f)l—i_f)]a (]Zlaan s_l)a
) J 2 J+ J gp (14)
Angps = Prgpss
tgps,j — Sj—1)dj + (Tgps,j — 55)dj—1
p1:q07 pj:<gp] J )] (gPJ ])J ,
Sj — Sj—1
Prgps = Angps U :2""7ngps_ 1)'

The values p; are the smoothed values. In Figure 2(a) the (blue) cir-
cles are the p; (j = 1...,10), the (dark green) “x” symbols are the q;
(7 = 0...,10), and the (red) “4” symbols are the smoothed values p;,
( =1,...,10). The sequence of smoothed values p; is regular enough to
perform spline interpolation (red curve in Figure 2(a), all curves in Fig-
ure 2(b)). Even the time derivatives of the spline-interpolated p; (giving
the approximate velocities deduced from GPS positions) do not show os-
cillations at the sampling frequency of the GPS signal. The approximate
velocities are shown in Figure 2(c).

(3.9) The procedure transforming the sequence of p; into p; through Equa-
tion (14) can be applied (repeatedly) to the sequence of p; again. The re-
sults will becomes increasingly smooth but will also increasingly tend to “cut
corners” in the path. The short (Matlab/octave) function mpsmooth(t,p,n)
applies the smoothing procedure n times to the values p at times t.

(3.10) The procedure in paragraph (3.8) is a simple approximation of a low-pass
filter that decreases the amplitude of high frequencies exponentially (high-
est frequency would be sampling frequency, lowest frequency would be time
of entire trajectory). The function fftsmooth(y,options) performs a simi-
lar smoothing operation for profiles with uniform time spacing. The func-
tion fftsmooth is faster if one performs the equivalent of many smoothing
oprations of the form (14). For example, if ahat is the variable for the
acceleration measurement a, then a=fftsmooth(ahat, 'halfdecay',1/200);
produces a smoothed version a that is roughly the same as the result of
a=mpsmooth(t,ahat,1000). (Smoothing a may be a useful pre-processing
step before extracting gravitational acceleration to determine the upward
direction.)

3.5 Assimilation of GPS values into sensor-based trajectory

(3.11) The standard solution for assimilating measurements into a state trajectory
obtained from a linear model is the Kalman filter. It chooses the optimal
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(3.12)

(3.13)

balance between the state produced by the model and the indirect informa-
tion about the state due to the measurements. Optimality is based on the
assumption that both, model and measurements are disturbed by random
errors. An estimate of the covariance of these errors (a measure for their
size) is generated as part of the procedure. Generalizations to models with
nonlinearity (which is introduced by the rotation R in this problem) work as
long as one starts from a good initial guess. A separate section (Section 4)
explains the implementation of the Kalman filter and the Kalman smoother.
This section gives a “naive” version that is a generalization of the approach
adopted in the prior solution for attitude adjustment. The generalization
permits us to include an arbitrary number of additional measurements.

In the given problem the spacing of the time points t; for the sensor mea-
surements is uniform such that we have the time increment

At = tk - tk_1<: 0018)

After smoothing and interpolating we have the same time resolution also
for the GPS data. We list all equations regarding the state p(f;) € R3,
v(ty) € R and R(t;) € R3*3 in a single system:

A [p(t) = p(tio)] =v(te) + {e(t0)} (15)
A [v(t8) = vlt0)] =R(8a) + & + {eu(0)} (16)
1

[R(tr) — Ritr-1)] =Q(tx)R(t)+
+ { T (0 (t0)" em(te) + Jg(ate))" colts) }

A
17

18

R (t)m(ty
. |a<tk>|
R(tn)alte) =g

(17)
(k) (18)
(k) (19)
P(tk) =Pgps(tk) (20)
(tx) (21)
(tx) (22)

(7%

tk :Vgps(tk> 21
( )TR (7% I3 22

(The terms in curly brackets will be explained below.) In (16) g is the
gravitational acceleration. In (18) n is the magnetic north defined in (3). In
(20) and (21) pgeps(tx) and vgps(ti) are the positions and velocities obtained
by GPS (smoothed and interpolated using (14)). In (22) I3 is the 3 x 3
identity matrix (see (5)).

Note that (15)—(22) adopted the approximation corresponding to an implicit
Euler integration: on all right-hand sides we insert the values at the current
time t; instead of t;_1.

10
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(3.14)

(3.15)

(3.16)

If we ignore the terms in curly brackets then the only unknowns are p(t;),
v(t;) and R(t;) such that the system (15)—(22) is overdetermined. The
updating rules (15)—(17) and the additional measurements (18)—(22) will
not be perfectly consistent (due to measurement noise and errors in the
previous states).

The additional terms in curly brackets are the constraint forces necessary
to satisfy all equations simultaneously. The terms c,(t;) € R?, c,(t) € R,
cm(tr) € R and c,(ty) € R? are additional unknowns such that (15)-(21)
(ignoring orthogonality condition (22) because it is nonlinear) becomes a
linear system of 27 equations with 27 unknowns (p(tx), v(tx), R(tx), cp(tk),
cy(tr), cm(ty) and c4(tx)). The two matrices J,, and J, in (17) are the
pre-factors of R(t;) in the constraints from the magnetometer and gravity,
(18) and (19):
Jo(h) =m’ @I, J,(a)=a" ®I.

Both are 3 x9 matrices (using the convention that the rotation matrix R(ty)
is treated as a column-wise 9 x 1 vector when solving the linear system (15)—
(21)). The Matlab/octave commands generating these Kronecker product
matrices are (calling m =mag and a =acc)

Jm=kron(mag(:)"',eye(3));
Jg=kron(acc(:)"',eye(3));

The solution to this full system satisfies all additional constraints (18)—
(21) exactly. Hence, this solution is not directly useful because p(t;) and
v(t) will be determined entirely by the GPS signal. However, we can use
the resulting constraint forces c,, c,, ¢, and c, (pre-multiplied by small
factors) to correct drift of the states as obtained from (15)—(17) without
constraint forces (the terms in curly brackets) and ignoring the additional
constraints (18)—(21).

This results in the folowing overall procedure for updating p, v and R:
L. (Given) States at previous time t;_1: p(tg_1), v(tx_1), R(tx_1)
(Given) Measurements at current time: pgps(tx), Veps(tx) (smoothed
and interpolated), a(ty), Q(t) (connected to w(tx) via (2)), m(ty)
(corrected using (4)).
2. Compute constraint forces c,(tx), €, (tx), cm(tr), c4(tx) by solving the

linear system (15)—(21) for the variables p(tx), v(tx), R(tx), cp(tx),
Co(tr), cm(tr), cy(tx) (but ignore p(tx), v(tx) and R(t;) for now).

3. Compute what the new state p(t;), v(tx), R(tx) would be when we
ignore the constraint forces. That is, solve (15)—(17) for p(tx), v(tx),
R(ty), ignoring the terms in curly brackets. Call this intermediate
result Pint, Vint, Rint-

11
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4. Get the new state:

P(tk) = Pint + 9pCp(tx)
V(tk) = Vint + GuCo(ts)
R(tr) = Rint + gmdm(m(tk))cm(tr) + ggdg(alte))cy(tn)

where the correction factors g,, g, g, and g, are chosen non-negative
numbers (see comments in paragraph (3.18)). In addition compute
the acceleration a(ty) by

1
a(ty) = [v(tk) = vite-1)]
¢
5. Correct matrix R(t;) back to orthogonality (see comments in para-
graph (3.17)).

(3.17) To project the rotation R back to orthogonality two matlab/octave func-
tions are provided: [Rorth,flag,cR]=Matrix20rthogonal(R) finds the near-
est orthogonal matrix for an arbitrary matrix R (reliable, not guaranteed
to find a solution for matrices far away from orthogonality, slow). The
other outputs indicate success (flag) and the magnitude and direction of
the correction (cR). The function

[Rorth, cR]=ApproxOrthproj(Rprev, cprev,R)

which needs an initial guess Rprev and cprev is fast but gives good approx-
imation for nearly orthogonal matrices.? A good initial guess for Rprev and
cprev is the corresponding result from the previous time step.

The entire problem can be formulated equivalently using a quaternion q
representing R. However, then the equations (16), (17), (18) and (19)
become nonlinear in the unknown q.

(3.18) The factors g,, gy, gm and g, have to be chosen balancing the uncertainty
of each constraint. Since the GPS data is only for rough guidance to avoid
drift, the factors g, and g, have to be small. In the demonstration we chose
9p = g» = 0.05. For the factors g,, and g, we chose

o 0.7 if7<]al <10.3
1 if|lw| <15 02 iffa > 10.3
m — N ) — . 1 a - . )
Im=Nos ifjel>15 % .
0 otherwise

guided by the heuristics of the prior solution for attitude adjustment.

2The function Matrix20rthogonal projects its input onto the nonlinear surface of orthogonal
matrices. This is an iterative procedure. The function ApproxOrthproj performs a single step of
this iteration.

12
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(3.19)

(3.20)
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Figure 3: Segment of computational results following the steps in para-
graph (3.16) for file 4 (RIDE_2). (top) (z,y)-components of path p(t),
GPS data (points), smoothed and interpolated GPS data (red) and tra-
jectory p(t) (black); (bottom-left) segment of speed time series, |v(t)]
(blue), |vgps(t)| (smoothed and interpolated from GPS, green), correc-
tion |gpcp(t)| (red); (bottom-right) segment of acceleration time series,

a(t)] (blue), |gucy(t)] (green).

Figure 3 shows a few representative segments of p(t), v(¢) and a(t) and
the components of the computation. As one can see in the top panel, the
trajectory follows the (smoothed) GPS data closely despite the small pre-
factor g, = 0.05. The smallness of g, implies that the corrections are small
compared to the speed |v(t)| (bottom-left panel). In contrast, the acceler-
ation signal is composed of two signals of approximately equal magnitude:
the correction |g,c,(t)| is of similar magnitude as the other part of a(t),
R(t)a(t) + g (the difference between blue and green curves in the bottom-
right panel). In short, the low-frequency components of the resulting accel-
eration are determined by the GPS data, the high-frequency components
are determined by the accelerometer.

Figure 3 does not show the attitude R(¢) (a tripod of orthogonal unit vec-
tors). An animation Ride2Segment.mp4 is included for a visualisation of R
(along a segment of file 4 (RIDE_2).

3.6 Summary

(3.21)

The method proposed in this section is a generalisation of the prior solution
presented by the problem provider. This generalisation incorporates the

GPS to avoid drift.
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Figure 4: A graphical model of the statistical dependencies in a first-
order Hidden Markov Model. The state at time t; is denoted by x(t);
the corresponding observation by y (). The arrows indicate the statis-
tical dependencies.

(3.22) However, the correctness (or at least plausibility) of the attitude is difficult

to check without test data with known attitude. The combination of the
update rule based on the gyroscope and the additional conditions from
the magnetometer (18) and the approximate gravity (19) result in large
corrections ¢,cp,(t) and gycy(t).

Strictly speaking, the constraint on gravity (19) is redundant as it follows
from (16) if velocities incorporate information from GPS data (position or
velocity).

4 Kalman filter based assimilation of all measure-

ment data simultaneously

4.1 Background

(4.1)

The presented problem fits into the framework of Hidden Markov Models
(HMMs). A first-order Hidden Markov Model (HMM) consists of a time-
series of state variables x(fx), each of which is statistically dependent only
on the state at the previous time-step x(tx_1) (the order indicates how many
previous time-steps a state is dependent on), and an observation y(t;) of
each state, which is dependent only on the state x(¢;) for the same time-step.
The state x(tx) is called hidden (or latent) because the observation y(tx)
may provide only some components (or a function) of the state x(¢;) Figure
4 shows a diagram of a typical first-order HMM, which may be represented
by the following expressions:

X(tk) = AX(tk_l) + €<tk) (23)
y(tr) = Cx(ty) + e(tx) (24)

where €, and e,, are noise variables. The matrices A and C are assumed to
be known (but may depend on time t).

14
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(4.2)

Where the variables of a first order HMM are continuous, the noise is
Gaussian-distributed and the relationships between states, and between the
states and the observations, are linear, then the HMM is known as a Kalman
Filter [1, 2]. The Kalman Filter estimates the state at time ¢; dependent on
all the observations up to, and including, time ¢; using an efficient recursive
algorithm. Where the data are being processed offline (as they are in this
case), all the observations, including those in the “future”, may be included
in the state estimation, a process known as a Kalman Smoother.

Figure 5 shows the typical outcome of the application of a Bayesian Kalman
Smoother to estimate the position of an object at 1 sec intervals (the red
line) based on GPS locations recorded at 10 sec intervals (the blue line).
The grey ellipses indicate the degree of uncertainty in the estimates (two
standard deviations).

150 — —

Figure 5: The results of using a Kalman Filter/Smoother against the
GPS sensor data. In this model the noise is assumed to be heavier-tailed
than Gaussian. The GPS track is shown in blue, the estimated track
in red and the grey ellipses indicate the uncertainty in the estimates (2
standard deviations).

4.2 The model for the presented problem

(4.3)

For the sensor data, we define the hidden (or latent) state x(t;) to represent
the truth, i.e. the actual location and orientation of the sensor in global
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(4.4)

(4.5)

coordinates; we are only able to observe this state indirectly, through the
readings from the sensor. The state at time ¢, x(tx), is a vector composed of
the following five elements, all defined with respect to the global coordinate
system:

p(ty)
v(ty)
X(tk) = V(tk_1) (25)
R(ty)
R(tx-1)

where p(tx), v(tx) and R(t;) define the position, velocity and rotation ma-
trix (to move from global coordinates to sensor coordinates) for the current
time-step (see Table 2 in paragraph (3.1.1, but note that this is the inverse
convention: the rotation R in this section is the transpose of the rotation R
in Section 3). These are the truths that we wish to estimate. The v(tz_;)
and R(fx_1) are included because they enter the observations at time ¢.
This inclusion ensures that this is a first-order system.

We simplify the model (15)—(17) to a constant velocity model, so that
p(tr) = p(ty) + v(tx) At + noise (26)
v(ty) = v(ty_1) + noise (27)
R(tx) = R(tk—1) + noise (28)

where At is the time interval between observations. This linear evolution is
represented by the (fixed) transmission matrix A (see figure 4 and (23)):

I, Atl; 0 0 0O

0 I 0 0 O

X(tk): 0 Ig 0 0 0 X(tk_l)—i—é(tk) (29)
0 0 O01I O
0O 0 O01IL O

where I; represents the d x d identity matrix (remember that At = ¢, —
tr—1 = 0.01s in our case).

The observation at time-step tg, y(tx), is a vector composed of the outputs
of the sensors:

)
y(ty) = ) c R2 (30)

where 1(tx), a(ty), w(tx) and m(t;) are the GPS location, accelerometer,
gyroscope and magnetometer readings respectively. The hat over the vari-
able names indicates that they are in sensor coordinates (this convention is
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different from Section 3). These variables are recorded at 100Hz. The GPS
location is in global coordinates and is recorded only at 1Hz. The model for
the observations (excluding the noise) is

31

(
Alt) = R(t) |1 _Az(t’”) —g (32
(
(

)
)
33)
34)
In (33) the operation J, extracts the appropriate three entries of a 3 x 3
matrix to recover w from £2:

My 000000010
JoM= | M, |, suchthatJ,={0 0 1 000 0 0 0}, (35
Mo 000100000

if we treat Q as a 9 x 1 vector. Note that (31)-(34) are identical to (15)-
(18) and (20) (ignoring the terms in curly brackets and re-arrranging for
the observations instead of the state at the new time).

(4.6)  There are a number of issues associated with this approach:

1. The relationship between y(t;) and x(;) is not linear, that is, there
is no matrix C(t;) such that y(tx) = C(tx)x(tx) + noise.

2. The rotation matrices (the R(#;)) must be constrained so that they
remain valid rotation matrices, i.e. orthonormal.

3. It is not clear that the noise is Gaussian. In other trials, GPS noise has
been seen to be heavier-tailed than Gaussian [4]. It is well-known that
Gaussian distribution estimation is badly affected by the presence of
outliers [5].

There are non-linear versions of the Kalman Filter, for example, the ex-
tended Kalman Filter and unscented Kalman Filter [10, 9]. None of the
team are familiar with these techniques and, since the time interval be-
tween observations is very small, it was decided to use a standard, linear
Kalman Filter/Smoother iteratively. In the interests of expediency, the
GPS locations were spline-interpolated to 100Hz (using interpl immedi-
ately, in contrast to mpsmooth used in Section 3.4), making the observations
1(¢) available at every time step t.

4.3 Iterative procedure

(4.7)  Linearisation We can treat the problem by applying the linear techniques
iteratively. Given a reference trajectory X,.f(tx), we use the model for the
output (31)—(34) to obtain the output y,e(tx) that would correspond to
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the reference trajectory Xef(tx). Then the true state x(t;) and the true
observation y(;) are treated as small deviations from their reference values:

X(tr) = Xrer(tr) + Ax(tx)
y(tk) = Yref(tk) + A}’(tk)

These deviations Ax (unknown) and Ay (known) now fit into the linear
framework (23), (24). The transmission matrix A is as given in (29). The
emission matrix C depends on the reference state x,c¢(fx) (and, thus, on ;).
Section 4.4 will describe how the initial reference x(¢) is chosen. Section 4.7
gives the details how it is updated in subsequent iterations.

Linearised emission matriz At each time-step an emission matrix C(ty)
is constructed based on a linearisation of the observation model (31)-(34)
with respect to the state variables p(tx), v(tx), v(tx_1), R(tx) and R(tx_1).
The matrix C, which depends on time, consists of 5 columns (each column
is itself a matrix consisting of several columns, see below for explanations of
the entries), C, € R12x3, Cyp € R12x3 Cytrn) € R12x3, Cruy) € R12x9
Cra,_) € R

tk—1

I3 0 0
Cp = 8 , Gy = ER§f<tk> » Cyty) ﬁR{ff(t’“)
0 0 0
0 0
() me(tk)—AVtmf(tk—l) —g

Criy) = C = 0
R(tk) Jw<'>TRref<tkfl)/At ’ R(tkil) Jeref(tk)T(')/At
0

()n
(36)
Terms with the subscript ref are reference values. In the iterative procedure
described in sections 4.6 and 4.7, their values will be the state estimates from
the previous iteration.
The second to fourth entries of Cry,) are 3 x 9 matrices, operating on a
9 x 1 vector r by first reshaping r into a 3 x 3 matrix R and then perform-
ing the indicated operation on R. The matrices can be obtained by the
matlab/octave commands

CRtk2=kron(dvg',eye(3));

CRtk3=Jomxreshape(permute(reshape(kron(rrefl/dt,eye(3)),[3,3,3,3]),...
[1,4,2,31),9,9);

CRtk4=kron(north',eye(3));

if dvg is the second term (in square brackets) in Cgy,)2, rreflis Ryes(te—1),
dt is At, Jom is the 3 x 9 matrix representation of J, in (35), and north
is the magnetic north vector n. Similarly, the third entry in Cgry, ,) is
obtained by

CRtkml=Jom/dtxkron(eye(3),rref0d');

tk—1
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(4.9)

where rref0 is Ryes(ty).
Concatenating all columns of C the linearized model for the observations is

Ay (tr) = C(xpet(tx)) Ax(tg), where
C(xwet(tr)) = [Cp Cuite) Cvitinr)) Cr)) Cren))

Updating the reference iteratively As the deviations Ax and Ay satisfy
approximately a linear model, application of the linear algorithm (described
in Section 4.6) results in an estimate for the mean and covariance of the
unknown Ax. Then we can update the reference trajectory to the new and
(hopefully) more accurate reference

Xref,new<tk> - Xref,old(tk> + AX<tk> (37>

and update y.¢(tr) using (31)—(34) accordingly. Then we repeat the lin-
ear algorithm with the linearised emission matrix C in the new reference
Xref new (tr). Over multiple iterations of the estimation process it is antici-
pated that the linearisation will gradually converge.

4.4 Initial guesses

Before the iteration can be started we need an initial reference trajectory
Xref(tx). The position and velocity component for the initial X..f(t;) are
taken from the (spline-interpolated) GPS data 1(¢;) and its time derivative
(see Section 3.4, how to extract this data). The rotation components of
x(t) assume that the sensor is initially pointed in the direction of travel.
Alternatively, results obtained from the methods in Section 3.5 can be used
as initial reference.

4.5 Expectation (E) Maximisation (M) iteration

Assuming that the disturbances in (23) and (24) have a Gaussian distribu-
tion, we get Gaussian (also called normal) distributions for Ax and Ay,
too:

AX(tk> ~ N(Ax(tk) | AAX(tk_l), @) (38)
Ay(te) ~ N (A}’(tk) | C(xver (1)) AX(tr), ‘1’> (39)

(read, for example, the first as “Ax(¢)) has normal distribution with mean
AAx(tg—1) and covariance matrix ®”). We implement the Expectation
Maximisation (EM) algorithm |7, 8| to estimate the unknown means p(ty)
and covariance matrices ® for the states Ax(¢;) at the time steps tx (k =
2...K). The procedure works iteratively, alternating the E step and the M
step described in the following subsections.
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4.6 E step

(4.10)

(4.11)

(4.12)

Using the forward-backward algorithm [3], also known as the Baum-Welch
algorithm [6], (for a tutorial see [5]), the E step is calculated in two parts:
after the forward sweep (from ¢y to tx) we arrive at a sequence of means
pe(t) and covariances 3%(t,) for the probability distributions of x(t;) tak-
ing into account only the observations y(¢1),...,y(tx). The superscript «
indicates that these are “forward” results, depending only on past and cur-
rent observations.

Initial guesses The E steps starts with an initial guess pu*(ty) € R*" (a
guess for mean of the state x at t), a guess for X(t5) € R*™*?7 and guesses
for the covariance matrices ® € R*™*?7 and ¥ € R'>*!2 (estimates for the
covariances of the state x and the observation y). At the initial iterate
p(to) is zero. This corresponds to starting on the reference trajectory
Xref(to) as defined in Section 4.4.

The initial matrix () is a diagonal matrix, with the location and velocity
diagonal elements set to 10 and the rotation elements set to 0.1. The matrix
® is initially the identity matrix Is7, and the matrix W is a diagonal matrix,
with 10 for the location, 1 for the acceleration, 0.05 for the gyro and 0.05
for the magnetometer (numbers in the covariance matrix ¥ are guided by
the tolerances of the measurements in the units used for computation).

While these initial values are fairly arbitrary, from the second iterate onward
the initial values will be provided by the M step (see (55)—(58)).

Forward sweep At the first time step we set

P(ty) = 2(to) (40)
B (1) = 1 (1) + G(1) (y<t1> - c<t1>ua<to>)7 (41)
=(1) = (1- G()C(0) | Pl (12)

(X%(to) = X(to), and see (46) for definition of G). For times t; with k > 1
we set:

P(ty1) = AX(tp1)A" + @ (43)

b 0) = AR (to1) + Glow) (¥(0) - CAR () ) (4

(1) — (I - G(tk>c<tk>)P<tk1>. (45)

For each time step £ > 1 the matrix G(t;), known as the Kalman gain
matrix, is defined by

G(ty) = P(ty_1)C(tx)" <C(tk)P(tk_1)C(tk)T + \Il> B (46)
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(4.13)

(4.14)

Remember that the definition of the emission matrix C(tx) at each step
requires references values X,cf(f) that are in the first iteration chosen as
described in Section 4.4. In later iterations we have estimates for the means,
which we can use: X,ef(tx) = p(tx) from the previous iteration.

In a modification of this classical algorithm, after each time step we extract
the components of pu®(t;) corresponding to R(t) and R(tx_1) (components
10 to 18 and 19 to 27 of ) and re-orthogonalise them (using the function
Matrix20rthogonal provided). This correction is applied after each step k.

Backward sweep The backwards sweep starts at the final time tx. Let us
define as Y the matrix (y(¢1), ..., y(tx)) of ordered observations. The back-
wards sweep produces means p(ty) € R*” and covariances X(t;) € R*7*7
for the posterior distribution of x(t;) (note that the missing « indicates that
these quantities depend on all observations, past and future). At time tx
we start with

p(tx) = p*(tx) (47)
S(tx) = =(tx). (48)

Then, for k decreasing from K — 1 to 0 we define

J(tr) = Z(te) AP (1) (49)

wlt) = u(t) + (1) (u(tm - Am(tk)) (50)
S(te) = 2°(6) + I (t0) (z(tkﬂ) _ P(tk)> (L) (51)

Similar to the forward sweep the components of p(tx) corresponding to
R(tx) and R(tx_1) are re-orthogonalised (for example, using the function
Matrix20rthogonal) after each step k.

For the M (maximisation) step the following expectations are required:

(x(tr) | Y) = p(ty) (52)
(x(tr)x(tr—1)" | Y) = J(te-1)B(tx) + ptr)p(tr-1)" (53)
(x(tr)x(te)" |Y) = X(tr) + p(tr) m(te)” (54)

)

(read, for example, (x(tx)|Y) as “expectation of x(t;) given observations

Y??) .

4.7 M step

(4.15)

The maximisation step updates the initial guesses that have entered the E
step at time ¢y and the covariance matrices ® and ¥ (expectation depen-
dencies on Y have been omitted to aid readability):

p?(to) =(x(t1)) (55)
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E(to) =(x(t1)x(t1)") — (x(t1)) (x(t1))" (56)

D x(t)x(0)") ~ Al x(0))
~ (x(t)x(t) VAT + Alx(tx(t1))AT] 67)

U= Z [Y(tk)Y(tk)T — C(te) (x(tr))y (tr)"

1

=[ =

= y () (x(1)) " C )" + C(tk)(X(tk)X(tk)T>C(tk)T} - (58)

The means p(t;) generated in (52) will be used to create the new reference
trajectory X,ef(tx) in the next iteration: p(tx) is inserted as Ax(tx) in (37).

4.8 Initial results

(4.16) Figure 6 shows very preliminary results of using five iterations of the Kalman

Filter /Smoother against a short sequence of the data. It is interesting to
note that the estimated uncertainty in the easterly direction is consider-
ably bigger than in either of the other two directions (standard deviation
approximately 1.7 metres as opposed to 0.6 m and 0.2m).

5 Wayvelet smoothing and tests of Android phone

5.1 Wavelet smoothing

(5.1)

(5.2)

Since the sensor is believed to output rather noisy data, it may be useful
to pre-process the raw datasets by smoothing them. One of the best-known
methods for smoothing a noisy signal is based on the wavelet transform.
This technique is nowadays widely used in many fields such as signal anal-
ysis, econometrics or image processing.

The wavelet transform uses a projection of a signal onto an orthonormal set
of components. It provides us a technique for time frequency localization,
with many similarities to the Fourier transform. However, since wavelets
are localized in time, they can distinguish local events at different moments
in time.

Any signal can be represented as a sequence:
f@®)=S;+Dyj1+-+ Dy,

where J is the approximation level such as 27, which is the maximum scale
sustainable by the length of our signal. Then, S is so called father wavelet
(representing smoothed signal) and D is mother wavelet (representing noise;
when its subscript increases, the frequency of the noise increases as well). A
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(a) east, north (b) east, up

e

(c) north, up
Figure 6: Initial results from the Kalman Filter/Smoother, showing
the interpolated GPS track (in blue), the track estimated from all the
sensor data (in red) and the uncertainty (as grey ellipses) as one standard
deviation; the latter are drawn for every 10th observation. For clarity,
only a short sections of the track are displayed. In each plot the scales
of the two axes are the same.

one level higher approximation of the signal is obtained by decomposing the
actual refined signal into approximation and details and then by subtracting
the latter part, i.e. Sy = S; — Djyq. Figure 7 presents an example of
wavelet smoothing.

As mentioned earlier in 2.5, in our case the sensor outputs three vectors:
linear acceleration, angular velocity and magnetic field. Even when the data
include some noise, without pre-processing it can be filtered out by other
methods, e.g., by Kalman Filter (see 4). It is not clear which of those require
smoothing, if any. We strongly recommend testing different approximation
of all three signals for further research.

During the week we have also examined several scientific articles. Although
there are many of them, none was describing exactly the same challenge
we were facing. On of the papers, published in Robotica [11], describes
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Figure 7: Example of wavelet smoother performed on linear acceler-
ation of the sensor with respect to x axis. With every next level of
approximation, the signal gets smoother.

tracking robots. The authors state that noise generated by a sensor during
movement is strictly dependent on acceleration. Therefore, they suggest
de-noising the data in two steps: the first - using wavelet transform same
as described above. The second, called variable thresholding method, is
according to their study a way to filter out velocity-dependent signal. We
have run a similar analysis and had not found such a relationship. The
datasets from the sensor located on a cyclist’s helmet do not seem to have
any velocity-dependent noise.

5.2 Android device as a sensor

(5.4)

(5.5)

Modern smartphones are often equipped with an Android operating system
and sensors such as a magnetometer, a gyroscope, an accelerometer and
GPS. Therefore, we can use these built-in sensors to track the movement of
the smartphone.

Current technologies deliver software which can be used to analyse and de-
pict the position of a smartphone in real time. One possible Android appli-
cation is MLConnect. It sends raw values of the magnetometer, gyroscope
and accelerometer to Matlab using a Wi-Fi connection. One needs to install
MLConnect applications on the Android device, use the API provided on
http://mlconnect.chschmid.com on the computer and connect both devices
to the same network. An example of how to read the values of the available
sensors is provided at the mentioned website.

The Android device can be used as an inertial measurement unit which sends
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15 -

10

Figure 8: Orientation of the phone based on the gyroscope data.

the data in real time to (for example) Matlab using a Wi-Fi connection.
Figure 8 shows the result of an application of this set of tools. Integrated
data from the gyroscope were used to obtain an approximate orientation.
Accelerometer data increases the precision (exploiting that gravity produces
an upward acceleration). These computations can be performed in real time.

Tests have shown that provided setup can be used to check and improve
solution found in 3.5.

6 Conclusions and suggestions for next steps

(6.1)

(6.2)

There are several ways to incorporate the GPS data and avoid drift. For
example, a simple generalization of the algorithm provided by the problem
presenter achieves this.

A major problem (as had already been pointed out by the problem pre-
senter) is to ensure that the attitude (that is, head orientation) is tracked
correctly. At the moment, the only way to validate the attitude is a check
for plausibility: if one represents the attitude as a rotation matrix R and
the current velocity as v then w = RTv is a vector describing the attitude
relative to the current direction of motion. Implausible ranges of w (visible
in some parts of the animations) point to problems. However, even plausi-
ble ranges of w are no guarantee for correct attitude. Thus, it is impossible
to determine the true effectiveness of the proposed solutions with regard to
accuracy of the resulting speed and accelerations because of this uncertainty
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in the attitude. In particular, it is hard to distinguish what degree of cor-
rectness can be achieved by improving the algorithms without a reference
case to benchmark the algorithms.

(6.3)  One method would be to generate synthetic data which conform to our

understanding of the underlying dynamics and which have known noise
models. However, the only true test is to record sensor readings in a tightly
controlled environment, where the actual location and attitude of the sensor
is known at all times over a reasonable period of time.
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